Чем больше емкость конденсатора
Конденсаторы: электролитические и керамические, ёмкость и заряд
Конденсатор (capacitor, cap) — это маленький «аккумулятор», который быстро заряжается при наличии напряжения вокруг него и быстро разряжается обратно, когда напряжения недостаточно для удержания заряда.
Основной характеристикой конденсатора является ёмкость. Она обозначается символом C, единица её измерения — Фарад. Чем больше ёмкость, тем больший заряд может удерживать конденсатор при заданном напряжении. Также чем больше ёмкость, тем меньше скорость зарядки и разрядки.
Типичные значения, применяемые в микроэлектронике: от десятков пикофарад (pF, пФ = 0,000000000001 Ф) до десятков микрофарад (μF, мкФ = 0,000001 Ф). Самые распространённые типы конденсаторов: керамический и электролитический. Керамические меньше по размеру и обычно имеют ёмкость до 1 мкФ; им всё равно какой из контактов будет подключен к плюсу, а какой — к минусу. Электролитические конденсаторы имеют ёмкости от 100 пФ и они полярны: к плюсу должен быть подключен конкретный контакт. Ножка, соответствующая плюсу, делается длинее.
Конденсатор представляет собой две пластины, разделённые слоем диэлектрика. Пластины скапливают заряд: одна положительный, другая отрицательный; тем самым внутри создаётся напряжение. Изолирующий диэлектрик не даёт внутреннему напряжению превратиться во внутренний ток, который бы уравнял пластины.
Зарядка и разрядка
Рассмотрим такую схему:
Пока переключатель находится в положении 1, на конденсаторе создаётся напряжение — он заряжается. Заряд Q на пластине в определённый момент времени расчитывается по формуле:
C — ёмкость, e — экспонента (константа ≈ 2.71828), t — время с момента начала зарядки. Заряд на второй пластине по значению всегда точно такой же, но с противоположным знаком. Если резистор R убрать, останется лишь небольшое сопротивление проводов (оно и станет значением R) и зарядка будет происходить очень быстро.
Изобразив функцию на графике, получим такую картину:
Как видно, заряд растёт не равномерно, а обратно-экспоненциально. Это связанно с тем, что по мере того, как заряд копится, он создаёт всё большее и большее обратное напряжение Vc, которое «сопротивляется» Vin.
Заканчивается всё тем, что Vc становится равным по значению Vin и ток перестаёт течь вовсе. В этот момент говорят, что конденсатор достиг точки насыщения (equilibrium). Заряд при этом достигает максимума.
Вспомнив Закон Ома, мы можем изобразить зависимость силы тока в нашей цепи при зарядке конденсатора.
Теперь, когда система находится в равновесии, поставим переключатель в положение 2.
На пластинах конденсатора заряды противоположных знаков, они создают напряжение — появляется ток через нагрузку (Load). Ток пойдёт в противоположном направлении, если сравнивать с направлением источника питания. Разрядка тоже будет происходить наоборот: сначала заряд будет теряться быстро, затем, с падением напряжения создаваемого им же, всё медленее и медленее. Если за Q0 обозначить заряд, который был на конденсаторе изначально, то:
Эти величины на графике выглядят следующим образом:
Опять же, через некоторое время система придёт в состояние покоя: весь заряд потеряется, напряжение исчезнет, течение тока прекратится.
Если снова воспользоваться переключателем, всё начнётся по кругу. Таким образом конденсатор ничего не делает кроме как размыкает цепь когда напряжение постоянно; и «работает», когда напряжение резко меняется. Это его свойство и определяет когда и как он применяется на практике.
Применение на практике
Среди наиболее распространённых в микроэлектронике можно выделить такие шаблоны:
Резервный конденсатор
Многие схемы расчитаны на получение постоянного, стабильного питания. Например 5 В. Их им поставляет источник питания. Но идеальных систем не существует и в случае резкого изменения потребления тока устройством, например когда включается компонент, источник питания не успевает «отреагировать» моментально и происходит кратковременный спад напряжения. Кроме того, в случаях когда провод от источника питания до схемы достаточно длинный, он начинает работать как антенна и тоже вносить нежелательный шум в уровень напряжения.
Обычно отклонение от идеального напряжения не превышает тысячной доли вольта и это являние абсолютно незначительно, если речь идёт о питании, например, светодиодов или электродвигателя. Но в логических цепях, где переключение логического нуля и логической единицы происходит на основе изменения малых напряжений, шумы питания могут быть ошибочно приняты за сигнал, что приведёт к неверному переключению, которое по принципу домино поставит систему в непредсказуемое состояние.
Для предотвращения таких сбоев, непосредственно перед схемой ставят резервный конденсатор
В моменты, когда напряжение полное, конденсатор заряжается до насыщения и становится запасом резервного заряда. Как только уровень напряжения на линии падает, резервный конденсатор выступает в роли быстрой батарейки, отдавая накопленный ранее заряд, чтобы заполнить пробел пока ситуация не нормализуется. Такая помощь основному источнику питания происходит огромное количество раз ежесекундно.
Если рассуждать с другой точки зрения: конденсатор выделяет из постоянного напряжения переменную составляющую и пропуская её через себя, уводит её с линии питания в землю. Именно поэтому резервный конденсатор также называют «bypass capacitor».
В итоге, сглаженное напряжение выглядит так:
Типичный конденсаторы, который используется для этих целей — керамические, номиналом 10 или 100 нФ. Большие электролитические слабо подходят на эту роль, т.к. они медленее и не смогут быстро отдавать свой заряд в этих условиях, где шум обладает высокой частотой.
