Чем выше химическая чистота алюминия тем
Чистый алюминий: физические свойства
Степень чистоты алюминия
Традиционная система описания чистоты металлов, в том числе, алюминия, основана на измерении общего количества примесных элементов в процентах и вычитания этого количества из 100 %. Обычно результат выражается в количестве девяток. Например, «пять девяток» указывает на чистоту 99,999 %. Это означает, что общее содержание примесей составляет 0,001 % или 10 миллионных долей (10 ppm).
Метод измерения чистоты металлов
Сопротивление прохождению электронов через образец высокочистого металла, особенно при низких температурах, сильно зависит от количества примесных элементов, которые присутствуют в нем. На этом факте основан очень чувствительный качественный метод испытаний чистоты 99,999 % и выше. Этот метод ценен не только из-за своей чувствительности, но еще и потому, что измерение электрического сопротивления является относительно простым.
Классификация чистоты алюминия
Обычно применяется следующая, условная, классификация степеней чистоты алюминия [1]:
Ниже представлен обзор свойств алюминия со степенью чистоты от 99,50 и выше. О влиянии легирующих добавок и примесей на свойства алюминия и алюминиевых сплавов см. здесь.
Механические свойства чистого алюминия
Данные о прочности при растяжении алюминия нескольких степеней чистоты представлены в таблице 1.
Влияние холодной пластической деформации – нагартовки – на прочностные характеристики чистого алюминия степени «пять девяток» (99,999 %) показано в таблице 2.
Твердость и прочность алюминия в зависимости от степени его чистоты показаны на рисунке 1.
Таблица 1 – Механические свойства чистого алюминия
при комнатной температуре
Таблица 2 – Прочностные свойства алюминия 99,999+ %
Рисунок 1 – Твердость и прочность алюминия
в зависимости от степени его чистоты
Другие механические свойства чистого алюминия:
Атомные свойства
Кристаллическая структура
Алюминий кристаллизируется в гранецентрированную кубическую решетку (ГЦК), которая является стабильной от температуры 4 К и до точки плавления.
Рисунок 1.1 – Атомная структура алюминия [2]
Плотность
Зависимость плотности алюминия от степени его чистоты и твердом и жидком состояниях показана на рисунке 2.
Рисунок 2 – Плотность алюминия в зависимости от степени его чистоты
в твердом состоянии (20 градусов Цельсия) и
жидком состоянии (1000 градусов Цельсия)
Плотность жидкого алюминия чистотой 99,996 % представлена в таблице 3.
Таблица 3 – Плотность жидкого алюминия чистотой 99,996 %
Термические свойства
Температурное расширение
Данные о коэффициенте температурного расширения (КТР) для алюминия чистотой 99,99 % при различных температурах указаны в таблице 4.
Таблица 4 – Коэффициент температурного расширения (КТР)
чистого алюминия 99,99 %
Температура плавления
Температура плавления чистого алюминия весьма чувствительна к степени чистоты – содержанию примесей. Экспериментально установлено, что температура плавления алюминий 99,996 % составляет 933,4 К или 660,25 ºС.
Температура затвердевания алюминия 660,323 ºС является одной из контрольных точек Международной практической температурной шкалы 1990 года, которая применяется для калибровки термометров и термопар.
Другие термические свойства чистого алюминия:
Коэффициент теплопроводности
Рисунок 2.1 – Теплопроводность алюминия в сравнении с другими металлами [2]
Удельное электрическое сопротивление
Таблица 5 – Удельное электрическое сопротивление чистого алюминия (99,90 %)
Электрическая проводимость чистого алюминия является изотропной, если только в нем не присутствуют ориентированные дислокации.
Влияние размера зерна на удельное электрическое сопротивление в промышленном алюминии является незначительным. Однако, нагартованный алюминий имеет в направлении полученной холодной пластической деформации несколько более высокую – на 0,5-1,0 % – электрическую проводимость.
Намагничиваемость
Поскольку алюминий имеет нечетное количество валентных электронов (3), то он является парамагнитным. В нормальных условиях не проявляет намагничиваемости.
Оптические свойства
Спектральная отражательная способность
Отражательная способность гладкой алюминиевой поверхности по отношению к свету составляет более 90 % при длине волн от 0,9 до 12,0 мкм, для волн длиной 0,2 мкм эта отражательная способность снижается до 70 %. Для волн длиной ниже 0,2 мкм отражательная способность резко снижается.
