Чем больше абсолютный показатель преломления среды тем
Абсолютный и относительный показатели преломления в физике
Абсолютный и относительный показатели преломления
Показатель преломления (коэффициент преломления) — это оптическая характеристика среды, связанная с преломлением света на границе раздела двух прозрачных, оптически однородных и изотропных сред при переходе из одной среды в другую и связанная с различием скоростей распространения света и
в этих средах.
Величина показателя преломления, равная соотношению этих скоростей , называется относительным показателем преломления. Если свет падает на первую или вторую среду из вакуума, где скорость распространения света равна
, то показатель преломления называется абсолютным показателем преломления и равен
или
соответственно. Относительный показатель преломления при переходе из первой среды во вторую связан с абсолютными показателями преломления этих сред соотношением:
, и закон преломления
может быть записан в виде:
где и
— углы падения и преломления соответственно.
Среда, в которой скорость света больше, называется оптически менее плотной. Таким образом, при переходе из оптически менее плотной среды в оптически более плотную , т. е. угол преломления меньше угла падения, и наоборот.
Абсолютный показатель преломления зависит от природы и строения вещества, его агрегатного состояния, температуры, давления, наличия в нём упругих напряжений. Показатель преломления данной среды зависит от длины волны света. Для большинства прозрачных жидкостей и твёрдых тел показатель преломления в видимой области в среднем равен 1,5.
Абсолютный показатель преломления воздуха для жёлтого света при нормальных условиях равен . Поэтому показатели преломления различных веществ рассматривают относительно воздуха.
Эта лекция взята со страницы лекций по всем темам предмета физика:
Возможно эти страницы вам будут полезны:
Образовательный сайт для студентов и школьников
Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.
© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института
В чем заключается физический смысл показателя преломления: абсолютный и относительный показатели
Изучая законы движения света в различных прозрачных средах, часто используют понятие показателя преломления. В чем заключается смысл физический величины, а также для каких явлений она имеет важное значение, рассматривается в статье.
Преломление света
Когда луч света (в действительности любой волны) проходит через поверхность, ограничивающую две прозрачные среды, то его прямолинейная траектория терпит преломление на этой поверхности. Результатом этого явления является искажение изображения объектов, если они находятся в одной среде, а смотрят на них из другой среды. Например, четкий излом видно, если карандаш поместить в стакан с водой.
Вам будет интересно: Гуманитарный институт СФУ: баллы, факультеты
Математический закон для явления преломления был впервые сформулирован голландским ученым Снеллом в начале 1600 годов. Справедливости ради отметим, что преломлением занимались многие ученые, начиная с греческого философа Птолемея и заканчивая Ньютоном и Декартом. Соответствующая формула имеет вид:
Здесь θ1 и θ2 — углы между падающим и преломленным лучами и нормалью, проведенной к поверхности в точке ее пересечения световым лучом. Символами n1 и n2 в формуле обозначены показатели преломления соответствующих прозрачных материалов. В чем заключается смысл физический показателя преломления среды, рассмотрим в следующем пункте.
Показатель преломления (абсолютный)
В физике эта величина вводится как отношение двух скоростей света в разных материалах или в вакууме. Известно, что в безвоздушном пространстве скорость света превышает таковую для любого другого материала. Поэтому она была выбрана за эталон. Обозначая скорость электромагнитных волн в некоторой среде как v, можно записать следующее математическое определение показателя преломления:
В чем заключается смысл физический показателя преломления света в среде, видно из этой формулы. Величина n показывает, насколько быстрее свет перемещается в безвоздушном пространстве, чем в данной среде.
Из формулы также понятно, что n всегда равен единице или больше нее. Единице он равен для вакуума, а также близок к единице для разряженных газов. Например, для воздуха n=1,00029.
Показатель преломления (относительный)
Помимо введенной выше величины n, существует еще показатель преломления относительный. Применяют его реже в физических расчетах, чем абсолютный.
Используя формулу для абсолютного n, закон Снелла для преломления можно записать в таком виде:
sin(θ1)/sin(θ2) = v1/v2 = n12.
Величина n12 называется относительным показателем преломления для рассматриваемых сред.
В чем заключается смысл физический показателя преломления n12? Эта величина показывает, во сколько раз свет в первой среде быстрее, чем во второй. В отличие от абсолютного показателя, относительный может быть как больше единицы, так и меньше нее.