В одном устройстве резервные конденсаторы могут присутствовать во множестве мест: перед каждой схемой, представляющей собой самостоятельную единицу. Так, например, на Arduino уже есть резервные конденсаторы, которые обеспечивают стабильную работу процессора, но перед питанием подключаемого к нему LCD экрана должен быть установлен свой собственный.
Фильтрующий конденсатор
Фильтрующий конденсатор используется для снятия сигнала с сенсора, который передаёт его в форме изменяющегося напряжения. Примерами таких сенсоров являеются микрофон или активная Wi-Fi антенна.
Рассмотрим схему подключения электретного микрофона. Электретный микрофон — самый распространённый и повсеместный: именно такой применяется в мобильных телефонах, в компьютерных аксессуарах, системах громкой связи.
Для своей работы микрофон требует питания. В состоянии тишины, его сопротивление велико и составляет десятки килоом. Когда на него воздействует звук, затвор встроенного внутри полевого транзистора открывается и микрофон теряет внутреннее сопротивление. Потеря и восстановление сопротивления происходит много раз ежесекундно и соответствует фазе звуковой волны.
На выходе нам интересно напряжение только в те моменты, когда звук есть. Если бы не было конденсатора C, на выход всегда бы дополнительно воздействовало постоянное напряжение питания. C блокирует эту постоянную составляющую и пропускает только отклонения, которые и соответствуют звуку.
Обратите внимание, что выходной сигнал поставляется в виде отрицательного напряжения. То есть при соединении выхода с землёй, ток потечёт из земли к выходу. Пиковые значения напряжения в случае с микрофоном составляют десятки милливольт. Чтобы перевернуть напряжение обратно и увеличить его значение, выход Vout обычно подключают к операционному уселителю.
Соединение конденсаторов
Если сравнивать с соединением резисторов, расчёт итогового номинала конденсаторов выглядит наоборот.
При параллельном соединении суммарная ёмкость суммируется:
При последовательном соединении, итоговая ёмкость расчитывается по формуле:
Если конденсатора всего два, то при последовательном соединении:
В частном случае двух одинаховых конденсаторов суммарная ёмкость последовательного соединения равна половине ёмкости каждого.
Предельные характеристики
Конденсаторы для «чайников»
Если вы регулярно занимаетесь созданием электрических схем, вы наверняка использовали конденсаторы. Это стандартный компонент схем, такой же, как сопротивление, который вы просто берёте с полки без раздумий. Мы используем конденсаторы для сглаживания пульсаций напряжения/тока, для согласования нагрузок, в качестве источника энергии для маломощных устройств, и других применений.
Но конденсатор – это не просто пузырёк с двумя проводочками и парой параметров – рабочее напряжение и ёмкость. Существует огромный массив технологий и материалов с разными свойствами, применяемых для создания конденсаторов. И хотя в большинстве случаев для любой задачи сгодится практически любой конденсатор подходящей ёмкости, хорошее понимание работы этих устройств может помочь вам выбрать не просто нечто подходящее, а подходящее наилучшим образом. Если у вас когда-нибудь была проблема с температурной стабильностью или задача поиска источника дополнительных шумов – вы оцените информацию из этой статьи.
Начнём с простого
Лучше начать с простого и описать основные принципы работы конденсаторов, прежде чем переходить к настоящим устройствам. Идеальный конденсатор состоит из двух проводящих пластинок, разделённых диэлектриком. Заряд собирается на пластинах, но не может перетекать между ними – диэлектрик обладает изолирующими свойствами. Так конденсатор накапливает заряд.
Ёмкость измеряется в фарадах: конденсатор в один фарад выдаёт напряжение в один вольт, если в нём находится заряд в один кулон. Как и у многих других единиц системы СИ, у неё непрактичный размер, поэтому, если не брать в расчёт суперконденсаторы, о которых мы здесь говорить не будем, вы скорее всего встретитесь с микро-, нано- и пикофарадами. Ёмкость любого конденсатора можно вывести из его размеров и свойств диэлектрика – если интересно, формулу для этого можно посмотреть в Википедии. Запоминать её не нужно, если только вы не готовитесь к экзамену – но в ней содержится один полезный факт. Ёмкость пропорциональна диэлектрической проницаемости εr использованного диэлектрика, что в результате привело к появлению в продаже различных конденсаторов, использующих разные диэлектрические материалы для достижения больших ёмкостей или улучшения характеристик напряжения.
Паразитные индуктивность и сопротивление реального конденсатора
С использованием диэлектриков в конденсаторах есть одна проблемка, наряду с тем, что диэлектрик с нужными характеристиками обладает неприятными побочными эффектами. У всех конденсаторов есть небольшие паразитные сопротивление и индуктивность, которые иногда могут влиять на его работу. Электрические постоянные меняются от температуры и напряжения, пьезоэлектричества или шума. Некоторые конденсаторы стоят слишком дорого, у некоторых существуют состояния отказа. И вот мы подошли к основной части статьи, в которой расскажем о разных типах конденсаторов, и об их свойствах, полезных и вредных. Мы не будем освещать все возможные технологии, хотя большинство обычных мы опишем.
Алюминиевые электролитические
Алюминиевые электролитические конденсаторы используют анодно-оксидированный слой на алюминиевом листе в качестве одной пластины-диэлектрика, и электролит из электрохимической ячейки в качестве другой пластины. Наличие электрохимической ячейки делает их полярными, то есть напряжение постоянного тока должно прикладываться в одном направлении, и анодированная пластина должна быть анодом, или плюсом.
