Чем больше децибел тем громче или тише
Уровень шума в бытовой технике — что это значит и почему это важно
Содержание
Содержание
Несколько десятков лет назад любая техника была синонимом слова «шум». Достаточно вспомнить советскую стиральную машину «Волга» или пылесос «Циклон», владельцы которых мирились с грохотом и гулом. Но прогресс не стоит на месте, поэтому теперь уровень шума является одной из основных характеристик, на которых завязан выбор домашней техники. И эта тема стоит отдельного материала — разбираемся, что такое шум и каким он бывает.
Звуки, издаваемые работающей техникой, бывают разного характера. Некоторые мы слышим, другие не замечаем. Одни шумы нас успокаивают, вторые раздражают, а третьи могут иметь разрушительные свойства для живого организма и даже для неодушевленных предметов. Виды шума могут быть совершенно разными по физическим характеристикам, но обязательно сойдутся в одном измерении — в уровне восприятия человеком.
Восприятие шума зависит от индивидуального порога комфорта и уровня раздражительности. Некоторые люди спокойно относятся к звукам бензинового триммера за окном, другие приходят в ярость от мерного тиканья секундной стрелки наручных часов. Но, если рассматривать уровень шума не как единицу измерения комфорта, а как научное явление, то громкость звучания электроники и техники можно выразить в децибелах.
Минутка истории
Правда, термин «бел» был введен для измерения помех в телефонных и телеграфных линиях. И только позже его стали использовать для классификации уровня шума как воспринимаемого на слух явления. Теперь в качестве измерительной единицы шума принято считать «децибел», в основе которой лежит десятичный логарифм. Отсюда, собственно, и приставка «деци», которая означает «десять в минус первой степени». Кстати об этом.
Логарифмически это так
Децибел — все-таки ближе к математике, нежели к физике. Если, например, «герцы» означают цикличное действие во времени, то «децибелы» указывают на степень, в которой изменяется интенсивность происходящего. Понять не просто, но мы постараемся объяснить, что называется, «на пальцах».
Например, компьютерный вентилятор работает на максимальных оборотах и шумит примерно на уровне 22 дБ. Это приемлемый уровень шума — его практически не слышно, и он не мешает комфортной жизни даже в ночное время. Другой вентилятор на тех же настройках выдает всего на 10 дБ больше шума. При этом кажется, что он шумит чуть ли не в два раза сильнее. Ключевое слово — в два раза. То есть, не «насколько громче», а «во сколько раз громче».
Принято считать, что 0 дБ — это минимум, который воспринимает человеческий слух. Соответственно, отсчет идет от этого значения, и с каждыми 10 дБ уровень громкости увеличивается в 10 раз от предыдущего. Если представить плавное увеличение уровня шума на графике, то получится параболическая фигура. При этом в начале параболы увеличение мощности будет практически не ощутимо на слух, тогда как к середине фигуры те же 20 дБ окажутся существенным приростом как по шуму, так и по силе звукового давления.
В «иксах» скорость возрастания мощности звука с каждым дБ будет выглядеть следующим образом:
Так, уровень шума, измеряемый в децибелах, возрастает не линейно, а логарифмически — с каждой новой единицей интенсивность звучания увеличивается в N раз. Снова пример: уровень 80 дБ соответствует очень громкому разговору, а 100 дБ — это уже шум дорожного движения или отбойного молотка.
То есть всего 20 дБ отделяют шумный офис от промышленного грохота — это ощутимый прирост громкости. При этом разница между звуком тикающих часов и тихим разговором также соответствует 20 дБ. В этом случае разница уже не критична.
Для примерного ориентирования по уровням громкости окружающей среды специалисты выделяют несколько стандартных значений:
Получается, что уровень шума дискотеки (100 дБ) будет громче полной тишины (0 дБ) не в 100 раз, а в 10 000 000 000 раз. Теперь вспомним пример с вентиляторами 22 дБ и 32 дБ. Будучи шумнее всего на 10 дБ, второй вентилятор окажется в три раза громче первого.
Однако уровень шума — только полдела в изучении теории о восприятии звуков. Иногда резонно обращать внимание не на децибелы, а на характер звучания — спектр и цвет. Да-да, такое тоже бывает.
Спектр шума
Характеристики шума зависят не только от уровня мощности, но и от других показателей. Например, от спектра, в котором шум «звучит». Те или иные звуки могут быть по-разному восприняты человеком, даже не отличаясь по громкости в дБ. Например, при одинаковом уровне громкости (амплитуде колебания) звуки с частотой от 1000 Гц до 4000 Гц воспринимаются громче, чем остальные. Существуют три категории шума.
Низкочастотный шум — звуки с частотой от 16 Гц до 300 Гц. Человек воспринимает их как бас или что-то глухое, давящее. Например, гул трансформатора. А еще это могут быть человеческие голоса, которые звучат в диапазоне от 85 Гц до 255 Гц.