Знание показателя преломления важно для описания явления полного отражения, которое происходит только в оптически более плотной среде, то есть в среде с большим n. Это явление используется в оптических волокнах.
Также показатель преломления важно знать при изготовлении оптических стекол (линз) для микроскопов, телескопов, очков и других приборов.
Преломление света. Показатель преломления
Урок 46. Физика 9 класс
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.
Получите невероятные возможности
Конспект урока «Преломление света. Показатель преломления»
«Никто не зажигает свечу,
чтобы хранить ее за дверью,
ибо свет затем и существует,
чтобы светить, открывать людям глаза,
показывать какие вокруг чудеса».
В курсе физики 8 класса вы рассматривалось явление преломления света. Известно, что свет представляет собой электромагнитные волны определенного оптического диапазона.
Опираясь на знание о природе света, в данной теме рассмотрим физическую причину преломления и объясним многие другие связанные с ним световые явления.
Преломление — это изменение направления распространения света при его переходе через границу раздела двух сред.
Угол (a) между падающим лучом и перпендикуляром, восстановленным в точке падения луча, называется углом падения.
Угол (b) между перпендикуляром, проведенным к границе раздела двух сред, восстановленным в точке падения луча, и преломленным лучом называется углом преломления.
Если падающий луч перпендикулярен к границе раздела, то угол преломления равен нулю, т.е. луч идет не преломляясь.
В курсе физики 8 класса изучался закон преломления света, который излагался в следующей форме: луч падающий, луч преломленный и перпендикуляр к границе раздела двух сред, восставленный в точке падения луча, лежат в одной плоскости; отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных двух сред, не зависящая от угла падения.
Величина n21 называется относительным показателем преломления второй среды относительно первой.
Относительным показателем преломления второй среды относительно первой называется скалярная физическая величина, равная отношению синуса угла падения к синусу угла преломления.
Из закона преломления света следует, что если менять угол падения, то соответственно будет меняться и угол преломления. Но при любом угле падения соотношение синусов этих углов будет оставаться неизменным для данных двух сред.
Если луч переходит в какую-либо среду из вакуума, то отношение синуса угла падения к синусу угла преломления будет называться абсолютным показателем преломления второй среды, так как показатель преломления вакуума принято считать равным единице.
Закон преломления света был открыт опытным путем голландским ученым Виллебордом Снеллиусом в 1621 году. Однако результаты многочисленных экспериментов по оптике опубликованы не были. Позже, после смерти ученого, они были обнаружены в архивах Рене ДекАртом, который использовал их при написании своих «Рассуждений о методе. » в приложении «Диоптрика» (1637год).
После открытия Снеллиуса несколькими учеными была выдвинута гипотеза о том, что преломление света обусловлено изменением его скорости при переходе через границу двух сред. Справедливость этой гипотезы была подтверждена теоретическими доказательствами, выполненными независимо друг от друга французским математиком Пьером Ферма в 1662году) и голландским физиком Христианом Гюйгенсом (в 1690году).
Разными путями они пришли к одному и тому же результату, доказав, что отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных двух сред, равная отношению скоростей света в этих средах.
Из данного утверждения следует, что относительный показатель преломления показывает, во сколько раз скорость света в первой по ходу луча среде отличается от скорости распространения света во второй среде.
Тогда, абсолютный показатель преломления будет показывать, во сколько раз скорость света в вакууме больше, чем в данном веществе.
Существуют таблицы значений абсолютных показателей преломления для твердых, жидких и газообразных веществ.
Из таблицы видно, что из двух сред оптически более плотной считается та, у которой показатель преломления больше (или та, в которой скорость света меньше).
Отсюда следует, что при переходе света из среды оптически менее плотной в среду оптически более плотную угол преломления меньше угла падения.
Это значит, что, попадая в среду оптически более плотную, луч отклоняется в сторону перпендикуляра к границе двух сред. И наоборот, если происходит переход луча из среды оптически более плотной в среду менее плотную, угол преломления оказывается больше угла падения и луч прижимается к границе раздела двух сред.
Обратимся теперь к рисунку, который поясняет, почему на границе двух сред с изменением скорости меняется и направление распространения световой волны.
На рисунке изображена световая волна, переходящая из воздуха в воду и падающая на границу раздела этих сред под углом a. В воздухе свет распространяется со скоростью , а в воде — с меньшей скоростью
.