На практике их пластины выполнены в виде сэндвича из алюминиевой фольги, завёрнутой в цилиндр и расположенной в алюминиевой банке. Рабочее напряжение зависит от глубины анодированного слоя.
У электролитических конденсаторов наибольшая среди распространённых ёмкость, от 0,1 до тысяч мкФ. Из-за плотной упаковки электрохимической ячейки у них наблюдается большая эквивалентная последовательная индуктивность (equivalent series inductance, ESI, или эффективная индуктивность), из-за чего их нельзя использовать на высоких частотах. Обычно они используются для сглаживания питания и развязывания, а также связывания на аудиочастотах.
Танталовые электролитические
Танталовый конденсатор поверхностного размещения
Танталовые электролитические конденсаторы изготавливаются в виде спечённого танталового анода с большой площадью поверхности, на которой выращивается толстый слой оксида, а затем в качестве катода размещается электролит из диоксида марганца. Комбинация большой площади поверхности и диэлектрических свойств оксида тантала приводит к высокой ёмкости в пересчёте на объём. В результате такие конденсаторы выходят гораздо меньше алюминиевых конденсаторов сравнимой ёмкости. Как и у последних, у танталовых конденсаторов есть полярность, поэтому постоянный ток должен идти в строго одном направлении.
Их доступная ёмкостью варьируется от 0,1 до нескольких сотен мкФ. У них гораздо меньше сопротивление утечки и эквивалентное последовательное сопротивление (ESR), в связи с чем они используются в тестировании, измерительных приборах и высококачественных аудиоустройствах – там, где эти свойства полезны.
В случае танталовых конденсаторов необходимо особенно следить за тем, чтобы они не вышли из строя — бывает, что в таком случае они загораются. Аморфный оксид тантала – хороший диэлектрик, а в кристаллической форме он становится хорошим проводником. Неправильное использование танталового конденсатора – например, подача слишком большого пускового тока может привести к переходу диэлектрика в другую форму, что увеличит проходящий через него ток. Правда, репутация, связанная с возгораниями, появилась у более ранних поколений танталовых конденсаторов, и улучшенные методы производства привели к созданию более надёжной продукции.
Полимерные плёнки
Целое семейство конденсаторов использует полимерные плёнки в качестве диэлектриков, а плёнка либо находится между витыми или перемежающимися слоями металлической фольги, либо имеет металлизированный слой на поверхности. Их рабочее напряжение может доходить до 1000 В, но высокими ёмкостями они не обладают – это обычно от 100 пФ до единиц мкФ. У каждого вида плёнки есть свои плюсы и минусы, но в целом всё семейство отличается более низкими ёмкостью и индуктивностью, чем у электролитических. Посему они используются в высокочастотных устройствах и для развязывания в электрически шумных системах, а также в системах общего назначения.
Полипропиленовые конденсаторы используются в схемах, требующих хорошей тепловой и частотной стабильности. Также они используются в системах питания, для подавления ЭМП, в системах, использующих переменные токи высокого напряжения.
Полиэстеровые конденсаторы, хотя и не обладают такими температурными и частотными характеристиками, получаются дешёвыми и выдерживают большие температуры при пайке для поверхностного монтажа. В связи с этим они используются в схемах, предназначенных для использования в некритичных приложениях.
Полиэтилен-нафталатовые конденсаторы. Не обладают стабильными температурными и частотными характеристиками, но могут выдерживать гораздо большие температуры и напряжения по сравнению с полиэстеровыми.
Полиэтилен-сульфидовые конденсаторы обладают температурными и частотными характеристиками полипропиленовых, и в дополнение выдерживают высокие температуры.
В старом оборудовании можно наткнуться на поликарбонатные и полистиреновые конденсаторы, но сейчас они уже не используются.
Керамика
История керамических конденсаторов довольно длинная – они использовались с первых десятилетий прошлого века и по сей день. Ранние конденсаторы представляли собою один слой керамики, металлизированной с обеих сторон. Более поздние бывают и многослойными, где пластины с металлизацией и керамика перемежаются. В зависимости от диэлектрика их ёмкости варьируются от 1 пФ до десятков мкФ, а напряжения достигают киловольт. Во всех отраслях электроники, где требуется малая ёмкость, можно встретить как однослойные керамические диски, так и многослойные пакетные конденсаторы поверхностного монтажа.
Проще всего классифицировать керамические конденсаторы по диэлектрикам, поскольку именно они придают конденсатором все свойства. Диэлектрики классифицируют по трёхбуквенным кодам, где зашифрована их рабочая температура и стабильность.
C0G лучшая стабильность в ёмкости по отношению к температуре, частоте и напряжению. Используются в высокочастотных схемах и других контурах высокого быстродействия.
X7R не обладают такими хорошими характеристиками по температуре и напряжению, посему используются в менее критичных случаях. Обычно это развязывание и различные универсальные приложения.
Y5V обладают гораздо большей ёмкостью, но характеристики температуры и напряжения у них ещё ниже. Также используются для развязывания и в различных универсальных приложениях.
Поскольку керамика часто обладает и пьезоэлектрическими свойствами, некоторые керамические конденсаторы демонстрируют и микрофонный эффект. Если вы работали с высокими напряжениями и частотами в аудиодиапазоне, например, в случае ламповых усилителей или электростатики, вы могли услышать, как «поют» конденсаторы. Если вы использовали пьезоэлектрический конденсатор для обеспечения частотной стабилизации, вы могли обнаружить, что его звук модулируется вибрацией его окружения.