Среднечастотный шум — основная масса окружающих нас звуков, звучащих на частоте от 300 Гц до 800 Гц. Например, на частоте 440 Гц звучит нота «ля» первой октавы. В этом диапазоне может звучать акустическая гитара.
Высокочастотный шум — все, что звучит в диапазоне от 800 Гц до 20 000 Гц. Это могут быть любые звуки, включая гул электродвигателей или писк инверторных стиральных машин.
В мире существуют звуки с меньшей и большей частотами, но они находятся за пределами возможностей слуха человека. Такие спектры называются инфразвуком (менее 16 Гц), ультразвуком (свыше 20 000 Гц) и гиперзвуком (1 ГГц до 10 ТГц). Такой «шум» воспринимается человеком на уровне внутренних механизмов защиты от разрушения — ультразвук способен разрушать живые организмы.
Цвет шума
Неожиданно, но факт — шум бывает разного цвета. Различие шумов по цветовым оттенкам можно сравнить с разложением светового спектра на оттенки. Например, белый цвет — это световой шум, включающий в себя оттенки всех цветов радуги.
Похожий процесс происходит в звуке — белый звуковой шум состоит из множества волн с разной частотой, длительностью и уровнем мощности. На практике белый шум можно услышать между радиостанциями или телеканалами в эфире — это мерное шипение «мурашек».
Белый шум выглядит так:
Существуют также и другие «оттенки» шума. Например, розовый шум включает в себя волны всего спектра частот от 20 до 20 000 герц. Розовое шипение воспринимается как более глубокое, бархатное. Например, шум летнего дождя в тропическом лесу или морского прибоя.
График розового шума выглядит следующим образом:
А в эталонном виде розовый шум звучит так (слушать).
Несколько лет назад ученые провели ряд опытов, которые доказали, что шум определенного цвета помогает бороться с нарушениями сна. Естественно, им оказался розовый спектр. Иногда этот спектр относят к зеленым шумам — естественным звукам природы.
Еще более спокойный вариант белого шума — коричневый. Правда название цвета шум получил не по цветовой аналогии, а по его физическим свойствам. Звучание этого спектра шума напоминает «случайное блуждание» частиц в броуновском движении. Например, это звук ветра.
Вот, как звучит его откалиброванная версия (слушать).
В мире существует еще множество оттенков цветового шума. Это синий, серый и даже черный шумы, которые чаще существуют в искусственном виде и редко встречаются в жизни. Например, каждый человек воспринимает серый шум на свой лад из-за особенностей калибровки перепонки — в медицине его используют для лечения расстройств слухового аппарата. А черный цвет — это вакуумная тишина.
Децибел децибелу рознь
Перечисленные выше характеристики шума также относятся и к «звучанию» бытовой техники и компьютерной электроники. Поэтому, выбирая товар по уровню шума, необходимо ориентироваться не только на децибелы, но и на другие показатели. Например, всем понятно, что компьютерный вентилятор сам по себе работает беззвучно, а шум происходит от реактивного взаимодействия лопастей с воздухом.
Зато громкость работы внешних блоков некоторых климатических систем может сравняться по невыносимости с ревом двигателей самолета. Нужно понимать, что уровень шума кондиционера состоит не только из шумящего воздушного потока, но также включает паразитные звуки от вибраций компрессора, гула мощного вентилятора. Поэтому, выбирая бытовую технику и электронику по уровню шума, необходимо учитывать и эти факторы.
Физика звука? Что такое громкость? Разбор
Если вы когда-нибудь подбирали себе музыкальную колонку, то сталкивались с тем, что сделать это не так-то просто, особенно если вы не специалист в звуковой аппаратуре. И еще ладно, если вы можете послушать акустику в магазине, но если такой возможности нет, то как понять?
Чем больше Ватт, тем громче, так? Но ведь громкость в децибелах…
Громкость в децибелах или ваттах, частотный диапазон — что это все означает? А если спросить про соотношение сигнал/шум? И это не говоря о том, что звучание — это дело вкуса.
Насколько качественный у музыкальных колонок звук? Насколько мощный бас? Сможет ли колонка раскачать комнату, дачу или целый район? Почему и как мы слышим, и как производители это учитывают и превращают в лайфхаки. Сегодня разберемся в том, как подобрать себе оптимальную акустику.
Что такое звук?
Для начала давайте ненадолго вернемся на урок физики и вспомним, что вообще такое звук. Это механические колебания, распространяющиеся по воздуху, жидкости или даже по твердому телу в виде волн. Но для нас звук, это в большинстве случаев — просто колебание давления в воздухе.
Давление меняется, наши барабанные перепонки улавливают эти изменения и мы слышим звук!
Соответственно, чем сильнее перепады давления, тем звук громче. Казалось бы, все просто. Но здесь физика начинает смешиваться с человеческими ощущениями и все становится сложнее.
