Чем больше угол падения лучей тем
Что такое преломление света? Закон преломления света: формулировка, формула
Когда вы наблюдаете за чайной ложкой через стенку стакана, создается впечатление, что она больше и в верхней части как бы сломана. Когда вы пытаетесь выловить какой-либо предмет, лежащий на дне водоема, вы обычно не находите его именно там, где ожидали. Это примеры, в которых вы сталкиваетесь с явлением преломления света. Можете ли вы применить его на практике?
Когда свет проходит через границы между различными средами (воздух, стекло, вода и т.д.), он преломляется. Именно поэтому мир выглядит так странно, если смотреть на него через толстый кусок изогнутого стекла — например, ножку бокала.
Явление преломления света
Проведем опыт по наблюдению явления преломления света на границе двух сред.
Что вам понадобится?
Инструкция.
Вывод.
Как в воздухе, так и в воде луч лазерного излучения прямолинеен. Однако на границе двух сред (в нашем случае воздуха и воды) мы видим, что лазерный луч четко меняет свое направление. Это явление называется преломлением.
Помните! Преломление света — это явление изменения направления распространения света на границе двух прозрачных сред.
Рис. 1. Угол падения и угол преломления в явлении преломления света
Причиной явления преломления является изменение скорости распространения света при переходе из одной среды в другую. Если скорость распространения света в первой среде больше, чем в той, в которую проходит свет, то угол преломления (β) меньше угла падения (α) (см. рисунок 3).
Рис. 3. Если скорость распространения света в первой среде (v1) больше, чем во второй среде (v2), то угол падения (α) больше угла преломления (β)
Когда скорость распространения света в первой среде меньше скорости распространения света во второй среде, в которую проходит свет, то угол преломления больше угла падения (см. рисунок 4).
Рис. 4. Скорость распространения света и явление преломления
Если скорость распространения света в первой среде (v1) меньше, чем во второй среде (v2), то угол падения (α) меньше угла преломления (β).
Рис. 5. Когда угол падения равен нулю градусов преломление отсутствует
Явление полного внутреннего отражения
Когда луч света падает на границу между двумя средами, при определенных углах падения происходит явление полного внутреннего отражения. Чтобы это произошло, свет должен перейти из первой среды, в которой скорость распространения света меньше, во вторую среду, в которой эта скорость выше, например, из воды или стекла в воздух.
Явление полного внутреннего отражения — явление, иногда наблюдаемое при переходе из среды, в которой скорость распространения света ниже, в среду, в которой скорость света выше. Увеличение угла падения сопровождается одновременным увеличением угла преломления. При значениях больше определенного угла, называемого предельным углом (αпр), лучи света перестают проходить в другую среду и полностью отражаются.
Луч света, падающий на границу двух сред, может претерпевать полное внутреннее отражение, когда свет переходит из среды, в которой скорость распространения света v1 меньше, в среду, в которой скорость распространения света v2 больше (v1 Рис. 6. Полное внутреннее отражение
Преломление света в плоскопараллельной пластине
Плоскопараллельная пластина — это оптически однородный блок материала (стекло, оргстекло), прозрачный для световых лучей и имеющий по крайней мере две плоские поверхности, параллельные друг другу. Когда свет проходит через плоскопараллельную пластину, он преломляется дважды — один раз при входе и один раз при выходе из пластины. После выхода из пластины луч продолжает движение параллельно пути падающего луча и, таким образом, не отклоняется.
Плоскопараллельные пластины нашли практическое применение, а понимание хода светового луча в них позволило объяснить некоторые явления, происходящие в природе.
Преломление света в линзах
Линза — это специально отшлифованное твердое прозрачное вещество, ограниченное сферической, параболической или цилиндрической поверхностью. Линзы обычно изготавливаются из стекла, пластика, некоторых минералов (кварц, сапфир) и парафина.
Задача линзы как простого оптического устройства — преломлять проходящий через нее свет. Линзы могут собирать и рассеивать свет. Соответственно, мы называем их собирающими и рассеивающими линзами.
Рис. 8. Классификация линз по форме ограничивающих их поверхностей
Примером собирающей линзы является двояковыпуклая линза, а рассеивающей — двояковогнутая линза. Для объективов, предназначенных для использования в газовой среде (т.е., например, в воздухе, а не под водой), собирающие линзы тоньше по краям и толще в центре, а рассеивающие линзы, наоборот, тоньше в центре, чем по краям.