Как мы уже упоминали, статья не ставит целью охватить все технологии конденсаторов. Взглянув в каталог электроники вы обнаружите, что некоторые технологии, имеющиеся в наличии, здесь не освещены. Некоторые предложения из каталогов уже устарели, или же имеют такую узкую нишу, что с ними чаще всего и не встретишься. Мы надеялись лишь развеять некоторые тайны по поводу популярных моделей конденсаторов, и помочь вам в выборе подходящих компонентов при разработке собственных устройств. Если мы разогрели ваш аппетит, вы можете изучить нашу статью по катушкам индуктивности.
Об обнаруженных вами неточностях и ошибках прошу писать через личные сообщения сайта. Спасибо.
Как подобрать конденсатор
Итак, как подобрать конденсатор для однофазного электродвигателя?
Чаще всего значение общей емкости Сраб+Спуск (не отдельного конденсатора) таково: 1 мкФ на каждые 100 ватт.
Есть несколько режимов работы двигателей подобного типа:
Если вы размышляете: как подобрать конденсатор к электродвигателю 220в, стоит исходить из пропорций, приведенных выше. Тем не менее, нужно обязательно проследить за работой и нагревом двигателя после его подключения. Например, при заметном нагревании агрегата в режиме с рабочим конденсатором, следует уменьшить емкость последнего. В целом, рекомендуется выбирать конденсаторы с рабочим напряжением от 450 В.
Как выбрать конденсатор для электродвигателя – вопрос непростой. Для обеспечения эффективной работы агрегата нужно чрезвычайно внимательно рассчитать все параметры и исходить из конкретных условий его работы и нагрузки.
❶ Как подобрать конденсатор
В настоящее время конденсаторы находят широкое применение при производстве высокотехнологичного электрооборудования современных автомобилей. Они включены в конструкции блоков электронного управления работой силовой установки, в транзисторный коммутатор зажигания, в цепь питания аудиоаппаратуры, а также применяются в качестве стартерных батарей (суперконденсаторы).
В первую очередь потребителю необходимо определиться с типом выбираемого конденсатора. Это может быть как электролитический. керамический, слюдяной или иной тип конденсатора. На следующем этапе определяется напряжение пробития изоляции конденсатора и его емкость.
Популярность компании – производителя указанных радиодеталей определяется на момент покупки. Но лучше всех по качеству выпускаемой продукции зарекомендовали себя японские и немецкие производители конденсаторов.
Как подобрать конденсатор
Что такое трехфазный двигатель?
Большинство силовых агрегатов, преобразующих электрическую энергию с тепловую, представляют собой асинхронные машины. Если разобрать любой такой двигатель, то станет понятно, что он имеет два ключевых компонента, на взаимодействии которых строится вся его работа.
Ротор
Это подвижная (вращающаяся) часть, конструктивно объединенная с приводным валом. Он также имеет наборный пластинчатый сердечник (магнитопровод), но в отличии от статора, пазы для обмоток располагаются на внешнем диаметре. Более того, называть их обмотками можно только с функциональной точки зрения, поскольку реально они представляют собой медные прутки определенного диаметра, а не пучки (катушки) проволоки.
С обоих сторон прутки соединяются на кольцевые ограничивающие пластины, образуя некоторое подобие беличьей клетки. Такая компоновка наиболее распространена и называется «коротко замкнутый ротор». При подаче напряжения здесь также магнитное поле, но оно имеет несколько меньшую частоту вращения (асинхронную), нежели у статора. Эта разница называется скольжением и составляет порядка 2…10%. Благодаря ей, между полями наводится ЭДС (электродвижущая сила), которая и заставляет вал вращаться с рабочей частотой.
Как подобрать пусковой конденсатор для однофазного электромотора
До использования в пусковой цепи конденсатор проверяют тестером на исправность. При подборе рабочего конденсатора можно применять такое же приближенное правило а-7 микрофарад на 100 ватт номинальной электрической мощности. Емкость пускового также берется в 2-3 раза выше.
При подборе конденсатора на 220 вольт следует выбирать модели с номиналом не менее 400. Это объясняется переходными электромагнитными процессами при запуске, дающими кратковременные пусковые броски напряжения до 350-550 вольт.
Однофазные асинхронные электромоторы часто применяются в домашних электроприборах и электроинструменте. Для пуска таких устройств, особенно под нагрузкой, требуется пусковая обмотка и сдвиг фазы. Для этого используется конденсатор, подключаемый по одной из известных схем.
Конструкция асинхронного однофазного электродвигателя
Если запуск осуществляется с преодолением большого момента инерции, подсоединяют пусковой конденсатор.
Выбор емкости
С целью максимизации эффективности электродвигателя нужно рассчитать ряд параметров электроцепи, и прежде всего емкость.
Для рабочего конденсатора
Существуют сложные и точные методы расчета, однако в домашних условиях вполне достаточно оценить параметр по приближенной формуле.
На каждые 100 ватт электрической мощности трехфазного электродвигателя должно приходиться 7 микрофарад.
Недопустимо также подавать на фазовую статорную обмотку напряжение, превышающее паспортное.
Для пускового конденсатора
Если электродвигатель должен запускаться при наличии высокой нагрузки на приводном валу, то рабочий конденсатор не справится, и на время запуска потребуется подключать пусковой. После достижения рабочих оборотов, что происходит в среднем за 2-3 секунды, он отключается вручную или устройством автоматики. Доступны специальные кнопки включения электрооборудования, автоматически размыкающие одну из цепей через заданное время задержки.