Восприятие громкости
Сперва о том, что такое децибелы. Все думают, что это что-то там про громкость. На самом деле дБ — это универсальная штука для обозначения величин в очень широких диапазонах. Потому что децибелы отображаются в логарифмической шкале, и формула у них соответствующая: логарифм отношения двух значений. То есть логарифм показывает не насколько громкий звук, а на сколько порядков этот звук мощнее базового уровня.
Например, утверждение «громкость звука составляет 30 дБ» означает, что интенсивность звука в 1000 раз превышает порог слышимости звука человеком. Но и в данном случае не все так просто. Изменения давления в воздухе измеряется в децибелах, но вот наше восприятие громкости в другой величине — фонах!
Начнем с того, что все частоты мы слышим по-разному. Дело в том, чувствительность нашего уха к разным частотам сильно разная. Поэтому, громкость, это скорее про наши ощущения, чем про давление.
Фон (др.-греч. φωνή звук)
Фоны — это такие кривые громкости которые были построены по усредненным ощущениям людей с нормальным слухом в возрасте от 18 до 25 лет включительно. На этот счет даже есть ГОСТ, стандарт ISO 226. Поэтому не переживайте — все официально. Люди были проверены с вымытыми ушами.
Шкала фонов отличается от шкалы децибелов тем, что в ней значения громкости коррелируют с чувствительностью человеческого слуха на разных частотах.
Например, тон с частотой 1000 Гц мы начинаем слышать при значении 0 децибел, то есть прямо на пороге слышимости. А тон с частотой 20 Гц мы начнем слышать только в районе 80 децибел.
Поэтому в басовитых колонках нужны большие и мощные динамики для низких частот. В JBL Partybox 310 таких динамиков целых два, по 176 мм каждый. Но и за высокие частоты тут отвечают два динамика, естественно, диаметром поменьше — 65 мм.
Кстати, с этими кривыми есть интересный момент. Если нанести на график звуки разных языков, то окажется, что наша речь попадает как раз в провал на графике — примерно от 250 до 5000 герц. То есть у нас от природы есть своеобразный аппаратный усилитель речи. А свистящие призвуки мы слышим громче всего. Именно поэтому они нас так бесят.
Во-вторых, мы воспринимаем громкость нелинейно. Тихие звуки мы различаем между собой гораздо лучше, чем громкие.
Ватты
Окей, с тем, что такое громкость и её восприятием мы разобрались. Но как понять, с какой громкостью будут звучать акустика и хватит ли нам этой громкости, чтобы раскачать нужное помещение?
Этот вопрос не менее каверзный. Громкость в децибелах на колонках никогда не указывается. Зато указывается мощность в Ваттах. Например, в характеристиках JBL Partybox 310 можно найти значение полной выходной мощности — 240 Вт RMS.
Что это значит? Оказывается, мощность тоже бывает разная.
Тут важно обратить на буковки RMS — это значит предельная синусоидальная мощность или Rated Maximum Sinusoidal. Если по-простому, колонка может работать в течение одного часа с реальным музыкальным сигналом без физического повреждения. То есть реально на пределе сил. В основном именно такой показатель указывают все приличные производители.
Но нам нужно чтобы музыкальная колонка могла работать более одного часа, поэтому вычислим другой показатель, который называется просто синусоидальная мощность. Это уже такая мощность, при которой колонка сможет бесконечно долго работать без повреждений. Она обычно процентов на 25 меньше RMS.
Итого получается, что наш монстр может выдавать примерно 180 Вт! Кстати, важный момент, часто на дешевых колонках указывают всякие запредельные мощности типа 1000 Вт, но не RMS а PMPO — не путать с PIMP.
PMPO — Peak Music Power Output. Это еще один способ указания мощности. Но проблема в том, что это такая мощность, которую динамик сможет выдержать в течение 1-2 секунд. Поэтому внимательно изучайте какого типа Ватты вам продают.
В JBL Partybox 310 — 240 RMS или примерно 180 Вт чистой мощности. Но много это или мало?
Смотрите, например, у маленькой, но громкой JBL Charge мощность: 30 Вт RMS. Такой колонки хватит, чтобы раскачать небольшое помещение до 20 квадратных метров.
240 Вт RMS хватит на целый спорт зал, а с учетом что тут Тут Bluetooth 5.1 и можно подрубить вторую вторую колонку, чтобы они работали в паре, то можно и концерт устроить.
Вообще эта колонка много чего умеет. Звук можно передать не только по Bluetooth, но и через AUX-вход, а также можно воткнуть USB-флешку и переключать треки прямо с колонки или через специальное приложение Partybox App.