Применение линз.
Линзы, благодаря своим свойствам, нашли широкое применение в качестве элементов сложных оптических систем. Давайте, однако, начнем обсуждение их применения с оптической системы, которой большинство из нас пользуется каждый день, а именно с глаза.
Взяв за образец строение глаза, была сконструирована камера, объектив которой состоит из нескольких или даже более чем десятка линз.
Очки предназначены для коррекции нарушений зрения, таких как близорукость, дальнозоркость или астигматизм, путем фокусировки или рассеивания световых лучей.
Лупа — это простой оптический прибор, который может создавать как минимум в три раза увеличенные изображения предметов. Лупа — это обычная собирающая линза. Она используется, например, в филателии или нумизматике, полиграфии, ювелирном или часовом деле.
Оптический микроскоп — это еще один инструмент, в котором используются линзы. Назначение микроскопа — наблюдение близко расположенных объектов небольшого размера под большим увеличением. В микроскопе используется система из двух объективов — объектива и окуляра. При правильном их сочетании можно получить увеличение до 1500 раз. Чтобы понять, насколько велико это увеличение, давайте представим, что мы наблюдаем объект длиной 1 см. В микроскопе его изображение может достигать 15 м.
Линзовый телескоп (рефрактор) — это редко используемый сегодня астрономический инструмент, состоящий полностью из линз. Как и телескоп, впервые построенный Галилеем в 1609 году, он состоит из трубки, содержащей собирающую линзу объектива и рассеивающую линзу окуляра.
Сегодня для астрономических наблюдений мы используем так называемые рефлекторы, в которых для сбора света используются наборы зеркал и опорных линз.
Закон преломления света
Исходя из приведенной формулы можно сделать вывод, что:
« Отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух сред! Чем больше показатель преломления, тем сильнее преломляется луч при переходе из одной среды в другую. »
Перышкин А.В. Физика 8. – М.: Дрофа, 2010.
Исходя из написанного выше, можно сделать следующие выводы:
Интересный факт! Почему даже на мелководье, оставив в стороне наши охотничьи навыки, мы не можем охотиться на рыбу с заостренной палкой?
Ответ прост! Когда вы наблюдаете за рыбой, плавающей под поверхностью воды, у вас создается впечатление, что она находится на продолжении лучей, попадающих в ваш глаз. Однако это не так, поскольку свет, выходящий из воды, преломляется на границе вода-воздух. Рыба находится совсем не там, где вы ее видите.
§ 40. Тепло в атмосфере (2)
Почему утром и вечером холоднее, чем днём. Почему в тропиках теплее, чем на полюсе.
Каждый день Солнце восходит, поднимается до максимальной высоты, затем снижается и, наконец, скрывается за горизонтом.
Чем меньше угол падения солнечных лучей на Землю, тем меньше тепла она получает.
Внимательно рассмотрите рисунок 90. Утром, днём и вечером солнечные лучи падают на поверхность Земли под разными углами. Поэтому одно и то же количество тепла приходится на разную площадь поверхности. Максимальный нагрев поверхности происходит в солнечный полдень — когда Солнце достигает наибольшей высоты над горизонтом. Это подтверждают наблюдения за суточным ходом температуры воздуха. Однако на нагревание воздуха от поверхности Земли нужно время, поэтому наибольшие температуры в течение суток отмечаются обычно через два часа после полудня.
Температура воздуха в течение суток может сильно меняться. Над океанами и морями суточная амплитуда температур обычно невелика — всего 1—2 °С. Над засушливыми степями и пустынями она достигает 20 °С и выше. Наличие понижений в рельефе (котловины, горные долины) увеличивает величину суточных колебаний температуры, а растительность (особенно лесная) и облачность уменьшают. Вспомните, что иногда в прогнозе погоды вы слышите: «В течение дня температура воздуха существенно не изменится». Так бывает в облачные пасмурные дни, потому что облака задерживают излучение тепла от поверхности Земли, и воздух охлаждается значительно медленнее.
СУТОЧНЫЙ ХОД ТЕМПЕРАТУРЫ ВОЗДУХА ЗАВИСИТ ОТ ИЗМЕНЕНИЯ УГЛА ПАДЕНИЯ СОЛНЕЧНЫХ ЛУЧЕЙ В ТЕЧЕНИЕ СУТОК.