Недопустимо оставлять пусковой накопитель подключенным в рабочем режиме. Фазовый перекос токов может привести к перегреву и возгоранию двигателя. Определяя емкость пускового прибора, следует принимать ее в 2-3 раза выше, чем у рабочего. При этом при запуске крутящий момент электродвигателя достигает максимального значения, а после преодоления инерции механизма и набора оборотов он снижается до номинального.
Для набора требуемой емкости конденсаторы для запуска электродвигателя подключают в параллель. Емкость при этом суммируется.
ÐÑÑковой конденÑаÑоÑ
Ð Ñом ÑлÑÑае, еÑли на моÑÐ¾Ñ Ð²Ð¾Ð·Ð´ÐµÐ¹ÑÑвÑÑÑ Ð±Ð¾Ð»ÑÑие нагÑÑзки либо его моÑноÑÑÑ ÑвÑÑе 1500 ÐÑ, одним ÑолÑко Ñдвигом ÑÐ°Ð·Ñ Ð½Ðµ обойÑиÑÑ. ÐоÑÑебÑеÑÑÑ Ð·Ð½Ð°ÑÑ, какие необÑÐ¾Ð´Ð¸Ð¼Ñ ÐµÑе конденÑаÑоÑÑ Ð´Ð»Ñ Ð·Ð°Ð¿ÑÑка ÑлекÑÑодвигаÑÐµÐ»Ñ 2,2 кÐÑ Ð¸ вÑÑе. ÐÑÑковой подклÑÑаеÑÑÑ Ð² паÑÐ°Ð»Ð»ÐµÐ»Ñ Ñ ÑабоÑим, но Ð²Ð¾Ñ ÑолÑко он иÑклÑÑаеÑÑÑ Ð¸Ð· Ñепи пÑи доÑÑижении обоÑоÑов ÑолоÑÑого Ñода.
ÐбÑзаÑелÑно пÑÑковÑе конденÑаÑоÑÑ Ð´Ð¾Ð»Ð¶Ð½Ñ Ð¾ÑклÑÑаÑÑÑÑ â в пÑоÑивном ÑлÑÑае пÑоиÑÑÐ¾Ð´Ð¸Ñ Ð¿ÐµÑÐµÐºÐ¾Ñ Ñаз и пеÑегÑев ÑлекÑÑодвигаÑелÑ. ÐÑÑковой конденÑаÑÐ¾Ñ Ð´Ð¾Ð»Ð¶ÐµÐ½ бÑÑÑ Ð¿Ð¾ емкоÑÑи болÑÑе ÑабоÑего в 2,5-3 Ñаза. ÐÑли Ð²Ñ Ð¿Ð¾ÑÑиÑали, ÑÑо Ð´Ð»Ñ Ð½Ð¾ÑмалÑной ÑабоÑÑ Ð¼Ð¾ÑоÑа ÑÑебÑеÑÑÑ ÐµÐ¼ÐºÐ¾ÑÑÑ 80 мкФ, Ñо Ð´Ð»Ñ Ð·Ð°Ð¿ÑÑка нÑжно подклÑÑаÑÑ ÐµÑе один блок конденÑаÑоÑов на 240 мкФ. РпÑодаже вÑÑд ли можно вÑÑÑеÑиÑÑ ÐºÐ¾Ð½Ð´ÐµÐ½ÑаÑоÑÑ Ñ Ñакой емкоÑÑÑÑ, поÑÑÐ¾Ð¼Ñ Ð½Ñжно пÑоизводиÑÑ Ñоединение:
ÐелаÑелÑно ÑÑÑанавливаÑÑ Ð¿ÑÑковÑе конденÑаÑоÑÑ Ð½Ð° ÑлекÑÑомоÑоÑÑ, моÑноÑÑÑ ÐºÐ¾ÑоÑÑÑ — ÑвÑÑе 1 кÐÑ. ÐÑÑÑе немного ÑнизиÑÑ Ð¿Ð¾ÐºÐ°Ð·Ð°ÑÐµÐ»Ñ Ð¼Ð¾ÑноÑÑи, ÑÑÐ¾Ð±Ñ ÑвелиÑиÑÑ ÑÑÐµÐ¿ÐµÐ½Ñ Ð½Ð°Ð´ÐµÐ¶Ð½Ð¾ÑÑи.
Характеристики
Напряжение, создаваемое на обкладках двухполюсника, равно разности потенциалов:
Зная напряжение и заряд, можно вычислить ёмкость (С). Это одна из основных характеристик двухполюсника:
Электроёмкость является физической величиной, которую определяют, разделив заряд пластины на разность потенциалов между пластинами. Единица измерений C – фарада (Ф).
К сведению. Ёмкость, равная 1 Ф, – большая величина, поэтому на практике её измеряют: в микрофарадах (мкФ), пикофарадах (пФ), нанофарадах (нФ).
Таблица измерения ёмкости
К остальным параметрам двухполюсника относятся:
Когда масса корпуса детали значительно меньше, чем общая масса электролита и пластин, тогда достигается максимально высокая плотность энергии.
Номинальным называется такое напряжение, при котором элемент может работать длительное время, без нарушения (отклонения) рабочих характеристик.
Емкостные двухполюсники бывают:
Неполярные детали при подключении не ориентированы на полярность выводов заряда источника питания. Особенность электролитических элементов связана с химической реакцией между диэлектриком и электролитом. У таких моделей есть анод (положительный вывод) и катод (отрицательный вывод).
