Чем больше мощность тем больше температура
О тепловой энергии простым языком!
Человечеству известно немного видов энергии – механическая энергия (кинетическая и потенциальная), внутренняя энергия (тепловая), энергия полей (гравитационная, электромагнитная и ядерная), химическая. Отдельно стоит выделить энергию взрыва.
. энергию вакуума и еще существующую только в теории – темную энергию. В этой статье, первой в рубрике «Теплотехника», я попытаюсь на простом и доступном языке, используя практический пример, рассказать о важнейшем виде энергии в жизни людей — о тепловой энергии и о рождающей ее во времени тепловой мощности.
Несколько слов для понимания места теплотехники, как раздела науки о получении, передаче и применении тепловой энергии. Современная теплотехника выделилась из общей термодинамики, которая в свою очередь является одним из разделов физики. Термодинамика – это дословно «теплый» плюс «силовой». Таким образом, термодинамика – это наука об «изменении температуры» системы.
Воздействие на систему извне, при котором изменяется ее внутренняя энергия, может являться результатом теплообмена. Тепловая энергия, которая приобретается или теряется системой в результате такого взаимодействия с окружающей средой, называется количеством теплоты и измеряется в системе СИ в Джоулях.
Прочитав до конца эту статью, вы сможете легко решать реальные производственные и бытовые задачи, связанные с нагревом и охлаждением различных материалов. Понимание физической сути процессов теплопередачи и знание простых основных формул – это главные блоки в фундаменте знаний по теплотехнике!
Количество теплоты при различных физических процессах.
Большинство известных веществ могут при разных температуре и давлении находиться в твердом, жидком, газообразном или плазменном состояниях. Переход из одного агрегатного состояния в другое происходит при постоянной температуре (при условии, что не меняются давление и другие параметры окружающей среды) и сопровождается поглощением или выделением тепловой энергии. Не смотря на то, что во Вселенной 99% вещества находится в состоянии плазмы, мы в этой статье не будем рассматривать это агрегатное состояние.
Заметим, что возможен переход из твердого состояния в газообразное состояние, минуя жидкую фазу. Такой процесс именуется возгонкой, а обратный ему процесс – десублимацией.
Итак, уяснили, что процессы переходов между агрегатными состояниями вещества характеризуются потреблением энергии при неизменной температуре. При нагреве вещества, находящегося в одном неизменном агрегатном состоянии, повышается температура и также расходуется тепловая энергия.
Главные формулы теплопередачи.
Формулы очень просты.
Количество теплоты Q в Дж рассчитывается по формулам:
1. Со стороны потребления тепла, то есть со стороны нагрузки:
1.1. При нагревании (охлаждении):
Определение мощности нагрева.
Порой возникает необходимость определения мощности нагревателя.
В случае, если нагреватель электрический, определить мощность можно измерив протекающий ток или сопротивление нагревателя.
Что же делать, если нагреватель газовый (дровяной, угольный, керосиновый, солнечный, геотермический и пр.)?
Да и в случае электрического нагревателя может не быть возможности измерить ток/сопротивление.
Поэтому предлагаю метод определения мощности нагревателя с помощью термометра, литрометра (весов) и часов (таймера, секундомера), то есть приборов, которые почти наверняка найдутся в арсенале самогонщика.
Определенное количество воды m залить в кастрюлю и измерить начальную температуру (T1).
Установить на разогретый нагреватель, засечь время. Через определенное время t снять показания термометра (T2).
Рассчитать мощность:
P = 4,1868*m*(T2-T1)/t
Таким способом определил мощность конфорки своей печки в среднем положении переключателя мощности.
Залил в кастрюлю 3 литра = 3000 грамм воды
Установил таймер на t = 10 минут = 600 секунд
Начальная температура воды T1 = 12,5°C
Температура при срабатывании таймера T2 = 29,1°C
Если предположить теплопотери в 10%, то истинная мощность конфорки составит порядка 400 ватт или 0,4 киловатт.
Измерив время t, за которое происходит нагрев воды массой m до компенсационной температуры, определяем мощность по уже известной формуле:
P = 4,1868*m*(T2-T1)/t
Тепловая мощность и суммарные потери теплоэнергии
Для создания комфорта в жилых и производственных помещениях выполняют составление теплового баланса и определяют коэффициент полезного действия (КПД) отопителей. Во всех расчётах применяется энергетическая характеристика, позволяющая связывать нагрузки источников обогрева с расходными показателями потребителей — тепловая мощность. Вычисление физической величины производится по формулам.