Отражательная способность алюминиевой поверхности снижается с повышением ее шероховатости. Алюминиевая поверхность после пескоструйной обработки может отражать только 15-25 % света по сравнению с полированной поверхностью материала того же химического состава. На рисунке 3 показана нормальная отражательная способность различных поверхностей чистого алюминия.
Рисунок 3 – Спектральная отражательная способность чистого алюминия [1]
Эмиссионность
Эмиссионность – способность поверхности абсорбировать тепло и отражать его. Эмиссионность полированного алюминия при комнатной температуре составляет только несколько процентов от эмиссионности черного тела. Огрубление поверхности может поднять эмиссионность до 20-30 %. Эмиссионность возрастает с увеличением температуры и достигает 15-20 % в жидком состоянии.
Классификация алюминия
Алюминий – серебристо-белый металл с низкой температурой плавления и невысокой плотностью, который в природе в чистом виде не встречается. Классификация алюминия зависит от количества примесей и выделяется на основе чистоты металла, назначения и состояния.
Алюминий различной степени чистоты – марки, свойства, области применения
В соответствии с ГОСТ11069-2019 первичный алюминий обозначают буквой А, его классификацияв зависимости от количества примесей выглядит следующим образом:
Алюминий отличается высокой коррозионной стойкостью благодаря оксидной пленкеAl2O3, которая образуется на поверхности алюминиевых металлоизделий. Чем чище металл, тем выше его устойчивость к коррозии. Алюминий особой и высокой чистоты востребован при производстве фольги, электрических проводов и кабелей, других токопроводящих элементов.
Характеристики различных марок технического алюминия регламентирует ГОСТ 4784-2019. Эти материалы обладают низкой прочностью, поэтому применяются в областях, для которых важны их основные преимущества: пластичность, хорошая свариваемость, коррозионная стойкость, высокие тепло- и электропроводность. В молекулярной решетке технического металла содержится минимальное количество примесей, рассеивающих поток электронов, поэтому он успешно используется в приборостроении, для изготовления теплообменников и нагревательных приборов, осветительного оборудования.
Области применения технического алюминия:
Классификация алюминиевых сплавов по назначению и состоянию
Наиболее распространенные элементы, используемые для получения сплавов на основе алюминия: железо, кремний, марганец, цинк, медь, реже – бериллий, титан, литий, цирконий.
По запланированной области применения алюминиевые сплавы разделяют на:
Различают несколько видов состояния алюминия и его сплавов, обозначаемые в маркировке буквами русского алфавита:
Литейные сплавы на основе алюминия –классификация по характеристикам и химическому составу
Литейные алюминиевые сплавы чаще всего содержат кремний, улучшающий литейные характеристики. Они сочетают низкую плотность с хорошей прочностью, что обеспечивает возможность отливать изделия сложных форм без образования трещин и других дефектов. По характеристикам эти материалы условно разделяют на следующие группы:
По химическому составу литейные алюминиевые сплавы делят на:
Деформируемые алюминий и алюминиевые сплавы – виды и их характеристики
Деформируемый алюминий технической чистоты, в соответствии с ГОСТом 4784-2019, обозначают буквами АД и цифрами, характеризующими чистоту металла:
Обозначение деформируемого алюминия | Количество алюминия, % |
АД000 | 99,8 |
АД00 | 99,7 |
АД0 | 99,5 |
АД1 | 99,3 |
АД | 99,0 |
Деформируемые сплавы на основе алюминия по способности повышать прочностные характеристики при термической обработке разделяют на упрочняемые и неупрочняемые.
Упрочняемые деформируемые сплавы на основе алюминия
Дюралюмины
К термически упрочняемым сплавам относятся дюралюмины – материалы на основе алюминия, легированного медью, дополнительные добавки – магний и марганец. Обозначаются буквой Д. Ранее наиболее распространенным дюралюмином была марка Д1. Но из-за недостаточных технических параметров его заменила марка Д16, отличающаяся от Д1 более высоким содержанием магния. По прочности и твердости она может сравниться с некоторыми марками стали, но имеет существенный минус – посредственную коррозионную стойкость.
Дюралюмин, изготавливаемый в листах, для повышения коррозионной стойкости и улучшения декоративных качеств, плакируют – покрывают слоем алюминия высокой химической чистоты (не менее 99,95%Al). Толщина защитного слоя – не менее 4% от толщины дюралюминиевого листа. Минус плакирования – снижение прочности материала. Еще один способ повышения коррозионной стойкости – электрохимическое оксидирование (анодирование).