Выбор конденсатора для трехфазного двигателя
Конденсаторы, предназначенные для трехфазного мотора, должны иметь достаточно высокую емкость – от десятков до сотен микрофарад. Электролитические конденсаторы не годятся для этих целей, поскольку для них требуется однополярное подключение. То есть, специально для этих устройств потребуется создание выпрямителя с диодами и сопротивлениями.
Постепенно в таких конденсаторах происходит высыхание электролита, что приводит к потере емкости. Кроме того, в процессе эксплуатации данные элементы иногда взрываются. Если все же решено использовать электролитические устройства, нужно обязательно учитывать эти особенности.
Классическим примеров служат элементы, представленные на рисунке. Слева изображен рабочий конденсатор, а справа – пусковой.
Подбор конденсатора для трехфазного двигателя выполняется опытным путем. Емкость рабочего устройства выбирается из расчета 7 мкФ на 100 Вт мощности. Следовательно, 600 Вт будет соответствовать 42 мкФ. Пусковой конденсатор как минимум в 2 раза превышает емкость рабочего. Таким образом 2 х 45 = 90 мкФ будет наиболее подходящим показателем.
Выбор осуществляется постепенно, исходя из работы двигателя, поскольку его реальная мощность напрямую зависит от емкости используемых конденсаторов. Кроме того, это можно сделать по специальной таблице. При недостатке емкости двигатель будет терять свою мощность, а при ее избытке наступит перегрев от чрезмерного тока. Если конденсатор выбран правильно, то двигатель будет работать нормально, без рывков и посторонних шумов. Более точно подбираем устройство путем расчетов, выполняемых по специальным формулам.
Виды конденсаторов
Основные технические параметры этих изделий во многом зависят от проницаемости и других свойств промежутка между обкладками. В частности, проходящий через этот слой ток определяет длительность сохранения запаса энергии. По материалу диэлектрика различают следующие виды конденсаторов:
Для улучшения потребительских параметров используют различные комбинации представленных материалов.
Серийные модели постоянной емкости рассчитаны на сохранение исходных характеристик на протяжении всего срока службы. Также выпускают переменные модели. Для увеличения (уменьшения) емкости применяют:
Миниатюрные подстроечные конденсаторы нужны для точной настройки электрической схемы
Также применяют классификацию по форме и взаимному расположению обкладок. Специальные конденсаторы (пусковые, высоковольтные и др.) создают для решения отдельных задач.
Простые способы присоединения электромотора
Простейшее включение моторов – присоединение к трёхфазной сети. Электрообмотки мотора соединяются двумя способами:
Порядок соединения указаны на крышке клеммника с обратной стороны.
Схема включения
Внимание! Соединение обмоток «треугольником» быстро выводит двигатель на максимальную мощность, но тогда величина пускового тока возрастает семикратно. Плавный пуск, при отсутствии пускового реостата, затруднён
Соединение обмоток «звездой» позволяет устойчиво и длительно работать мотору при плавном запуске. Машина выдерживает кратковременные перегрузки и не перегревается. Мощность её несколько ниже, чем при альтернативном подключении.
Соединить в одну точку начала обмоток могут уже при изготовлении. На клеммник выводят только три их конца. Поэтому выводы просто подключают к фазам сети. Направление вращения выбирают, изменяя местами подключение выводов к двум соседним фазам.
Мотор, у которого выведены только три провода
Расчет понижающего конденсатора
Ёмкость понижающего конденсатора,C
Ток, протекающий через нагрузку,I
Полученные параметры понижающего конденсатора |
Если у Вас когда нибудь возникала задача понизить напряжение до какого либо уровня, например с 220 Вольт то 12В, то это статья для Вас.
Есть масса способов это сделать подручными материалами. В нашем случае мы будем использовать одну деталь — ёмкость.
В принципе мы можем использовать и обычное сопротивление, но в этом случае, у нас возникнет проблема перегрева данной детали, а там и до пожара недалеко.
В случае, когда в виде понижающего элемента используется ёмкость, ситуация другая.
Ёмкость, включенная в цепь переменного тока обладает (в идеале) только реактивным сопротивлением, значение котрого находится по общеизвестной формуле.
Кроме этого в нашу цепь мы включаем какую то нагрузку ( лампочку, дрель, стиральную машину), которая обладает тоже каким то сопротивлением R
Таким образом общее сопротивление цепи будет находиться как
Наша цепь последовательна, а следовательно общее напряжение цепи есть сумма напряжений на конденсаторе и на нагрузке
По закону ома, вычислим ток, протекающий в этой цепи.
Как видите легко зная параметры цепи, вычислить недостающие значения.
А вспомнив как вычисляется мощность легко рассчитывать параметры конденсатора основываясь на потребляемую мощность нагрузки.
Учитывайте что в такой схеме нельзя использовать полярные конденсаторы то есть такие что включаются в электронную схему в строгом соответствии с указанной полярностью.
Кроме этого необходимо учитывать и частоту сети f. И если у нас в России частота 50Гц, то например в Америке частота 60Гц. Это тоже влияет на окончательне расчеты.
Где и для чего используются
Как уже говорили, сложно найти схему без конденсаторов. Их применяют для решения самых разных задач:
Для стабилизации выходного напряжения блоков питания. В таком случае надо искать их перед выходом.
Конденсаторы встречаются часто и область их применения широка. Но надо знать как правильно их подключить.
Как подобрать конденсатор для трехфазного электродвигателя
Для вычисления емкости основного конденсатора применяют формулу:
Результат получается в микрофарадах. Вместо точной формулы можно применять правило: на каждые 100 ватт мощности — 7 микрофарад емкости.