Через это же приложение, можно стримить музыку и управлять светом: тут куча вариантов подсветки. Или даже можно настроить караоке — для этого есть микрофонные входы. Микрофон у JBL тоже есть — PBM100. Он довольно простой, зато его специально создавали под линейку Partybox. У него кардиоидная диаграмма направленности, поэтому слышно только голос, никаких посторонних шумов.
Также прямо в колонке есть целая панель звуковых эффектов. Получается настоящий передвижной караоке. Колонка тяжелая, конечно, но тут есть ручка, как в чемодане, и колесики — очень удобно придумали. Что важно, есть защита от брызг IPX4. А значит и на природе можно устроить движ.
Кстати, ёмкость аккумулятора 72 Вт*ч. Его хватит на 5 часа работы, если врубать музыку на полную, в экстренных условиях, например, на улице с низкой температурой можно рассчитывать на 2-3 часа работы. А в негромком чилл-режиме колонка может проработать до 18 часов.
Ладно, с громкостью и мощностью понятно, а как же с качеством звука?
Тут есть два способа. Первый — просто послушать разные колонки и подобрать себе по вкусу, потому что у каждого свои предпочтения, свои любимые жанры и в конце концов, свой слух.
Второй способ — посмотреть на амплитудно-частотную характеристику звука колонки. Она показывает то, как громко динамики воспроизводят звуки разных частот, а если точнее, то насколько равномерно громкость распределена по частотам. Самому провести замер АЧХ не очень просто, но в интернете обычно можно найти тесты АЧХ на популярные гаджеты.
В идеальном случае АЧХ должна быть почти П-образной с резким возрастанием на самых низких частотах, горизонтальной линией к высоким частотам и падением где-нибудь в районе 20 килогерц. В реальности даже очень дорогие студийные или сценические акустические системы дают не идеальную АЧХ, а в доступных обычному покупателю устройствах она будет сильно отличаться от идеала. Здесь нужно смотреть на то, чтобы на графике не было сильных проседаний, чаще всего это заметно в басах, то есть самых низких частотах, которые расположены слева на графике.
Чтоб вы понимали масштаб явления. Если сравнить АЧХ этой колонки и iPhone 12 Pro, то будет наглядно видно, почему смартфоном комнату не раскачать и он будет звучать пискляво, хоть и громко. Но точных студийных замеров АЧХ для нашей колонки в интернетах, к сожалению, нет.
Соотношение сигнал/шум
Наконец, качество звука показывает соотношение сигнала к шуму. Это говорит нам о том, насколько полезный сигнал, то есть звуки песни или кино, превосходит шум, который неминуемо есть в любой акустике. Его можно заметить самому, если не подавать на колонку или усилитель никакой звук и выкрутить громкость на максимум. Соотношение сигнала к шуму измеряют в децибелах и чем оно больше, тем лучше. Условно можно сказать, что 80 децибел — хороший уровень, 100 — High End. В этой колонке соотношение — 90 децибел, что очень даже хорошо.
Итоги
Сегодня мы узнали гораздо больше о звуке и о том, на что стоит обратить внимание при выборе музыкальных колонок в комнату, на дачу или для выездов на природу. В то же время мы узнали о JBL Partybox 310, которая является представителем мощных и универсальных колонок, которые подойдут для тусовки дома или на природе. Это своеобразный чемоданчик звука с подсветкой, встроенным аккумулятором, высокой громкостью и неплохим качеством. В общем, и для дома, и для пикника.
Чем больше децибел тем громче или тише
2021 г. Справочники
Громкость звука. Уровень шума и его источники
Физическая характеристика громкости звука – уровень звукового давления, в децибелах (дБ). «Шум» – это беспорядочное смешение звуков.
Звуки с низкой и высокой частотой кажутся тише, чем среднечастотные той же интенсивности. С учётом этого, неравномерную чувствительность человеческого уха к звукам разных частот модулируют с помощью специального электронного частотного фильтра, получая, в результате нормирования измерений, так называемый эквивалентный (по энергии, «взвешенный») уровень звука с размерностью дБА (дБ(А), то есть – с фильтром «А»).
Человек, в дневное время суток, может слышать звуки громкостью от 10-15 дБ и выше. Максимальный диапазон частот для человеческого уха, в среднем – от 20 до 20 000 Гц (возможный разброс значений: от 12-24 до 18000-24000 герц). В молодости – лучше слышен среднечастотный звук с частотой 3 КГц, в среднем возрасте – 2-3КГц, в старости – 1КГц. Такие частоты, в первые килогерцы (до 1000-3000 Гц – зона речевого общения) – обычны в телефонах и по радио на СВ и ДВ диапазонах. С возрастом, воспринимаемый на слух звуковой диапазон сужается: для высокочастотных звуков – уменьшаясь до 18 килогерц и менее (у пожилых людей, каждые десять лет – примерно на 1000Гц), а для низкочастотных – увеличиваясь от 20 Гц и более.