Эффективность нагревателей
Мощность — это физическое определение скорости передачи или потребления энергии. Она равна отношению количества работы за определённый промежуток времени к этому периоду. Нагревательные устройства характеризуются по расходу электричества в киловаттах.
Для сопоставления энергий различного рода введена формула тепловой мощности: N = Q / Δ t, где:
В этом видео вы узнаете, как рассчитать количество теплоты:
Для оценки эффективности работы нагревателей используют коэффициент, указывающий на количество израсходованного по назначению тепла — КПД. Определяется показатель делением полезной энергии на затраченную, является безразмерной единицей и выражается в процентах. По отношению к разным частям, составляющим окружающую среду, КПД нагревателя имеет неравные значения. Если оценивать чайник как нагреватель воды, его эффективность составит 90%, а при использовании его в качестве отопителя комнаты коэффициент возрастает до 99%.
Объяснение этому простое: из-за теплообмена с окружением часть температуры рассеивается и теряется. Количество утраченной энергии зависит от проводимости материалов и других факторов. Можно рассчитать теоретически мощность тепловых потерь по формуле P = λ × S Δ T / h. Здесь λ – коэффициент теплопроводности, Вт/(м × К); S — площадь участка теплообмена, м²; Δ T — перепад температур на контролируемой поверхности, град. С; h — толщина изолирующего слоя, м.
Из формулы понятно, что для повышения мощности надо увеличить количество радиаторов отопления и площадь теплоотдачи. Уменьшив же поверхность контакта с внешней средой, минимизируют потери температуры в помещении. Чем массивнее стена здания, тем меньше будет утечка тепла.
Баланс отопления помещений
Подготовка проекта любого объекта начинается с теплотехнического расчёта, призванного решить задачу обеспечения сооружения отоплением с учётом потерь из каждого помещения. Сведение баланса помогает узнать, какая часть тепла сохраняется в стенах здания, сколько уходит наружу, объём потребной выработки энергии для обеспечения комфортного климата в комнатах.
Определение тепловой мощности необходимо для решения следующих вопросов:
Из закона сохранения энергии следует, что в ограниченном пространстве с постоянным температурным режимом должен соблюдаться тепловой баланс: Q поступлений — Q потерь = 0 или Q избыточное = 0, или Σ Q = 0. Постоянный микроклимат поддерживается на одном уровне в течение отопительного периода в зданиях социально значимых объектов: жилых, детских и лечебных учреждениях, а также на производствах с непрерывным режимом работы. Если потери тепла превышают поступление, требуется отапливать помещения.
Технический расчёт помогает оптимизировать расход материалов при строительстве, снизить затраты на возведение зданий. Определяется суммарная тепловая мощность котла сложением энергии на отопление квартир, нагрев горячей воды, компенсацию потерь вентиляции и кондиционирования, резерв на пиковые холода.
Расчет тепловой мощности
Выполнить точные вычисления по системе отопления затруднительно для неспециалиста, но упрощённые способы позволяют рассчитать показатели неподготовленному человеку. Если производить расчеты «на глаз», может получиться, что мощности котла или нагревателя не хватает. Или, наоборот, из-за избытка вырабатываемой энергии придётся пускать тепло «на ветер».
Способы самостоятельной оценки характеристик отопления:
Значения коэффициента рассеивания берут из таблиц, пределы изменения характеристики от 0,6 до 4. Примерные величины для упрощённого расчёта:
Материал стен | К-т пропускания тепла |
Неутепленный металлопрофиль | 3―4 |
Доска 50 мм | 2,5―3,5 |
Кладка в 1 кирпич с минимальной изоляцией | 2―3 |
Стандартное перекрытие, двери и окна, перегородка в 2 блока | 1―2 |
Стеклопакеты, керамитовый контур с теплоизолом | 0,6―0,9 |
Пример расчета тепловой мощности котла для помещения 80 м² с потолком 2,5 м. Объём 80 × 2,5 = 200 м³. Коэффициент рассеивания для дома типовой постройки 1,5. Разница между комнатной (22°С) и наружной (минус 40°С) температурами составляет 62°С. Применяем формулу: N = 200 × 62 × 1,5 = 18600 ккал/час. Перевод в киловатты осуществляется делением на 860. Результат = 21,6 кВт.