Если при старте двигателю приходится преодолевать большой момент инерции подключенного к валу оборудования, то в помощь основному на время запуска и набора номинальных оборотов подключают пусковой конденсатор.
Емкость пускового накопителя принимают в 2-3 раза больше основного.
Подключение трехфазного электродвигателя к сети
После выхода на режим его обязательно отключают — вручную или с помощью автоматики. Если на рассчитанную емкость нет точно подходящего по номиналу прибора, конденсаторы можно подключать параллельно.
Какой тип конденсаторов использовать
Теперь вы знаете, как подобрать конденсаторы для запуска электродвигателя при работе в сети переменного тока 220 В. После подсчета емкости можно приступить к выбору конкретного типа элементов. Рекомендуется применять однотипные элементы в качестве рабочих и пусковых. Неплохо показывают себя бумажные конденсаторы, обозначения у них такие: МБГП, МПГО, МБГО, КБП. Можно также использовать и зарубежные элементы, которые устанавливаются в блоках питания компьютеров.
На корпусе любого конденсатора обязательно указывается рабочее напряжение и емкость. Один недостаток у бумажных элементов – они имеют большие габариты, поэтому для работы мощного двигателя потребуется немаленькая батарея элементов. Применять зарубежные конденсаторы намного лучше, так как они имеют меньшие размеры и большую емкость.
ÐÑполÑзование ÑлекÑÑолиÑиÑеÑÐºÐ¸Ñ ÐºÐ¾Ð½Ð´ÐµÐ½ÑаÑоÑов
Ðожно пÑименÑÑÑ Ð´Ð°Ð¶Ðµ ÑлекÑÑолиÑиÑеÑкие конденÑаÑоÑÑ, но Ñ Ð½Ð¸Ñ ÐµÑÑÑ Ð¾ÑобенноÑÑÑ â они Ð´Ð¾Ð»Ð¶Ð½Ñ ÑабоÑаÑÑ Ð½Ð° поÑÑоÑнном Ñоке. ÐоÑÑомÑ, ÑÑÐ¾Ð±Ñ ÑÑÑановиÑÑ Ð¸Ñ Ð² конÑÑÑÑкÑиÑ, поÑÑебÑеÑÑÑ Ð¸ÑполÑзоваÑÑ Ð¿Ð¾Ð»ÑпÑоводниковÑе диодÑ. Ðез Ð½Ð¸Ñ Ð¸ÑполÑзоваÑÑ ÑлекÑÑолиÑиÑеÑкие конденÑаÑоÑÑ Ð½ÐµÐ¶ÐµÐ»Ð°ÑелÑно â они имеÑÑ ÑвойÑÑво взÑÑваÑÑÑÑ.
Ðо даже еÑли Ð²Ñ ÑÑÑановиÑе Ð´Ð¸Ð¾Ð´Ñ Ð¸ ÑопÑоÑивлениÑ, ÑÑо не ÑÐ¼Ð¾Ð¶ÐµÑ Ð³Ð°ÑанÑиÑоваÑÑ Ð¿Ð¾Ð»Ð½ÑÑ Ð±ÐµÐ·Ð¾Ð¿Ð°ÑноÑÑÑ. ÐÑли полÑпÑоводник пÑобиваеÑÑÑ, Ñо на конденÑаÑоÑÑ Ð¿Ð¾ÑÑÑÐ¿Ð¸Ñ Ð¿ÐµÑеменнÑй Ñок, в ÑезÑлÑÑаÑе Ñего пÑÐ¾Ð¸Ð·Ð¾Ð¹Ð´ÐµÑ Ð²Ð·ÑÑв. СовÑÐµÐ¼ÐµÐ½Ð½Ð°Ñ ÑлеменÑÐ½Ð°Ñ Ð±Ð°Ð·Ð° позволÑÐµÑ Ð¸ÑполÑзоваÑÑ ÐºÐ°ÑеÑÑвеннÑе изделиÑ, напÑÐ¸Ð¼ÐµÑ ÐºÐ¾Ð½Ð´ÐµÐ½ÑаÑоÑÑ Ð¿Ð¾Ð»Ð¸Ð¿ÑопиленовÑе Ð´Ð»Ñ ÑабоÑÑ Ð½Ð° пеÑеменном Ñоке Ñ Ð¾Ð±Ð¾Ð·Ð½Ð°Ñением СÐÐ.
ÐапÑимеÑ, обознаÑение ÑлеменÑов СÐÐ60 говоÑÐ¸Ñ Ð¾ Ñом, ÑÑо конденÑаÑÐ¾Ñ Ð¸Ð¼ÐµÐµÑ Ð¸Ñполнение в ÑилиндÑиÑеÑком коÑпÑÑе. Ð Ð²Ð¾Ñ Ð¡ÐÐ61 Ð¸Ð¼ÐµÐµÑ Ð¿ÑÑмоÑголÑной ÑоÑÐ¼Ñ ÐºÐ¾ÑпÑÑ. ÐÑи ÑлеменÑÑ ÑабоÑаÑÑ Ð¿Ð¾Ð´ напÑÑжением 400… 450 Ð. ÐоÑÑÐ¾Ð¼Ñ Ð¾Ð½Ð¸ могÑÑ Ð±ÐµÐ· пÑоблем иÑполÑзоваÑÑÑÑ Ð² конÑÑÑÑкÑии лÑбого аппаÑаÑа, где ÑÑебÑеÑÑÑ Ð¿Ð¾Ð´ÐºÐ»ÑÑение аÑинÑÑонного ÑÑеÑÑазного ÑлекÑÑодвигаÑÐµÐ»Ñ Ð² бÑÑовÑÑ ÑеÑÑ.