В случае отсутствия на стенах помещений звукопоглощающих материалов (ковров, специальных покрытий), звук будет громче из-за многократного отражения (реверберации, то есть – эха от стен, потолка и мебели), что увеличит уровень шума на несколько децибел.
Шкала шумов (уровни звука, децибел), в таблице
Максимально допустимое звуковое давление для наушников плеера (по европейским нормам)
* В регионах, в крупных городах, на местном уровне, могут действовать свои ограничительные нормы и правила, на основании законодательных поправок к Закону о тишине, принятых региональными законодателями, выполнение которых контролируется местными органами власти.
На рабочих местах, предельно допустимые, по закону, эквивалентные уровни звука, для прерывистого шума: максимальный уровень звука не должен превышать 110 дБА, а для импульсного шума – 125 дБАI. Запрещается даже кратковременное пребывание в зонах с уровнями оглушающего звукового давления – свыше 135 дБ, в любой октавной полосе.
При возведении зданий и сооружений, в соответствии с современными, более жесткими требованиями звукоизоляции, должны применяться технологии и материалы, способные обеспечить надёжную защиту от шума.
Для пожарной сигнализации: уровень звукового давления полезного аудиосигнала, обеспечиваемый оповещателем, должен быть не менее 75 дБА на расстоянии 3 м от оповещателя и не более 120 dba в любой точке защищаемого помещения (п.3.14 НПБ 104-03).
Сирена большой мощности и корабельный ревун – давит больше 120-130 децибел.
Спецсигналы (сирены и «крякалки» – Air Horn), устанавливаемые на служебном транспорте, регламентируются ГОСТ Р 50574-2002. Уровень звукового давления сигнального устройства, при подаче специального звук-го сигнала, на расстоянии 2 метра по оси рупора, должен быть не ниже:
116 дБ(А) – при установке излучателя звука на крыше транспортного средства;
122 дБА – при установке излуч-ля в подкапотное пространство автотранспорта.
Изменения основной частоты должны быть от 150 до 2000 Гц. Продолжительность цикла – от 0,5 до 6,0 с.
Клаксон гражданского автомобиля, согласно ГОСТ Р 41.28-99 и Правил ЕЭК ООН №28, должен издавать непрерывный и монотонный звук с уровнем акустического давления – не более 118 децибел. Такого порядка, максимально допустимые значения – и для автосигнализации.
Если городской житель, привыкший к постоянному шуму, окажется, на некоторое время, в полной тишине (в сухой пещере, например, где уровень шума – менее 20 db), то он вполне может испытать депрессивные состояния, вместо отдыха.
Прибор шумометр для измерения уровня звука, шума
Для измерения уровня шума, применяется прибор шумомер (на фото), который производят в разных модификациях: бытовые (ориентировочная цена – 3-4 т.р, градация диапазонов измерения: 30-130 дБ, 31,5 Гц – 8 кГц, фильтры А и С), промышленные (интегрирующие и т.д.) Из наиболее распространённых моделей, можно выделить: SL, октава, svan. На стрелочных индикаторах шумометров – стрелка может, по инерции (при определённой динамике нарастания уровня звука), улетать дальше, чем само пиковое значение сигнала. Поэтому, итоговые значения (уже обработанные чипом, по алгоритму выбранного фильтра) снимаются с цифрового табло прибора.
Для измерений инфразвуковых и ультразвуковых шумов – применяются профессиональные широкодиапазонные шумометры. Если не требуется постоянный мониторинг «акустического смога», то ограничиваются единичными, оценочными измерениями. Приборы берутся в аренду, на время, или приглашается специалист с сертифицированной аппаратурой.
Так же, существует множество различных специальных приложений для мобильных устройств (смартфонов и планшетных компьютеров), позволяющих приблизительно определить уровень шума, в единицах децибел. Эти программы, в том числе и их бесплатные версии, можно скачать с сайтов Google Play, Android Market или App Store. Чтобы результаты измерений были корректными, необходима предварительная калибровка девайса, его проверка по эталонному шумометру или, хотя бы, приблизительно, по контрольному источнику звука, с известным уровнем звукового давления. Прочие настройки, перед проведением замеров: направление микрофона, его чувствительность по нужным частотам спектра акустических колебаний и т.д. При работе на улице, может понадобиться ветрозащита на микрофон, для исключения звуковых помех от ветра. Видеоинструкции, о том, как пользоваться приборами и отзывы о результатах экспериментов и тестов, можно поискать на YouTube.
Частотные диапазоны звука
Поддиапазоны спектра звуковых частот, на которые настроены фильтры двух- или трёхполосных акустических систем:
низкочастотный – колебания до 400 герц;
среднечастотный – 400-5000 Гц;
высокочастотный – 5000-20000Гц
Музыкальная классификация, названия певческих голосов по частотным диапазонам, с учётом пола исполнителей
Бас-профундо (сверхнизкий, с контpоктавы) – 44-262 герц
Бас (низкий) – 82-349 Гц
Баритон (средний) – 110-392 Гц
Тенор (высокий) – 132-532 Гц
Тенор-альтино (сверхвысокий) – 131-700 Гц
Контральто (низкие) – 165-692 Гц
Меццосопрано (средние) – 220-880 Гц
Сопрано (высокие) – 262-1046 Гц
Колоратурное сопрано (самый высокий женский голос, до ноты «фа» третьей октавы) – 260-1400 Гц.