Полученную величину мощности повышают на 10%, если существует вероятность морозов ниже 40°С / 21,6 × 1,1 = 23,8. Для дальнейших вычислений результат округляется до 24 кВт.
Теплоотдача радиаторов отопления — таблица сравнения чугунных, биметаллических, алюминиевых и стальных батарей
Теплоотдача радиатора отопления, это коэффициент, определяющий поступающее количество тепла от отопительного прибора в единицу времени и измеряется в Вт/(м²·К).
Технический параметр является основным показателем эффективности радиатора для создания комфортной климатической атмосферы в помещении. Величину данной характеристики изготовитель теплотехники обязан указывать в сопроводительной документации своих изделий.
Мощность радиаторов отопления рассчитывают в ваттах. Некоторые производители заявляют на свою продукцию такой параметр, как мощность теплового потока, выраженную числом в кал/час. Чтобы перевести показатель в ватты, пользуются нормативом, где 1 Вт = 859,845 кал/час.
Теплопередачу одной секции или панели водяного отопления рассчитывают с учётом первичных и вторичных факторов. Сюда относятся материал изготовления, температура теплоносителя, площадь теплообмена, схема подключения прибора, его местоположение и др. Если батарея представляет собой несколько секций или не разборный панельный прибор, то мощность рассчитывается и указывается производителем сразу на всё изделие.
Как рассчитать теплоотдачу радиаторов отопления на квадратный метр
В сопроводительной документации потребитель найдёт тепловую мощность одной секции или целой панели определённых габаритов. Данные параметры довольно относительные и на 100% доверять им не стоит. Они требуют дополнительной доводки до реальных величин. Чтобы это выяснить, необходимо сделать расчёт теплопроводности радиатора.
Прежде нужно избавиться от такого распространённого мнения, что алюминиевые батареи обладают самой высокой теплоотдачей по причине характеристики цветного металла. Сразу стоит возразить, что батареи изготавливают не из чистого алюминия, а из его сплава с кремнием – силумина, показатели которого значительно ниже.
Отчасти то же самое можно сказать о стальных, биметаллических и чугунных радиаторах. Указанные параметры мощности в паспорте отопительного прибора соответствуют истине, когда разница между средней температурой теплоносителя и температурой воздуха в помещении составляет 70 0 С. Такое явление называется температурным напором и обозначается знаком – Δt. Расчёт производят по формуле:
Δt = (tподачи + tобратки)/2 – t воздуха
Если следовать логике производителя, то результат расчёта должен равняться 70 градусам. Тогда, как среднюю температуру теплоносителя, можно рассчитать по формуле:
(tподачи + tобратки) = 2(Δt + t воздуха)
Например, основываясь на заявленной изготовителем тепловой мощности одной биметаллической секции – 200 Вт, Δt = 70 0 С, средней комнатной температуре – 22 0 С, получим результат:
(tподачи + tобратки) = 2(70 + 22) = 184 0 С
С учётом нормативной разницы в 20 градусов между подачей и обраткой определяют их значение по отдельности:
tподачи = (184 + 20)/2 = 102 0 С
tобратки = (184 — 20)/2= 82 0 С
Настоящий расчёт теплоотдачи показывает, что одна секция способна выдать 200 Вт при условии, что вода в подающей трубе должна кипеть, а в выпускной патрубок теплоноситель будет покидать с температурой 82 градуса.
Такое явление на практике просто невозможно. Дело в том, что бытовые водонагревательные котлы не способны нагреть воду выше 80 градусов. Даже при этих максимальных условиях, теплоноситель войдёт в радиатор с максимальной температурой около 77 0 С, а Δt составит примерно 40 0 С. Отсюда делают вывод, что реальная теплоотдача одной секции биметаллического радиатора будет не 200, а всего 100 Вт.
Чтобы упростить расчёт, можно воспользоваться таблицей теплоотдачи с понижающими коэффициентами. Для этого по вышеуказанной формуле, используя запланированную температуру в доме и теплоносителя, рассчитывают Δt.
Таблица значений понижающих коэффициентов
Δt | К |
40 | 0,48 |
45 | 0,56 |
50 | 0,65 |
55 | 0,73 |
60 | 0,82 |
65 | 0,91 |
70 | 1 |
По таблице находят соответствующий коэффициент и умножают его на паспортную величину тепловой мощности 1 секции биметаллического радиатора. То, есть в рассматриваемом случае на обогрев 1 м 2 помещения придётся теплоотдача в размере 200 Вт х 0,48 = 96 Вт.