Почему в тропиках теплее, чем на полюсе
Вспомните, как Солнце освещает нашу планету: его лучи «упираются» в экватор и «скользят» у полюсов.
Угол падения солнечных лучей зависит от широты местности.
— Чем дальше от экватора и чем ближе к полюсам, тем ниже стоит Солнце над горизонтом.
— Чем ниже стоит Солнце над горизонтом, тем меньше угол падения солнечных лучей на поверхность Земли (рис. 91).
— Чем меньше угол падения лучей, тем меньше солнечной энергии — света и тепла — приходится на единицу площади поверхности Земли.
В дни равноденствий на всей Земле день равен ночи. Поэтому количество солнечной энергии, приходящейся на единицу площади, зависит в этот день в основном от широты местности (от высоты Солнца). В другие дни играет роль и продолжительность солнечного сияния: ведь на разных широтах разная длина светового дня.
География
Причины, влияющие на климат. Как изменяется угол падения солнечных лучей от экватора к полюсам? Почему это происходит? К чему приводит?
С изменением угла падение солнечных лучей от экватора к полюсам, в том же направлении изменяются и количество тепла, получаемое земной поверхности от Солнца. Чем больше угол падения солнечных лучей, тем сильнее нагревается поверхность Земли. По мере уменьшения к полюсам угла падения солнечных лучей, уменьшается и количество получаемого тепла.
Ещё по теме
Причины, влияющие на климат. Вычислите, чему равна температура воздуха на вершине горы высотой 1500 м, если у её подножия она составляет +20 °С. На какой высоте температура воздуха будет +14 °С?
Рельеф дна Мирового океана. Познакомьтесь с картой океанов в атласе. Пользуясь картой океанов, приведите примеры котловин и хребтов ложа океана.
Рельеф суши. Горы. Назовите главные, существенные признаки понятия «горы». Чем гора отличается от холма?
Природный комплекс. Объясните, почему почву считают особым природным телом.
Ледники. Как вода ледников участвует в мировом круговороте воды?
Стороны горизонта. Ориентирование. Что называют линией горизонта?
Вода на Земле. Перечислите воды суши. Какие из них находятся рядом с вашим населённым пунктом?
Стороны горизонта. Ориентирование. По плану местности (см. Форзац 1) определите: а) в каком направлении от реки Нары находятся заросли кустарника; б) в каком направлении от лиственного леса находится посёлок Елагино; в) в каком направлении через местность протекает река Нара; г) вдоль какого края посёлка Елагино проходит тропа.
Реки. Составьте список понятий по теме «Реки». Постарайтесь определить эти понятия, выделив их существенные признаки.
Водяной пар в атмосфере. Облака и атмосферные осадки. Почему во Владивостоке большая часть годового количества осадков выпадает летом? Как называются ветры, дующие над территорией, где расположен Владивосток?
Если материал понравился Вам и оказался для Вас полезным, поделитесь им со своими друзьями!
Чем больше угол падения лучей тем
Каждая точка, до которой доходит световое возбуждение, является, в свою очередь, центром вторичных волн; поверхность, огибающая в некоторый момент времени эти вторичные волны, указывает положение к этому моменту фронта действительно распространяющейся волны.
α = γ
Вывод на основе принципа Гюйгенса:
Предположим, что плоская волна (фронт волны АВ), распространяющаяся в вакууме вдоль направления I со скоростью с, падает на границу раздела двух сред. Когда фронт волны АВ достигнет отражающей поверхности в точке А, эта точка начнет излучать вторичную волну.
Для прохождения волной расстояния ВС требуется время Δt = BC/υ. За это же время фронт вторичной волны достигнет точек полусферы, радиус AD которой равен: υΔt = ВС. Положение фронта отраженной волны в этот момент времени в соответствии с принципом Гюйгенса задается плоскостью DC, а направление распространения этой волны – лучом II. Из равенства треугольников ABC и ADC вытекает закон отражения: угол падения α равен углу отражения γ.
Вывод закона преломления. Предположим, что плоская волна (фронт волны АВ), распространяющаяся в вакууме вдоль направления I со скоростью с, падает на границу раздела со средой, в которой скорость ее распространения равна v.
Пусть время, затрачиваемое волной для прохождения пути ВС, равно Δt. Тогда ВС = сΔt. За это же время фронт волны, возбуждаемой точкой А в среде со скоростью u, достигнет точек полусферы, радиус которой AD = vΔt. Положение фронта преломленной волны в этот момент времени в соответствии с принципом Гюйгенса задается плоскостью DC, а направление ее распространения – лучом III. Из рис. видно, что
, т.е.