Частотные диапазоны звуков, извлекаемых при игре на музыкальных инструментах:
Акустическая гитара – 82-1175 герц
Электрогитара – 82-1570 Гц
Бас-гитара – 41-250 Гц
Труба – 160-1200 Гц
Скрипка – 200-2800 Гц
Рояль – 27-4200 Гц
Симфонический оркестр – 31-15000 Гц
Эстрадный оркестр – 25-16000 Гц
Духовой оркестр – 50-10000 Гц
Скорость звука и дальность его распространения
Приблизительная скорость слышимого, среднечастотного звука (частотой порядка 1-2 кГц) и максимальная дальность его распространения в различных средах:
в воздухе – 344.4 метров в секунду (при температуре 21.1 по шкале Цельсия) и примерно 332 м/с – при нуле градусов;
в воде – приблизительно 1.5 километра в секунду;
в дереве твёрдых сортов – порядка 4-5 км/с вдоль волокон и в полтора раза меньше – поперёк.
При 20 °С., скорость звука в пресной воде равна 1484м/с (при 17° – 1430), в морской – 1490 м/с.
Скорость звука в металлах и других твёрдых телах(приведены величины только самых быстрых, продольных упругих волн):
в нержавеющей стали – 5.8 километров в секунду.
Чугун – 4.5
Лёд – 3-4км/с
Медь – 4.7 км/с
Алюминий – 6.3км/с
Полистирол – 2.4 километров в секунду.
С повышением температуры и давления, скорость звука в воздухе – возрастает. В жидкостях – обратная зависимость по температуре.
Скорости распространения упругих продольных волн в массивах горных пород, м/с:
почва – 200-800
песок сухой / влажный – 300-1000 / 700-1300
глина – 1800-2400
известняк – 3200-5500
Уменьшают дальность распространения звука, вдоль поверхности земли – высокие преграды (горы, здания и строения), противоположное направление ветра и его скорость, а так же другие факторы (пониженное атмосферное давление, повышенная температура и пониженная влажность воздуха). Расстояния, на которых источник громкого шума почти не слышно – обычно, от 100 метров (при наличии высоких преград или в густом лесу), до 300-800 м. – на открытой местности (при попутном среднем ветре – дальность увеличивается до километра и более). С расстоянием «теряются» (быстрее гасятся и рассеиваются) более высокие частоты и остаются низкочастотные звуки. Максимальная дальность распространения инфразвука средней интенсивности (человек его не слышит, но воздействие на организм есть) – десятки и сотни километров от источника.
Интенсивность затухания (коэффициент поглощения) звука средних частот (порядка 1-8 кГц), при нормальном атмосферном давлении и температуре, над землей с невысокой травой, в степи – приблизительно 10-20 дБ на каждые 100 метров. Поглощение пропорционально квадрату частоты акустических волн.
Для подсчёта примерной дситанции, на которой ещё будет слышен (до уровня, принятого, в расчётной «идеальной» модели, порога слышимости для человеческого уха или микрофона электронной звукозаписывающей аппаратуры) звук от точечного источника, последовательно уменьшают его уровень на 6 децибел, при каждом увеличении расстояния вдвое. Например, если звуковое давление, в двух метрах – 40 дБ, то в четырёх – 34дБ.
// комментарий автора сайта KAKRAS.RU
Если во время грозы вы увидели сильную молнию и через 12 секунд услышали первые раскаты грома – это значит, что молния ударила в четырёх километрах от вас ( 340 * 12 = 4080 м.) В приблизительных расчётах, принимается – три секунды на километр расстояния (в воздушном пространстве) до источника звука.
Линия распространения звуковых волн отклоняется в направлении уменьшения скорости звука (рефракция на градиенте температуры), то есть, солнечным днём, когда воздух у поверхности земли теплее, чем вышележащий – линия распространения звуковых волн изгибается вверх, но если верхний слой атмосферы окажется теплее приземного, то звук пойдёт оттуда обратно вниз и слышно будет лучше.
Дифракция звука – огибание волнами препятствия, когда его размеры сопоставимы с длиной волны или меньше ее. Если намного больше длины волны, то звук отражается (угол отражения равен углу падения), а позади препятствий формируется зона акустической тени.