Первой до границы доходит точка А волны. За промежуток времени точка B, перемещаясь в воздухе с прежней скоростью достигнет точки B’. За то же время точка А перемещаясь в воде с меньшей скоростью, пройдет меньшее расстояние, достигнув только точки A’. При этом так называемый фронт волны A’B’ в воде окажется повернутым па некоторый угол по отношению к фронту AB волны в воздухе. А вектор скорости (который всегда перпендикулярен к фронту волны и совпадает с направлением ее распространения) поворачивается, приближаясь к прямой ОО’, перпендикулярной к границе раздела сред. При этом угол преломления оказывается меньше угла падения. Так и происходит преломление света.
Из рисунка видно также, что при переходе в другую среду и повороте волнового фронта, меняется и длина волны: при переходе в оптически более плотную среду уменьшается скорость, длина волны то же уменьшается. Это согласуется и с известной формулой, из которой следует, что при неизменной частоте (которая не зависит от плотности среды и поэтому не меняется при переходе луча из одной среды в другую) уменьшение скорости распространения волны сопровождается пропорциональным уменьшением длины волны.
Из-за преломления наблюдается кажущееся изменение размеров, формы и расположения предметов. В этом можно убедиться на простых примерах. Положим на дно пустого стакана кольцо или другой небольшой предмет. Подвинем стакан так, чтобы центр кольца, край стакана и глаз находились на одной прямой. Неменяя положения головы, станем наливать в стакан воду. Заметим, что по мере повышения уровня воды дно стакана с кольцом как бы приподнимается. Кольцо,котороеранеебыловиднолишьчастично,теперьстановитсявидимымполностью. Этот опыт был описан в свое время еще Евклидом.
Возьмем теперь прозрачный стакан с водой и установим в нем наклонно линейку. Рассматривая стакан сбоку, замечаем, что часть линейки, находящаяся в воде, кажется сдвинутой в сторону.
Преломлением света объясняется и тот факт, что глубина водоема кажется меньше, чем на самом деле, а предмет, рассматриваемый через плоскопараллельную стеклянную пластинку или призму, будет казаться смещенным относительно своего истинного положения. Все дело в том, что мы видим не сам предмет, а его мнимое изображение.
– Преломление — это изменение направления распространения света при его переходе через границу раздела двух сред.
– Угол между падающим лучом и перпендикуляром, восстановленным в точке падения луча, называется углом падения.
– Угол между перпендикуляром, проведенным к границе раздела двух сред, восстановленным в точке падения луча, и преломленным лучом называется углом преломления.
– Закон преломления света гласит:
Луч падающий, луч преломленный и перпендикуляр к границе раздела двух сред, восставленный в точке падения луча, лежат в одной плоскости;
отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных двух сред, не зависящая от угла падения.
– Относительный показатель преломления показывает, во сколько раз скорость света в первой по ходу луча среде отличается от скорости распространения света во второй среде.
– Абсолютный показатель преломления показывает, во сколько раз скорость света в вакууме больше, чем в данном веществе.
– Из двух сред оптически более плотной считается та, у которой показатель преломления больше (или та, в которой скорость света меньше).
– Т.е., если луч попадает в среду оптически более плотную, то он отклоняется в сторону перпендикуляра к границе двух сред. И наоборот, если происходит переход луча из среды оптически более плотной в среду менее плотную, луч прижимается к границе раздела.
Преломление света. Закон преломления света
Содержание
Из прошлых уроков вы уже знаете, что в однородной среде свет распространяется прямолинейно. Но в жизни много ситуаций, когда свет проходит через разные вещества до того, как достигнет наших глаз.
Например, через оконные стекла мы отлично видим все, что происходит на улице. А через стекла в межкомнатных дверях мы можем видеть только размытые силуэты того, что находится за дверью. Тот же самый пример можно привести и с прозрачной и мутной водой.
Значит, получаемое нашими глазами изображение как-то связано с тем, через какие среды проходит свет. Двигаясь прямолинейно в одной среде, он переходит в другую и снова двигается прямолинейно. Что же происходит при этом переходе из одной среды в другую?
Так, вам предстоит узнать новое понятие – преломление света. В ходе данного урока вы узнаете закономерности этого явления, рассмотрите различные опыты и научитесь применять полученные знания для решения задач.