.
Отсюда следует закон Снелиуса:
П ринцип Ферма : свет распространяется между двумя точками по пути, для прохождения которого необходимо наименьшее время.
Покажем применение этого принципа к решению той же задачи о преломлении света.
Луч от источника света S, расположенного в вакууме идет до точки В, расположенной в некоторой среде за границей раздела
В каждой среде кратчайшим путем будут прямые SA и AB. Точку A охарактеризуем расстоянием x от перпендикуляра, опущенного из источника на границу раздела. Определим время, затраченное на прохождение пути SAB:
.
Для нахождения минимума найдем первую производную от τ по х и приравняем ее к нулю:
,
отсюда приходим к тому же выражению, что получено исходя из принципа Гюйгенса: .
Следствия из принципа Ферма:
1. Обратимость световых лучей: если обратить луч III, заставив его падать на границу раздела под углом β, то преломленный луч в первой среде будет распространяться под углом α, т. е. пойдет в обратном направлении вдоль луча I.
2. Если свет распространяется из среды с большим показателем преломления n1 (оптически более плотной) в среду с меньшим показателем преломления n2 (оптически менее плотной) ( n1 > n2 ), например из стекла в воздух, то, согласно закону преломления, преломленный луч удаляется от нормали и угол преломления β больше, чем угол падения α:
3. С увеличением угла падения увеличивается угол преломления, до тех пор, пока при некотором угле падения (α = αпр) угол преломления не окажется равным π/2.
Полное отражение
По мере приближения угла падения к предельному, интенсивность преломленного луча уменьшается, а отраженного – растет.
Преломление света в плоскопараллельной пластине
Плоскопараллельная пластина — это оптический прибор, представляющий собой ограниченный параллельными поверхностями слой однородной среды, прозрачной в некотором интервале длин волн λ оптического излучения.
Основным оптическим свойством пластины является то, что луч, падающий на пластину, в результате двукратного преломления на поверхностях пластины параллельно смещается на некоторую величину δL относительно исходного луча
Величина смещения в плоскопараллельной пластине
Величина сдвига луча света δL зависит:
C увеличением любого из этих параметров смещение луча света увеличивается.
Смещение луча можно выразить через угол падения
Из этого выражения видно, что величина смещения луча в пластине зависит от угла падения, толщины пластины и показателя преломления. Из формулы видно, что отклонения луча не происходит, если:
Ход луча через треугольную призму
Призма — оптический элемент из прозрачного материала (например, оптического стекла) в форме геометрического тела — призмы, имеющий плоские полированные грани, через которые входит и выходит свет. Свет в призме преломляется. Важнейшей характеристикой призмы является показатель преломления материала, из которого она изготовлена.
На призму из точки S падает луч света. Испытав 2 преломления, он выходит с отклонением на угол δ, который называется угол отклонения луча. Угол при вершине призмы АВС – φ называется преломляющим углом.
Если световой луч падает на преломляющую грань призмы под малым углом (практически перпендикулярно преломляющей грани призмы), то угол отклонения луча призмой определяется формулой
Если призма сделана из материала, показатель преломления которого больше, чем у среды, в которой находится призма, отклонение лучей происходит к основанию призмы.
Лучи различного цвета (различной частоты или длины волны) отклоняются призмой по-разному. В случае нормальной дисперсии (показатель преломления материала тем выше, чем больше частота светового излучения) призма наиболее сильно отклоняет фиолетовые лучи; наименее — красные.
Преломление света. Закон преломления света
Содержание
Из прошлых уроков вы уже знаете, что в однородной среде свет распространяется прямолинейно. Но в жизни много ситуаций, когда свет проходит через разные вещества до того, как достигнет наших глаз.
Например, через оконные стекла мы отлично видим все, что происходит на улице. А через стекла в межкомнатных дверях мы можем видеть только размытые силуэты того, что находится за дверью. Тот же самый пример можно привести и с прозрачной и мутной водой.
Значит, получаемое нашими глазами изображение как-то связано с тем, через какие среды проходит свет. Двигаясь прямолинейно в одной среде, он переходит в другую и снова двигается прямолинейно. Что же происходит при этом переходе из одной среды в другую?