Меры предосторожности при использовании ЭК
При работе с конденсаторами нельзя дотрагиваться до горячих корпусов. При вздутии корпуса элемента необходимо обесточить цепь, дождаться, пока он остынет, и демонтировать. Перед демонтажем двухполюсники большой ёмкости необходимо разрядить.
Электролитические конденсаторы любых типов требуют внимательного подхода. Соблюдение правил установки и эксплуатации продляет срок их службы и сохраняет величину основного параметра – ёмкость. При отсутствии необходимых номиналов параллельное и последовательное включение элементов позволяет добиваться необходимых рабочих характеристик. Параллельное соединение увеличивает ёмкость, последовательное – допустимое напряжение.
Простые способы подключения электродвигателя
Самый простой способ подключения трехфазного электродвигателя к бытовой электросети – применение частотного преобразователя. Потери мощности будут минимальны, но стоит такое устройство зачастую дороже самого двигателя.
При другом способе для преобразования питающего напряжения используется обмотка самого асинхронного электродвигателя. Схема получится громоздкая и массивная. Конденсатор для запуска электродвигателя подключают по одной из двух популярных схем
Подключение двигателя по схемам «звезда» и «треугольник»
При реализации подключения этими способами важно свести к минимуму потери по мощности
Основные причины «вздутия» конденсатора
Можно правильно выбрать конденсатор, впаять его, и через пару дней обнаружить, что он вновь вышел из строя. Основной причиной быстрой поломки этих элементов является перегрев при:
Выход из строя конденсатора возможен также при:
несоблюдении полярности электролитических элементов при припайке;
механических повреждениях устройства.
Отличия суперконденсаторов от аккумуляторов
Суперконденсаторы часто применяются вместо батарей. Стандартные конденсаторы способны хранить небольшое количество электроэнергии. Суперконденсаторы могут накапливать заряды в тысячи, миллионы и миллиарды раз больше.
Подобные приборы работают быстрее батарей. Это обусловлено тем, что суперконденсатор создает статистические заряды на твердых телах, а батареи зависят от медленно протекающих химических реакций.
Батареи характеризуются более высокой плотностью энергии, а ионисторы более высокой плотностью мощности. Суперконденсаторы способны функционировать при низких показателях напряжения, а для получения большего напряжения, их нужно последовательно соединить. Такой вариант необходим для более мощного оборудования.
Технология ионисторов может найти применение в энергетике и приборостроении. Одно из применений – использование в ветряных турбинах. Подобные приборы помогают сгладить прерывистое питание от ветра.
В портативных электронных приборах используются источники питания разнообразных типов
В таких устройствах, как планшеты, смартфоны и ноутбуки важное значение имеет удельная энергоемкость. Чем больше данный показатель, тем выше будет емкость устройства при тех же физических параметрах
Преимущества
Недостатки
Параллельное соединение
Существует два типа подключения приборов в цепь: последовательное и параллельное. Каждый из них обладает своими свойствами, но, как правило, используется параллельное соединение конденсаторов.
Параллельное соединение обладает такими свойствами:
Соединить конденсаторы для увеличения емкости, как показывают свойства, лучше этим способом. Для этого нужно соединить выводы с каждого двухполюсника по группам: у каждого из них два вывода. Нужно создать две группы: в одну соединить все конденсаторы с одного вывода, а во вторую с оставшегося.
При таком соединении приборы для конденсации образуют одну емкость, поэтому верна такая формула: С=С1+С2+…СN, где N — количество конденсаторов в цепи.
Например, если имеются номинальные значения 50мкф, 100мкф и 150мкф, то при последовательном подключении общее значение в цепи будет 300мкф.
Электролитические емкости
Схема электролитического катализатора
Электролитические конденсаторы – приборы постоянного напряжения. Для использования их в качестве фазосдвигающих элементов необходимо выполнить подключение по специальной схеме.
При параллельном соединении емкость суммируется, при последовательном – вычитается. Однако для кратковременного включения на 220в такие элементы использовать допускается.
Конденсаторы, несмотря на кажущуюся простоту, требуют тщательного подбора. При включении двигателя к 220 вольтам нужно все внимательно посчитать, выбрать нужные элементы и тогда проблем не возникнет.
Смешанный способ
Сочетает в себе параллельное и последовательное подключения.
При этом для участков с последовательным соединением характерны свойства последовательного соединения, а для участков с параллельным — свойства параллельного.
Оно используется, когда ни электроемкость, ни номинальное напряжение приборов, имеющихся в продаже, не подходят для задачи. Обычно такая проблема возникает в радиотехнике.
Чтобы определить общее значение электроемкости, нужно будет сначала определить это же значение для параллельно соединенных двухполюсников, а потом для их последовательного соединения.
Простые способы подключения электродвигателя
Самый простой способ подключения трехфазного электродвигателя к бытовой электросети – применение частотного преобразователя. Потери мощности будут минимальны, но стоит такое устройство зачастую дороже самого двигателя.
При другом способе для преобразования питающего напряжения используется обмотка самого асинхронного электродвигателя. Схема получится громоздкая и массивная. Конденсатор для запуска электродвигателя подключают по одной из двух популярных схем
Подключение двигателя по схемам «звезда» и «треугольник»
При реализации подключения этими способами важно свести к минимуму потери по мощности