Дюралюмины упрочняют закалкой и естественным старением. Такая термообработка обеспечивает высокую коррозионную стойкость и способность к хорошей обработке режущим инструментом. Дюралюмины хорошо свариваются точечной сваркой и плохо сваркой плавлением из-за склонности к появлению трещин. Способность к ковке – удовлетворительная.
Дюралюмин Д16 широко востребован в областях, требующих высоких технических характеристик: машино-, судо-, приборостроении, авиастроении, строительстве.
Сплавы авиаль
Авиали (авиационные сплавы), содержащие в качестве легирующих элементов магний, кремний, марганец, хром, медь, уступают дюралюминам по прочности, но опережают по пластичности в горячем и холодном состояниях. Основная упрочняющая фаза– Mg2Si. К авиалям относят сплавы АВ, АД31, АД35.
Авиационные сплавы упрочняют закалкой с естественным или искусственным старением. Искусственное старение необходимо проводить сразу после закалки. Длительный промежуток времени между закалкой и искусственным старением приводит к снижению прочности материала.
После упрочняющей ТО для авиалей характерны:
Высокопрочные сплавы (В)
Популярный представитель этого семейства – сплав марки В95, в состав которого входят следующие примеси и легирующие элементы:
Повышение процентного содержания цинка и магния приводит к улучшению прочностных характеристик, но одновременно и к снижению коррозионной стойкости и пластичности. Устойчивость к коррозии улучшают введением марганца.
По сравнению с дюралюминами марки В более чувствительны к концентраторам напряжений и обладают меньшей коррозионной стойкостью под напряжением. Благодаря пресс-эффекту, обусловленному присутствием в материале хрома и марганца, прессованные профили обладают более высокой прочностью по сравнению с листами из этого сплава. Для улучшения коррозионной стойкости листового проката применяют плакирование.
Сплав В95 хорошо деформируется в горячем состоянии и удовлетворительно в холодном состоянии после отжига. Он хорошо соединяется точечной сваркой, обрабатывается резанием. Его применяют для создания нагруженных конструкций в авиастроении, длительно эксплуатируемых при повышенных температурах (+100…+120°C), при устройстве строительных конструкций, способных выдерживать значительные нагрузки.
Сплавы для ковки и штамповки (АК)
Такие материалы пластичны, благодаря чему могут использоваться не только для ковки, штамповки, но и для получения отливок. После ковки и штамповки полуфабрикаты обычно подвергают термообработке – закалка + старение. Наиболее распространенные ковочные марки – АК6 и АК8. Марка АК6 востребована при производстве деталей сложной конфигурации, от которых требуется средний уровень прочности. Марка АК8 применяется для изготовления тяжело нагружаемых деталей способом горячей штамповки.
Области применения изделий из сплавов марки АК:
Термически неупрочняемые деформируемые сплавы на основе алюминия
К таким сплавам относятся марки АМц(алюминиево-марганцевые) и АМг (алюминиево-магниевые). Алюминиево-магниевые марки могут дополнительно легироваться марганцем, измельчающим зерно и упрочняющим структуру. Эти материалы обычно применяются после отжига с охлаждением на воздухе. Для упрочнения алюминиево-магниевых и алюминиево-марганцевых сплавов может использоваться нагартовка – деформационный процесс, при котором уплотняются верхние слои металла. Эффект нагартовки исчезает в зоне сварного шва.
Для этих материалов характерны:
Марки АМц и АМг применяются в областях, в которых не предъявляются высокие требования к прочности, но необходима хорошая устойчивость к коррозии. Из этих материалов изготавливают:
Виды порошковых алюминиевых сплавов и области их применения
Способами порошковой металлургии на основе алюминия получают спеченные алюминиевые порошки (САП) и спеченные алюминиевые сплавы (САС).
Спеченные алюминиевые порошки
Структурно эти материалы представляют собой алюминиевую матрицу, в которой равномерно распределены мелкодисперсные включения оксида алюминия, обеспечивающие упрочнение металла. Основные характеристики САП:
Производители предлагают 4 типа САП, отличающиеся друг от друга процентным содержанием оксида алюминия – САП-1, САП-2, САП-3, САП-4. Чем больше цифра, тем больше содержание оксида, тем выше прочность, твердость, жаропрочность и тем ниже пластичность. САП востребованы при производстве турбин, компрессоров, вентиляторов, компрессоров, обмоток трансформаторов.