Для обогрева 10 м 2 площади потребуется приблизительно 1 кВт тепловой мощности, а нужное количество секций будет равно 1000/96 = 10,4 штук. Если в помещении два окна, то следует установить под ними две батареи по 10 и 11 секций каждая.
Нормы отпуска тепловой мощности
Во время проектирования систем теплоснабжения зданий и сооружений руководствуются нормативным документом СП 60.13330.2016. Свод правил регламентирует, в том числе, разработку систем внутреннего теплоснабжения в помещениях вновь возводимых и реконструируемых зданий и сооружений. СП был разработан на основе требований СНиПов ГОСТ 30494-2011 и ГОСТ 32415-2013. На их основе была принята норма отпуска тепловой мощности в размере 1 кВт для помещения площадью 10 кв.м., с высотой потолка до 3 метров, одной наружной стеной и одним окном.
При корректировке первоначальных условий обогрева помещения в ту или иную сторону (большая или меньшая площадь, другое количество окон и др.) для точного определения номинальной теплоотдачи в расчёт вводят поправочные коэффициенты:
К1 – строение окон
К2 – теплоизоляция стен
К4 – средняя температура зимой в помещении, градусов
К5 – количество наружных стен
К6 – помещение над комнатой
К7 – высота потолков, м
Окончательный результат делят на теплоотдачу одной секции радиатора. Частное округляют до целого числа в большую сторону (10,4 – 11 секций).
Сравнительные таблиц показателей теплоотдачи радиаторов разных видов
Оперируя характеристиками, специалисты в интернете публикуют различные таблицы тепловой мощности биметаллических, алюминиевых, стальных и чугунных радиаторов. Здесь представлены данные о тепловой мощности приборов отопления.
Сравнительная таблица теплоотдачи 1 секции радиаторов отопления в зависимости от рабочего давления, объёма и веса
Тип приборов с межосевым расстоянием 500 мм | Тепловая мощность, Вт | Рабочее давление. атмосфер | Ёмкость, литр | Вес, кг |
Алюминиевые | 180 | 20 | 0,27 | 1,45 |
Биметаллические | 200 | 20 | 0,20 | 1,2 |
Стальные | 120 | 20 | 0,20 | 1,05 |
Чугунные | 140 | 10 | 1,2 | 5,4 |
Сравнительная характеристики в зависимости от вида отопительных приборов
Характеристики | Алюминиевые | Биметаллические | Стальные | Чугунные |
Строение | Секционное | Секционное | Панельное | Секционное |
Разводка | Боковая | Боковая | Боковая/Вертикальная | Боковая |
Антикоррозионная стойкость | Средняя | Высокая | Средняя | Высокая |
Вид теплоносителя | Вода | Вода/антифриз | Вода/антифриз | Вода |
Радиаторы отопления с лучшей теплоотдачей
Судя по многочисленным отзывам потребителей, проведённым специалистами испытаниям и сравнению их результатов, лучшими батареями по теплоотдаче следует признать биметалл. По мере убывания следует отнести теплоотдачу алюминиевых радиаторов, затем теплоотдачу стальных радиаторов. Последними в этой категории остаются отопительные приборы из чугуна.
Не последнюю роль в этом рейтинге играет роль материал изготовления изделий для обогрева помещений, их стоимость и качество используемого теплоносителя. Несмотря на превосходные качества биметаллических радиаторов, они всё же остаются самыми дорогими приборами. Выбор в пользу алюминиевых батарей будет наиболее оптимальным решением. Но их применение ограничивается условиями автономных систем отопления, где качество теплоносителя можно поддерживать на высоком уровне.
По этой же причине, но в обратную сторону, для установки в многоэтажных домах с централизованной сетью теплоснабжения они совершенно не годятся. Что касается стальных приборов, в теплоотдаче они быстры, как при нагреве, так и остывании.
И наконец, если потребителя не волнует эстетика внешнего вида приборов отопления и потребность в теплоотдаче невысокая, то идеальным решением будет установка чугунных батарей МС-140.
Зависимость теплоотдачи радиатора от температуры теплоносителя
Паспортная тепловая мощность одной секции радиатора рассчитана для стандартных значений температуры теплоносителя на входе (90 0 С) и выходе (70 0 С) прибора отопления. Эти условия относятся к централизованным сетям теплоснабжения.