Отражения звуковой волны, её рефракция и дифракция – вызывают многократное эхо (реверберацию), что оказывает значительное влияние на слышимость речи и музыки в помещении или за его пределами, что учитывается при звукозаписи, для получения живого звучания (путём размещения в оптимально близких зонах стереокартины малогабаритных микрофонов с острой характеристикой направленности, для записи прямого звука, с последующим сведением и микшированием «сухой» записи процессором в цифру или используя дальние-равноудалённые, хорошо настроенные микрофоны окружения, с дополнительной записью отражённых звуков).
От инфразвука не спасает обычная звукоизоляция.
Самые шумные города в России
— это многие областные и районные центры страны, практически все территории крупных транспортных узлов и городские жилые застройки вдоль проспектов и вблизи аэропортов. К данной категории относятся: Москва, Санкт-Петербург, Красноярск, Ростов-на-Дону, Челябинск, Екатеринбург, Пермь, Иркутск, Ярославль, Воронеж, Новокузнецк, Нижний Тагил, Магнитогорск, Омск, Уфа, Самара, Нижний Новгород, Новосибирск, Мурманск, Пермь, Тула, Ульяновск, Кемерово и другие.
Основные источники шума в городе – трамваи, автомобили, грузовой автотранспорт, работающие промышленные предприятия, стройплощадки и, пролетающие на небольшой высоте, авиалайнеры. Даже риелторы корректируют цены на недвижимость, в зависимости от местного уровня шумовой нагрузки на дом с продаваемыми или сдаваемыми в наём квартирами.
Тенденция такова, что интенсивность городского шума, в связи с возрастающим количеством машин на дорогах – только растёт. Общую ситуацию усугубляют орущие, на низких частотах, автомагнитолы из машин, динамики акустических систем и вопли телевизионных шоу, звучащие из раскрытых окон многоэтажек, построенных вдоль дорог.
Если, по решению муниципальных властей, потоки большегрузного транспорта вытесняются на дальние объездные дороги, за черту населённых пунктов, а внутригородские грузоперевозки разрешаются только в строго определённые часы суток и только по разрешенным, для этого, улицам – перечисленные меры позволяют существенно улучшить положение с экологией и повысить комфортность проживания.
Отдельная история – шум, издаваемый птицами, насекомыми, домашними животными. Это, к примеру, и лающие собаки, и мяукающие коты. На приусадебных участках частных домов, может находиться много всякой шумной живности – визжащие от голода свиньи, орущие петухи, громко гогочущие гуси, мычащие коровы. Поэтому, частный сектор на окраинах городов, зачастую, напоминает большую деревню, по характерным звукам сельской разноголосицы.
В крупных городах, в промышленных центрах, уровень фонового шума выше, чем в небольших населённых пунктах. Другой ритм жизни. Поэтому, в мегаполисах, в промцентрах, могут действовать свои нормы по допустимому уровню шумов и ограничения по времени.
Шум от кондиционеров и холодильников
Современные сплит-системы кондиционирования воздуха, работающие в тихом режиме (предусмотрен специально для включения в ночное время), обычно, не превышают уровень звука, допустимый, по нормам, для жилых помещений. Но это условие реально выполнимо только для внутренних (комнатных) блоков кондиционера. Внешние (уличные, оконные) блоки с компрессором и вентилятором вытяжки, размещаемые снаружи помещений – шумят намного сильнее и, что называется, «на всю улицу». В инструкции, по внешним блокам, значения децибел указываются, но это значительные величины. Для ближайших соседей, окна которых выходят на ту же сторону стены многоэтажного дома – это реальная проблема, вызывающая неудобства.
Неполадки в работе электродвигателя холодильника (нарушение центровки ротора, некачественная сборка и бракованные комплектующие), могут вызывать сильную вибрацию и чрезмерный шум. Если, к тому же, нет демпфирующих резиновых прокладок под ножками, то вибрация передаётся на пол и дальше, в плиту перекрытия.
Акустические отпугиватели
Громкий звук и ультразвук с частотой 20-50 килогерц, воспроизводимый с модуляцией на несколько герц – применяются для отпугивания птиц с аэродромов, животных (собак, хищных зверей) и насекомых (комаров, мошкары), если только, они не глухие. Инфразвуковые отпугиватели (на частоте, вызывающей неконтролируемое чувство страха и паническое состояние), достаточной мощности – могут воздействовать, даже, на уровне внутренних органов живого организма, вызывая их резонанс колебаниям. К наиболее компактным и широкодиапазонным излучателям, относятся пьезоизлучатели звука.
Токсичность звука, зависит и от формы сигнала, имеющего ступенчатый (например, прямоугольный) или плавный (к примеру, синусоидальный) график, и от разности фаз колебаний, при их микшировании. Уже готовые звуковые файлы и настроечные пресеты, можно найти и скачать в сети Интернет.