Явление преломления света
Рассмотрим простой опыт. Для него нам понадобится прозрачный стакан с водой и обычный карандаш (рисунок 1).
Сначала опустим карандаш в воду вертикально (рисунок 1, а). Части карандаша в воздухе и в воде не изменились.
А теперь поменяем угол наклона карандаша (рисунок 2, б). Мы увидим интересную картинку. Нам кажется, что карандаш переломился на границе воды и воздуха.
Что произошло? Мы видим карандаш, потому что на него падает свет от какого-то источника. Его лучи отражаются от карандаша и попадают нам в глаза. Когда мы опустили карандаш в воду под каким-то углом, световые лучи дошли до наших глаз не только через воздух, но еще и через воду в стакане. При этом они поменяли направление своего распространения при переходе из одной среды в другую. В таком случае говорят, что свет преломился.
Преломление света – это явление изменения направления распространения света при переходе из одной среды в другую.
Но, если свет преломляется при переходе из одной среды в другую, почему на рисунке 1 (а) мы все равно видим карандаш без изменений? Чтобы разобраться с этим вопросом, нам необходимо более подробно изучить природу преломления света.
Скорость света и оптическая плотность среды
Свет распространяется в пространстве с определенной скоростью. Эта скорость настолько велика, что нам кажется, будто свет появляется мгновенно. Например, когда в темной комнате мы щелкаем переключателем, и включается свет.
Ученые не только рассчитали значение этой скорости, но и доказали, что скорость света различается в разных средах (таблица 1).
Значения скорости света в вакууме и воздухе практически не отличаются, поэтому используют одно значение – $300 000 \frac<км><с>$. Эта величина обозначается буквой $c$.
В других же средах наблюдается значительная разница в значениях скорости. Например, в воде скорость света меньше, чем в воздухе. При этом говорят, что вода является оптически более плотной средой, чем воздух.
Оптическая плотность – это величина, которая характеризует различные среды в зависимости от значения скорости распространения света в них.
Если пучок света падает на поверхность, разделяющую две прозрачные среды с разной оптической плотностью, то часть света отразится от этой поверхности, а другая часть проникнет во вторую среду. При этом луч света изменит свое направление – происходит преломление света.
Схема преломления светового луча. Угол преломления
Рассмотрим преломление света более подробно (рисунок 2).
Перечислим элементы, обозначенные на рисунке 2:
Угол преломления – это угол между перпендикуляром, опущенным к границе раздела двух сред в точке падения светового луча, и преломленным лучом.
Теперь на поверхность воды с помощью маленького фонарика направим пучок света. Сделаем это таким образом, чтобы пучок света падал под каким-то углом.
Мы увидим, как луч поменяет свое направление на границе воздуха и воды. При этом угол преломления заметно меньше угла падения ($\gamma_1 \alpha_2$).
Вода – более плотная оптическая среда, чем воздух. Из всего этого мы можем сделать следующие выводы:
Если в ходе опытов мы будем менять угол падения, то заметим, что угол преломления тоже будет изменяться. При этом вышеописанные нами закономерности будут исполняться.
Показатель преломления
Давайте выясним, как именно углы падения и преломления связаны друг с другом. Рассматривать будем луч света падающий из воздуха в воду.
При увеличении угла падения, будет увеличиваться угол преломления (рисунок 4). Но отношение между этими углами ($\frac<\alpha><\gamma>$) не будет постоянным.
Постоянным будет оставаться другое отношение этих углов – отношение их синусов:
$\frac<\sin 30 \degree> <\sin 23 \degree>= \frac<\sin 45 \degree> <\sin 33 \degree>= \frac<\sin 60 \degree> <\sin 42 \degree>\approx 1.33$.
Полученное число (1.3) называют относительным показателем преломления. Обозначают эту величину буквой $n_<21>$.
Так, для любой пары веществ с разными оптическими плотностями можно записать:
Чем больше относительный показатель преломления, тем сильнее преломляется световой луч при переходе из одной среды в другую.
В чем физический смысл этой величины? Ранее мы говорили, что оптическая плотность характеризует вещество по скорости распространения света в нем. Показатель преломления делает то же самое.
Относительный показатель преломления – это величина, показывающая, во сколько раз скорость света в первой по ходу луча среде отличается от скорости распространения света во второй среде:
$n_ <21>= \frac<\upsilon_1><\upsilon_2>$.