В автономных системах отопления частных домов температурный перепад может быть иным. В этом случае теплоотдача 1 секции может существенно отличаться от значений, заявленных производителем. Тепловая мощность отопительного прибора находится в прямой пропорциональной зависимости от температуры теплоносителя в подающем патрубке. Чем она больше, тем больше теплоотдача батареи и наоборот, чем меньше нагрев теплоносителя, тем меньше становится тепловая мощность радиатора.
Чтобы исключить неожиданные скачки температурного режима, применяют терморегуляторы, которые врезают в трубопровод на входе в радиатор. Термоголовки бывают ручной регулировки, полуавтоматические и автоматические, управляемые в онлайн режиме.
Мощность котла: 7 вопросов покупателей
Слабая мощность котла пустит насмарку всё, включая уровень жизни. Из-за превышенной мощности, система заработает импульсами: потребление топлива вырастет, а срок службы оборудования сократится. Может закипеть котёл. Или мозги. Как рассчитать правильно, какие параметры учитывать, что такое теплопотери и другие вопросы покупателей о мощности котлов читайте здесь.
Мощность котла: 7 вопросов покупателей
1. Как просто рассчитать мощность котла отопления?
Рассчитать примерную мощность котла для дома можно по площади и по объёму.
1) Упрощённый вариант вычислений по площади: 10 кВт на 100 м² дома (или отапливаемой площади). И это цифра покажет лишь минимальную мощность, ниже которой опускаться нельзя.
График зависимости котла и площади |
Для учёта климатических зон разработали коэффициенты, которые корректируют эту формулу:
Чтобы приблизиться к реалистичной цифре, нужно ещё учесть возможные теплопотери. Для этого к минимальному значению прибавляют 10-15%. Если потолки выше 2,7 метра, то делим высоту потолков по факту на высоту стандартную. Получаем ещё один поправочный коэффициент.
Загородный дом |
Пример:
Посчитаем мощность котла для дома в Подмосковье. Потолки – 3 метра, площадь – 150 м². Котёл нужен двухконтурный – для тепла и горячего водоснабжения.
По формуле получается 15 кВт – минимальное значение мощности для будущего котла. Далее, к цифре 15 добавляем 10% теплопотерь, умножаем на климатический коэффициент 1,2. Потолки выше 2,7м, поэтому умножаем полученную цифру на коэффициент 1,1.
Мощность котла = 15 кВт (минимум) + 10% (теплопотери) * 1,2 * 1,1 =21,7, округляем до 22 кВт.
2) Вторая формула от объёма: 1 м3 – 40 Вт. Плюс накрутки, которые включили в первую формулу, кроме потолочного коэффициента. Подсчитаем по этой формуле тот же дом в Подмосковье.
Мощность котла =((150 м²*3м)* 40 Вт + 10%) * 1,2 * 1,1 =23522 Вт ≈ 24 Квт. Разница между первым и вторым расчётом в 2 кВт. Вариант расчета мощности котла по объему воздуха является наиболее правильным.
2. Какие параметры, кроме объёма и площади, влияют на выбор котла? И почему это важно?
Упрощённая формула расчёта зачастую приводит к покупке неподходящего котла. Каждый дом индивидуален, а теплопотери в процентах не могут быть равны для всех домов. Перед подсчётом мощности считают данные конкретного дома:
1) Замерить площадь стен, окон, дверей;
2) Уточнить толщину стен, указать тип отделки и материал, высоту потолков;
3) Понаблюдать минимальную температуру дома в морозы;
4) Определить желаемую температуру в результате установки котла;
5) Выписать значения теплопроводности для материалов, из которых строили дом.
Материал стены
Толщина стены и материала
термическое сопротивление
Необходимая толщина для дома
510 мм (если делать кладку в два кирпича), R=0,73 °С·м²/Вт
Щит деревянный (внутри заполнение минеральной ватой + слой внутренней и наружной обшивки по 25 мм)
Тепловое сопротивление материалов
Зачем это нужно? Ключевой параметр, влияющий на выбор котла – это теплопотери дома. Дома с одинаковой площадью и объёмом, но отличающейся степенью утепления, потребуют разное по мощности оборудование.