Акустические пугачи и шум-шокеры не являются абсолютно надёжным средством защиты, так как, степень их воздействия, зависит от множества факторов – индивидуальных особенностей, направленности и мощности излучателя, условий работы и т.д. В профессиональной аппаратуре, используются штатные средства комбинированного действия. Например, если необходимо полностью очистить охраняемую территорию от кротов, мышей и крыс, применяются не только акустические, но и сейсмоизлучатели (периодически передающие механические колебания в землю).
При работе с аппаратурой, следует соблюдать меры предосторожности, указанные в инструкции к каждому прибору, и не нарушать правил техники безопасности.
Быстрее волны
Гиперзвук – перемещение быстрее 5 Махов.
На излёте мин или снарядов, выпущенных на максимальную дальность, по настильной баллистической траектории – их скорость, обычно, уже дозвуковая.
Бинауральные биения (Binaural Beat Frequency)
Когда правое и левое ухо слышат звуки (например, из наушников плеера, f 20-30 герц) – звуки распадаются, в восприятии, на исходные, с их фактической частотой, и бин.эффект исчезает. Разница фаз звуковых волн, приходящих на правое и левое ухо – позволяет определять направление на источник звука / шума, его громкость и тембр – расстояние до него.
Международная стандартизация физических параметров
Развитию и распространению стандартов, с начала 20 века, способствует международная электротехническая комиссия ( МЭК, сайт организации расположен по адресу https://www.iec.ch/ ). Российское Федеральное агентство по техническому регулированию (Росстандарт) является полноправным членом данной организации. МЭКом был издан Международный электротехнический словарь (International Electrotechnical Vocabulary, IEV), с целью объединить электрическую терминологию. Есть несколько отечественных Интернет-ресурсов, с которых можно, целиком или по частям, скачать данный документ в переводе на русский язык.
Национальные стандарты стран-участников МЭК – являются идентичными или модифицированными по отношению к международным стандартам ИСО. Как пример, «ГОСТ Р 52797.1-2007 Акустика. Рекомендуемые методы проектирования малошумных рабочих мест производственных помещений. Часть 1. Принципы защиты от шума» и другие нормативные документы.
Информация в универсальной Интернет-энциклопедии:
https:// ru.wikipedia.org/wiki/Громкость_звука
Шумановский резонанс
В тех местах ионосферы, куда бьют электромагнитные волны достаточной мощности, при устоявшемся (с высокой добротностью сигнала) резонансе Шумана, особенно, на частотах первых его гармоник – появившиеся, при этом, плазменные сгустки начинают излучать инфразвуковые акустические (звуковые) волны. Конкретные ионосферные излучатели существуют до тех пор, пока продолжаются разряды молний в инициирующем грозовом очаге – примерно, до первых десятков минут. Для восьмигерцовой частоты, эти излучающие точки расположены на противоположной стороне земного шара, от источника электромагн. волн. На 14-герцовой – по треугольнику. Локальные, сильно ионизированные области в нижних слоях ионосферы (спорадический слой Еs) и плазменные отражатели – могут быть взаимосвязаны или пространственно совпадать.
Как сохранить свой слух
Длительное воздействие шума с уровнем более 80-90 децибелл может привести к частичной или полной потере слуха (на концертах, мощность акустических систем – может достигать десятков киловатт). Так же, при этом могут произойти патологические изменения в сердечно-сосудистой и нервной системе. Абсолютно безопасны для человеческого уха – только звуки, громкостью до 35 дБ.
Реакцией на длительное и сильное шумовое воздействие, является «тиннитус» – звон в ушах, «шум в голове», который может перерасти в прогрессирующее снижение слуха. Характерно для возрастов старше 30 лет, при ослабленном организме, стрессах, злоупотреблении алкоголем и курении. В простейшем случае, причиной ушного шума или тугоухости может быть серная пробка в ухе, которая легко удаляется врачом-специалистом (промыванием или извлечением). Если воспалён слуховой нерв – это можно вылечить, тоже сравнительно просто (лекарствами, акупунктурой). Пульсирующий шум – более тяжёлый для лечения случай (возможные причины: сужение кровеносных сосудов при атеросклерозе или опухолях, а так же – подвывих шейных позвонков).
Приёмы, применяемые, обычно, для выравнивания давления с обеих сторон барабанной перепонки уха: глотание, зевание, продувание с закрытым носом. Метод Френзеля – зажав ноздри, с усилием отвести язык назад, по нёбу (при сокращении мышц, откроются носовые полости и евстахиевы трубы). Артиллеристы, производя выстрел – открывают рот или закрывают уши ладонями рук.
Частые причины снижения слуха: попадание в уши воды, инфекции (в том числе и органов дыхания), травмы и опухоли, образование серной пробки и её набухание при контакте с водой, длительное пребывание в шумной обстановке, баротравма при резком перепаде давления, воспаление среднего уха – отит (скопление жидкости за барабанной перепонкой).
- Чем больше детей тем лучше
- Чем больше диагональ телевизора тем меньше интеллект