Спеченные алюминиевые сплавы САС
К этим материалам относятся системы:
Структура САС содержит дисперсные включения интерметаллидов и кремния. Для этих материалов характерны высокие прочность и твердость, сопровождаемые низкой пластичностью. Области их применения: изготовление деталей приборов, функционирующих в паре со стальными деталями и узлами.
Низкосортный алюминий имеет еще одну важную сферу использования – раскисление стали. При протекании этого процесса из расплава железа и углерода удаляется кислород, негативно влияющий на механические характеристики стали.
Чем выше химическая чистота алюминия тем
98%.
Себестоимость алюминия складывается из следующих статей: сырье 70,0%; электроэнергия 16,5%; зарплата 4,0%; цеховые, заводские и коммерческие расходы 9,5%.
Бурение скважин является широко популярной услугой, которая помогает не быть зависимым от централизованного водоснабжения, получить собственный источник чистой воды.
Как правило, для заведений общественного питания необходимо специальное оборудование. Без холодильного стола на кухни ни как не обойтись. Это оборудование объединяет в.
Незастекленный балкон является своеобразным бельмом на глазу современных апартаментов, заметно проигрывающим в своей эстетике тем балконным конструкциям, на которых уже.
Как только на рынке появились первые лампочки, они имели цоколь е27, они и сегодня пользуется очень большим спросом. Это стандартизация мирового масштаба, практически в.
Строительная сфера очень развита, сегодня можно увидеть объекты только на подготовленных сухих площадках, но и на воде. Обратите внимание на современный порт, большая.
Компания ООО «ВЫБОР СВЕТА» поставляет светодиодные светильники из Санкт-Петербурга. Основной целью компании является мелкооптовая и оптовая торговля светодиодной.
Для обработки земли, ухода за разными растениями аграрии часто используют полногабаритную технику (трактора), а также средства малой. Используется эта техника также в.
Антифриз – специальная охлаждающая смесь. В автомобиле ее заливают в систему охлаждения мотора. От двигателя лишнюю тепловую энергию жидкость отводит при циркуляции.
Чем выше химическая чистота алюминия тем
Плавится при 658° С. Чистый алюминий мягок и непрочен. Поверхность алюминия, находящегося на воздухе, всегда покрывается оксидной пленкой, имеющей температуру плавления 2050° С. Эта пленка и предохраняет металл от окисления, придавая ему коррозионную стойкость. Алюминий маркируется буквой А и цифрой, указывающей содержание алюминия.
Алюминий особой частоты маркируется как алюминий А999 с примесями не более 0,001%.
Технические характеристики алюминия особой чистоты.
Марки
Примеси, не более
Алюминий, не менее
Железо
Кремний
Медь
Цинк
Титан
Прочие примеси, каждая в отдельности
Сумма
Алюминий особой чистоты
Алюминий высокой чистоты
Алюминий технической чистоты
Сочетание физических, механических и химических свойств алюминия определяет его широкое применение практически во всех областях техники, особенно в виде его сплавов с другими металлами. В электротехнике алюминий успешно заменяет медь, особенно в производстве массивных проводников, например, в воздушных линиях, высоковольтных кабелях, шинах распределительных устройств, трансформаторах (электрическая проводимость алюминия достигает 65,5% электрической проводимости меди, и он более чем в три раза легче меди; при поперечном сечении, обеспечивающем одну и ту же проводимость, масса проводов из алюминия вдвое меньше медных). Сверхчистый алюминий употребляют в производстве электрических конденсаторов и выпрямителей, действие которых основано на способности окисной пленки алюминия пропускать электрический ток только в одном направлении. Сверхчистый алюминий, очищенный зонной плавкой, применяется для синтеза полупроводниковых соединений типа AIII BV, применяемых для производства полупроводниковых приборов.
Описание технологического цикла алюминия особой чистоты
Алюминий особой чистоты (марки A999) может быть получен тремя способами: зонной плавкой, дистилляцией через субгалогениды и электролизом алюминий-органических соединений. Из перечисленных способов получения алюминия особойчистоты практическое применение в СССР получил способ зонной плавки.