Так, вам предстоит узнать новое понятие – преломление света. В ходе данного урока вы узнаете закономерности этого явления, рассмотрите различные опыты и научитесь применять полученные знания для решения задач.
Явление преломления света
Рассмотрим простой опыт. Для него нам понадобится прозрачный стакан с водой и обычный карандаш (рисунок 1).
Сначала опустим карандаш в воду вертикально (рисунок 1, а). Части карандаша в воздухе и в воде не изменились.
А теперь поменяем угол наклона карандаша (рисунок 2, б). Мы увидим интересную картинку. Нам кажется, что карандаш переломился на границе воды и воздуха.
Что произошло? Мы видим карандаш, потому что на него падает свет от какого-то источника. Его лучи отражаются от карандаша и попадают нам в глаза. Когда мы опустили карандаш в воду под каким-то углом, световые лучи дошли до наших глаз не только через воздух, но еще и через воду в стакане. При этом они поменяли направление своего распространения при переходе из одной среды в другую. В таком случае говорят, что свет преломился.
Преломление света – это явление изменения направления распространения света при переходе из одной среды в другую.
Но, если свет преломляется при переходе из одной среды в другую, почему на рисунке 1 (а) мы все равно видим карандаш без изменений? Чтобы разобраться с этим вопросом, нам необходимо более подробно изучить природу преломления света.
Скорость света и оптическая плотность среды
Свет распространяется в пространстве с определенной скоростью. Эта скорость настолько велика, что нам кажется, будто свет появляется мгновенно. Например, когда в темной комнате мы щелкаем переключателем, и включается свет.
Ученые не только рассчитали значение этой скорости, но и доказали, что скорость света различается в разных средах (таблица 1).
Значения скорости света в вакууме и воздухе практически не отличаются, поэтому используют одно значение – $300 000 \frac<км><с>$. Эта величина обозначается буквой $c$.
В других же средах наблюдается значительная разница в значениях скорости. Например, в воде скорость света меньше, чем в воздухе. При этом говорят, что вода является оптически более плотной средой, чем воздух.
Оптическая плотность – это величина, которая характеризует различные среды в зависимости от значения скорости распространения света в них.
Если пучок света падает на поверхность, разделяющую две прозрачные среды с разной оптической плотностью, то часть света отразится от этой поверхности, а другая часть проникнет во вторую среду. При этом луч света изменит свое направление – происходит преломление света.
Схема преломления светового луча. Угол преломления
Рассмотрим преломление света более подробно (рисунок 2).
Перечислим элементы, обозначенные на рисунке 2:
Угол преломления – это угол между перпендикуляром, опущенным к границе раздела двух сред в точке падения светового луча, и преломленным лучом.
Теперь на поверхность воды с помощью маленького фонарика направим пучок света. Сделаем это таким образом, чтобы пучок света падал под каким-то углом.
Мы увидим, как луч поменяет свое направление на границе воздуха и воды. При этом угол преломления заметно меньше угла падения ($\gamma_1 \alpha_2$).
Вода – более плотная оптическая среда, чем воздух. Из всего этого мы можем сделать следующие выводы:
Если в ходе опытов мы будем менять угол падения, то заметим, что угол преломления тоже будет изменяться. При этом вышеописанные нами закономерности будут исполняться.
Показатель преломления
Давайте выясним, как именно углы падения и преломления связаны друг с другом. Рассматривать будем луч света падающий из воздуха в воду.
При увеличении угла падения, будет увеличиваться угол преломления (рисунок 4). Но отношение между этими углами ($\frac<\alpha><\gamma>$) не будет постоянным.
Постоянным будет оставаться другое отношение этих углов – отношение их синусов:
$\frac<\sin 30 \degree> <\sin 23 \degree>= \frac<\sin 45 \degree> <\sin 33 \degree>= \frac<\sin 60 \degree> <\sin 42 \degree>\approx 1.33$.
Полученное число (1.3) называют относительным показателем преломления. Обозначают эту величину буквой $n_<21>$.
Так, для любой пары веществ с разными оптическими плотностями можно записать:
Чем больше относительный показатель преломления, тем сильнее преломляется световой луч при переходе из одной среды в другую.
В чем физический смысл этой величины? Ранее мы говорили, что оптическая плотность характеризует вещество по скорости распространения света в нем. Показатель преломления делает то же самое.