Если луч света падает из вакуума или воздуха в какое-то вещество, то используется еще одна величина – абсолютный показатель преломления.
Вещество | $n$ |
Воздух | 1.00 |
Лед | 1.31 |
Вода | 1.33 |
Спирт | 1.36 |
Стекло (обычное) | 1.50 |
Стекло (оптическое) | 1.47 – 2.04 |
Рубин | 1.76 |
Алмаз | 2.42 |
Таблица 2. Абсолютные показатели преломления света различных веществ
Здесь мы вернемся к вопросу о том, почему на рисунке 1 (а) мы не видим преломления.
Если падающий луч падает перпендикулярно на границу раздела двух сред, то он не испытывает преломления.
Закон преломления света
Итак, преломление света происходит по определенному закону.
Закон преломления света:
падающий и преломленный лучи и перпендикуляр, проведенный к границе раздела двух сред в точке падения луча, лежат в одной плоскости. При этом отношение синуса угла падения к синусу угла преломления – постоянная величина для двух сред:
$\frac<\sin \alpha> <\sin \gamma>= \frac= n_<21>$.
Мнимое изображение, образованное преломлением света. Призмы
Преломление света, как и отражение света плоским зеркалом, создает “кажущееся” изменение положение источника света. Мы наблюдали такое изменение в самом первом опыте этого урока на рисунке 1, б.
Но, дело в том, что мнимое положение источника света в случае преломления будет различным для лучей, падающих на границу раздела двух сред под разными углами. Поэтому мнимое положение источника света при преломлении обычно подробно не рассматривают.
Тем не менее, мы часто замечаем эти изменения. Например, в прозрачной воде в закрытых водоемах или в море кажется, что предметы, лежащие на дне и находящиеся в толще воды, находятся на другом расстоянии от нас, чем они есть на самом деле.
Рассмотрим наглядный опыт с монеткой (рисунок 5).
Возьмем неглубокую широкую чашку и положим на ее дно монетку. Выберем такое положение для наблюдения, чтобы она была не видна (рисунок 5, а).
Оставаясь в этой же точке наблюдения, нальем в чашку воду. Теперь монета стала видна (рисунок 5, б). То есть, мы видим не саму монету, а ее мнимое изображение, образованное преломлением света.
В различных оптических приборах используют эти особенности преломления. Часто свет проходит сквозь тело, имеющее форму призмы (рисунок 6, а).
Световой луч, падающий на боковую грань призмы дважды преломляется (рисунок 6, б): при входе в призму и при выходе из нее. Такой луч на выходе из призмы будет отклоняться к основанию треугольника.
В оптических приборах используют не просто призмы, но и их различные сочетания. Например, на рисунке 7 изображены 3 коробки, в которых находятся треугольные призмы.
Вы можете оценить, как при разных положениях призм изменяется ход лучей на выходе из коробки. При этом падающие лучи во всех трех случаях (а, б, в) были параллельны и имели одинаковое направление.
Примеры задач
Дано:
$\alpha = 30 \degree$
$\gamma = 45 \degree$
$n_2 = 1$
$c = 3 \cdot 10^8 \frac<м><с>$
Посмотреть решение и ответ
Решение:
По определению абсолютного показателя преломления для скипидара мы можем записать:
$n_1 = \frac
При решении задачи мы будем использовать рисунок 9.
Теперь запишем условие задачи и решим ее.
Дано:
$n_1 = 1$
$n_2 = 1.73$
$\beta = 60 \degree$
Посмотреть решение и ответ
Решение:
По закону отражения света:
$\alpha = \beta = 60 \degree$.
Условие задачи дает понять, что в глаз наблюдателя попадает луч, который падает перпендикулярно границе раздела двух сред. В таком случае, преломление наблюдаться не будет. Тем не менее, как и в настоящей жизни, мы все равно увидим преломленное изображение источника света. Он будет казаться ближе. В ходе решения этой задачи вы узнаете, почему так происходит.
Для начала рассмотрим рисунок 10.
Теперь мы можем записать условие задачи и решить ее.
Дано:
$H = 3 \space м$
$n_1 = 1.33$
$n_2 = 1$
Посмотреть решение и ответ
Решение:
$h = \frac<3 \space м> <1.33>\approx 2.3 \space м$.