Последняя стадия подготовки алюминия к зонной плавке — травление его поверхности смесью концентрированных соляной и азотной кислот. Так как алюминий обладает значительной химической активностью и в качестве основного материала для контейнеров (лодочек) применяют особо чистый графит, то зонную плавку алюминия проводят в вакууме или в атмосфере инертного газа (аргон, гелий). Зонной плавкой в вакууме обеспечивается большая чистота алюминия вследствие улетучивания части примесей при вакуумировании (магния, цинка, кадмия, щелочных и щелочноземельных металлов), а также исключается загрязнение очищенного металла примесями в результате применения защитных инертных газов. Зонную плавку алюминия в вакууме можно проводить при непрерывной откачке кварцевой трубы, куда помещают графитовую лодочку со слитком алюминия, а также в запаянных кварцевых ампулах, из которых предварительно откачивают воздух до остаточного давления примерно 1ּ10 –3 Па.
Для создания расплавленной зоны на слитке алюминия при его зонной плавке может быть применен нагрев с помощью небольших печей сопротивления или же токов высокой частоты. Для электропитания печей электросопротивления не требуется сложной аппаратуры, печи просты в эксплуатации. Единственный недостаток этого метода нагрева — небольшое сечение слитка очищаемого алюминия. Индукционный нагрев токами высокой частоты — идеальный способ создания расплавленной зоны на слитке при зонной плавке. Метод высокочастотного нагрева (помимо того, что он позволяет осуществить зонную плавку слитков больших сечений) имеет важное преимущество, заключающееся в том, что расплавленный металл непрерывно перемешивается в зоне; это облегчает диффузию атомов примеси от фронта кристаллизации в глубь расплава.
Впервые промышленное производство алюминия высокой чистоты зонной плавкой было освоено на Волховском алюминиевом заводе в 1965 г. на установке УЗПИ-3, разработанной ВАМИ. Эта установка была оснащена четырьмя кварцевыми ретортами с индукционным нагревом, при этом индукторы были подвижными, а контейнеры с металлом неподвижными. Производительность ее составляла 20 кг металла за цикл очистки. Впоследствии была создана и введена в промышленную эксплуатацию в 1972 г. на Волховском алюминиевом заводе более высокопроизводительная цельнометаллическая установка УЗПИ-4. Эффективность очистки алюминия при зонной плавке может быть охарактеризована следующими данными. Если суммарное содержание примесей в электролитически рафинированном алюминии составляет (30÷60)ּ10 –4 %, то после зонной плавки оно снижается до (2,8÷3,2)ּ10 –4 %, т. е. в 15-20 раз. Это отвечает остаточному электросопротивлению алюминия ρ○ (при температуре жидкого гелия 4,2 К) соответственно (20÷40)ּ10 –10 и (1,8÷2,1)ּ10 –10 или чистоте 99,997—99,994 и 99,9997%. В табл. 1.4 (см. ниже) приведены данные радиоактивационного анализа о содержании некоторых примесей в зонно-очищенном алюминии и электролитически рафинированном. Эти данные свидетельствуют о сильном снижении содержания большинства примесей, хотя такие примеси, как марганец и скандий, при зонной плавке практически не удаляются.
В последние годы в ВАМИ разработана и опробована в промышленных условиях технология получения алюминия чистотой 99,9999% методом каскадной зонной плавки. Сущность способа каскадной зонной плавки заключается в том, что очистку исходного алюминия чистотой А999 ведут, последовательно повторяя циклы (каскады) зонной планки. При этом исходным материалом каждого последующего каскада служит средняя, наиболее чистая часть слитка, получаемого в результате предыдущего цикла очистки.
Примесь
Исходный алюминий (электролитически рафинированный 99,993-99,994 %)
В зависимости от содержания примесей алюминий разделяют на сорта: технический, высокой чистоты и особой чистоты.
Практическое занятие № 5
СПЛАВЫ НА ОСНОВЕ АЛЮМИНИЯ, ИХ СТРУКТУРА И СВОЙСТВА
Цель работы:
1. изучение микроструктуры и свойств алюминия и его сплавов в литом и деформированном состоянии;
2. установление связи между структурой, свойствами и диаграммой состояния;
3. изучить основные операции термической обработки алюминиевых сплавов;
4. изучить влияние старения на свойства и структуру алюминиевых сплавов.