Поверхность
Теплопотери в %
Крыша и вентиляция
Фундамент, если он примыкает к грунту
Стены, окна и двери
Первый этаж и не отапливаемые помещения, подвал, например
А также значение имеет: насколько отличается уличная температура от внутренней, климатический регион, сила и направление ветра, как стоит дом относительно частей света.
|
Теплопотери |
3. Как посчитать мощность с учётом теплопотерь?
Шаг 1
Потери тепла определяются по формуле: Q = Qкрыши + Qстен + Qпола + Qдверей + Qокон,
Где крайнее значение Q – это теплопотери каждой поверхности дома.
Каждое значение Q вычисляется по формуле: Q = S* T/R
Где Q – потери тепла в Вт, S – площадь конкретной поверхности в м², T – разница уличной температуры и комнатной в градусах, R – справочные данные теплового сопротивления по типам материалов.
Шаг 2
В эту формулу дополнительно закладывают непроизвольные теплопотери сквозь щели, вентиляцию, вытяжку, открывание дверей и проветривание через окна. Для самостоятельного расчёта без программы добавляют дополнительно 5% от общей цифры утечек.
Шаг 3
Дальше переходим к определению мощности котла. Всего две формулы на выбор:
Шаг 4
Для электрического и газового котла можно воспользоваться таблицей для проверки:
Вариант
Площадь дома, м²
Отопление, кВт
Рекомендуемое количество приборов
Сколько человек проживает
Бойлер ГВС, л/кВт
Тёплый пол, м²
Тёплый пол, кВт
Суммарная мощность
Мощность котла
Стандартный ряд котлов, Кат, Нс/А/Нд
4. Зачем считать, если можно купить котёл с запасом мощности?
Иногда у котлов имеется резерв производительности. Это хорошо, когда резерв не более 25%. Особенно, когда семья планирует развивать площадь: достроить бассейн, баню, или другую отапливаемую зону. Когда требуемая мощность превышена значительно, собственник тратит лишние деньги, а оборудование работает внештатном режиме:
Вывод: при частом включении и выключении тратится больше топлива, чем при непрерывной работе. Покупка котла с превышением мощности не только не имеет смысла, но и вредна для бюджета и оборудования.
5. Как решить проблему высокой мощности и слабой потребности?
В идеальной ситуации котёл работает с постоянной, номинальной мощностью. При этом наружная температура постоянно меняется, а бывают и вовсе аномальные скачки. Что делать? Помогут четырёхходовые смесительные клапаны в гидравлической системе. Или вариант с термогидравлическим распределением. Эти устройства решают проблему не корректировкой мощности котла, а подстраивают регулирующий клапан. Или меняется скорость работы циркуляционного насоса. Температура теплоносителя в батареях становится комфортной, не нарушая оптимальных условий котла. Это решение имеет минус – высокая цена.
|
Четырехходовый смесительный клапан |
Для газовых и жидкотопливных котлов эту ситуацию решает многоступенчатые горелки. Более низкая ступень снижает мощность котла при необходимости. Продвинутые модели имеют в конструкции плавную регулировку мощности горелок – модуляцию. Это дешевле и не так хлопотно, как первый вариант.
|
Газовая горелка многоступенчатая |
В твердотопливных котлах также бывает встроена настройка мощности и автоматическая подача топлива. Это помогает решить вопрос с избытком мощности при изменениях внешней температуры.
Устройство автоматической подачитоплива ЖТ-котла |
6. Что будет, если купить котёл меньшей мощности?
Когда собственник ошибся с мощностью в меньшую сторону, это так же плохо, как и переизбыток. Система работает на пределе. Снижается срок службы. Дом отапливается недостаточно, возможно промерзание системы при аномальных морозах.
Промерзание системы отопления |
7. Зачем обращаться к специалисту?
Мы выяснили, что покупать котёл от площади неправильно. Важно учитывать теплопотери здания. Например, дом в 300 м² может отопить котёл в 15кВт, если все поверхности капитально утеплили. А в дом 150 м² может потребоваться оборудование на 30кВт при тонких стенах и не утеплённой крыши и вентиляции.
На эту тему есть сотни нормативов и регламентов, есть десятки формул. Иногда одно противоречит другому, или нормативы изменяются и непрофессионалу сложно разобраться, актуальны ли эти требования. Можно это все посчитать, вооружившись стопкой справочников. Или обратиться к специалистам, которые сделают точный расчёт в программе и объяснят все тонкости. Помогут сэкономить деньги, время, смоделируют эффективную систему отопления дома.