Относительный показатель преломления – это величина, показывающая, во сколько раз скорость света в первой по ходу луча среде отличается от скорости распространения света во второй среде:
$n_ <21>= \frac<\upsilon_1><\upsilon_2>$.
Если луч света падает из вакуума или воздуха в какое-то вещество, то используется еще одна величина – абсолютный показатель преломления.
Вещество | $n$ |
Воздух | 1.00 |
Лед | 1.31 |
Вода | 1.33 |
Спирт | 1.36 |
Стекло (обычное) | 1.50 |
Стекло (оптическое) | 1.47 – 2.04 |
Рубин | 1.76 |
Алмаз | 2.42 |
Таблица 2. Абсолютные показатели преломления света различных веществ
Здесь мы вернемся к вопросу о том, почему на рисунке 1 (а) мы не видим преломления.
Если падающий луч падает перпендикулярно на границу раздела двух сред, то он не испытывает преломления.
Закон преломления света
Итак, преломление света происходит по определенному закону.
Закон преломления света:
падающий и преломленный лучи и перпендикуляр, проведенный к границе раздела двух сред в точке падения луча, лежат в одной плоскости. При этом отношение синуса угла падения к синусу угла преломления – постоянная величина для двух сред:
$\frac<\sin \alpha> <\sin \gamma>= \frac= n_<21>$.
Мнимое изображение, образованное преломлением света. Призмы
Преломление света, как и отражение света плоским зеркалом, создает “кажущееся” изменение положение источника света. Мы наблюдали такое изменение в самом первом опыте этого урока на рисунке 1, б.
Но, дело в том, что мнимое положение источника света в случае преломления будет различным для лучей, падающих на границу раздела двух сред под разными углами. Поэтому мнимое положение источника света при преломлении обычно подробно не рассматривают.
Тем не менее, мы часто замечаем эти изменения. Например, в прозрачной воде в закрытых водоемах или в море кажется, что предметы, лежащие на дне и находящиеся в толще воды, находятся на другом расстоянии от нас, чем они есть на самом деле.
Рассмотрим наглядный опыт с монеткой (рисунок 5).
Возьмем неглубокую широкую чашку и положим на ее дно монетку. Выберем такое положение для наблюдения, чтобы она была не видна (рисунок 5, а).
Оставаясь в этой же точке наблюдения, нальем в чашку воду. Теперь монета стала видна (рисунок 5, б). То есть, мы видим не саму монету, а ее мнимое изображение, образованное преломлением света.
В различных оптических приборах используют эти особенности преломления. Часто свет проходит сквозь тело, имеющее форму призмы (рисунок 6, а).
Световой луч, падающий на боковую грань призмы дважды преломляется (рисунок 6, б): при входе в призму и при выходе из нее. Такой луч на выходе из призмы будет отклоняться к основанию треугольника.
В оптических приборах используют не просто призмы, но и их различные сочетания. Например, на рисунке 7 изображены 3 коробки, в которых находятся треугольные призмы.
Вы можете оценить, как при разных положениях призм изменяется ход лучей на выходе из коробки. При этом падающие лучи во всех трех случаях (а, б, в) были параллельны и имели одинаковое направление.
Примеры задач
Дано:
$\alpha = 30 \degree$
$\gamma = 45 \degree$
$n_2 = 1$
$c = 3 \cdot 10^8 \frac<м><с>$
Посмотреть решение и ответ
Решение:
По определению абсолютного показателя преломления для скипидара мы можем записать:
$n_1 = \frac
При решении задачи мы будем использовать рисунок 9.
Теперь запишем условие задачи и решим ее.
Дано:
$n_1 = 1$
$n_2 = 1.73$
$\beta = 60 \degree$
Посмотреть решение и ответ
Решение:
По закону отражения света:
$\alpha = \beta = 60 \degree$.
Условие задачи дает понять, что в глаз наблюдателя попадает луч, который падает перпендикулярно границе раздела двух сред. В таком случае, преломление наблюдаться не будет. Тем не менее, как и в настоящей жизни, мы все равно увидим преломленное изображение источника света. Он будет казаться ближе. В ходе решения этой задачи вы узнаете, почему так происходит.
Для начала рассмотрим рисунок 10.
Теперь мы можем записать условие задачи и решить ее.
Дано:
$H = 3 \space м$
$n_1 = 1.33$
$n_2 = 1$
Посмотреть решение и ответ
Решение:
$h = \frac<3 \space м> <1.33>\approx 2.3 \space м$.