Краткая теория
Алюминий
Алюминий отличается от других металлов малой плотностью, высокими тепло- и электропроводностью, а также отражательной способностью, высокой пластичностью и коррозионной стойкостью. Несмотря на большое сродство к кислороду, алюминий весьма слабо подвергается коррозии на воздухе и в некоторых других средах. Это объясняется образованием в начальный момент очень тонкой (толщиной приблизительно 10 нм), плотной окисной пленки Al2O3, изолирующей металл от окружающей среды и защищающей его от коррозии. Чем чище алюминий и чем он более свободен от различных примесей, тем выше его коррозионная устойчивость.
Применять алюминий как конструкционный материал из-за низкой прочности нецелесообразно, однако некоторые его свойства – высокая пластичность, коррозионная стойкость и электропроводность – позволяют эффективно использовать его для других целей.
Выделяют три направления применения технического алюминия:
1) высокая пластичность позволяет производить из него глубокую штамповку, прокатку до малой толщины (например, алюминиевая фольга);
2) высокая электропроводность (65% от электропроводности меди) дает возможность применять алюминий для электротехнических целей (проводниковый металл). Провод из алюминия равной электропроводности легче, чем из меди;
3) высокая коррозионная стойкость позволяет широко использовать его в быту как упаковочный материал, для транспортировки и хранения продуктов питания.
В зависимости от содержания примесей алюминий разделяют на сорта: технический, высокой чистоты и особой чистоты.
На алюминий первичный, поставляемый в форме чушек, слитков распространяется стандарт ГОСТ 11069-2001, примеры обозначения марок которого приведены в таблице 1.
Таблица 1 – Марки первичного алюминия (по ГОСТ 11069-2001)
Обозначение марок | Химический состав, % | |
Алюминий, не менее | Примесей не более, сумма | |
Алюминий особой чистоты | ||
А 999 | 99,999 | 0,001 |
Алюминий высокой чистоты | ||
А 995 А 99 А 95 | 99,995 99,99 99,95 | 0,005 0,010 0,05 |
Алюминий технической чистоты | ||
А 85 А 8 А 7 А 5 А 0 | 99,85 99,8 99,7 99,5 99,0 | 0,15 0,20 0,30 0,50 1,00 |
Постоянные примеси алюминия – железо и кремний, они образуют с алюминием в процессе кристаллизации интерметаллиды (Al3Fe, Al8Fe2Si, Al5FeSi, Al4FeSi2 ) игольчатой и пластинчатой формы, резко снижающие механические свойства, особенно пластичность, вязкость разрушения и сопротивление усталости. Микроструктура литого алюминия высокой и технической чистоты приведена на рисунке 1.
В таблице 2 приведены некоторые марки, химический состав алюминия деформируемого (предназначенного для производства полуфабрикатов методом горячей или холодной деформации).
| | |
Таблица 2 – Алюминий деформируемый
Обозначение марок | Химический состав, % | Сумма примесей |
Прочие примеси Каждая в отдельности | ||
Алюминий высокой чистоты | ||
АДоч АДч | 0,001 0,005 | 0,020 0,05 |
Алюминий технической чистоты | ||
АД000 АД00 АД0 АД1 АД | 0,02 0,02 0,02 0,05 0,05 | 0,20 0,30 0,50 0,70 1,2 |
Механические свойства алюминия зависят от его чистоты и состояния. Увеличение содержания примесей и пластическая деформация повышают прочность и твердость алюминия (таблица 3).
Таблица 3 – Механические свойства алюминия различной чистоты в отожженном состоянии
Чистота, % | σ0,2, МПа | σв, МПа | HB, МПа | δ, % |
99,99 99,8 99,5 | 84 – 112 126 – 175 | 45,5 38,5 31,5 |
Алюминий характеризуется высокими технологическими свойствами. Из него могут быть изготовлены любые полуфабрикаты различных габаритов. Благодаря высокой пластичности полуфабрикаты из алюминия легко можно подвергать деформации без существенных нагревов. Сварка может осуществляться практически всеми методами, включая сварку плавлением. Обрабатываемость резанием вследствие высокой вязкости у алюминия плохая.
Благодаря своим свойствам алюминий находит применение почти во всех отраслях промышленности – авиационной, строительной, химической и т.д. Он используется в электротехнической промышленности и теплообменниках. Высокая отражательная способность алюминия используется для производства зеркал, мощных рефлекторов. Алюминий практически не взаимодействует с азотной кислотой, органическими кислотами и пищевыми продуктами. Из него изготавливается тара для транспортировки пищевых продуктов, домашняя утварь. Листовой алюминий широко применяется как упаковочный материал. Значительно выросло применение алюминия в строительстве и на транспорте.