Чем выше температура тем быстрее происходит фотосинтез
Влияние температуры на интенсивность процесса фотосинтеза
Влияние температуры на фотосинтез находится в зависимости от интенсивности освещения. При низкой освещенности фотосинтез от температуры не зависит (Q10 = 1). Следовательно, при низком уровне освещенности фотосинтез идет с одинаковой скоростью при 15° и 25°С. Это связано с тем, что при низкой освещенности интенсивность фотосинтеза лимитируется скоростью световых реакций. Напротив, при высокой освещенности скорость фотосинтеза определяется протеканием темновых реакций. В этом случае влияние температуры проявляется очень отчетливо и температурный коэффициент Q10 может быть около двух. Так, для подсолнечника повышение температуры в интервале от 9 до 19°С увеличивает интенсивность фотосинтеза в 2,5 раза.
Температурные пределы, в которых возможно осуществление процессов фотосинтеза, различны для разных растений. Понижение температуры влияет на фотосинтез прямо, уменьшая активность ферментов, участвующих в темновых реакциях, и косвенно, благодаря повреждению органелл. Минимальная температура для фотосинтеза растений средней полосы около 0°С, для тропических растений 5—10°С. Имеются данные, что ранневесенние и высокогорные растения могут осуществлять фотосинтез и при температуре ниже 0°С. Лишайники могут ассимилировать С02 при температуре —25°С. Оптимальная температура фотосинтеза для большинства растений средней полосы составляет примерно 20—25°С. При этом для растений, ведущих фотосинтез по С4-пути, оптимальная температура более высокая (35—45°С и выше), для цианобактерий оптимум температуры фотосинтеза значительно выше. При температуре выше оптимальной интенсивность фотосинтеза резко падает. Это связано с тем, что зависимость процесса фотосинтеза от температуры представляет собой равнодействующую противоположных процессов. Так, повышение температуры увеличивает скорость темновых реакций фотосинтеза. Одновременно при температуре 25—30°С происходит процесс инактивации хлоропластов. Повышение температуры может вызвать также закрытие устьичных щелей. Наконец, как уже говорилось, повышение температуры увеличивает интенсивность дыхания, и в этой связи видимый фотосинтез (разность между фотосинтезом и дыханием) уменьшается. Понижение температуры также снижает фотосинтез, поскольку тормозится активность ферментов, уменьшается скорость диффузионных процессов, а также отток ассимилятов.
Digitrode
цифровая электроника вычислительная техника встраиваемые системы
Влияние температуры на скорость фотосинтеза
Фотосинтез – один из самых замечательных биохимических процессов на Земле, который позволяет растениям использовать солнечный свет для производства пищи из воды и углекислого газа. Простые эксперименты, проведенные учеными, показывают, что скорость фотосинтеза в значительной степени зависит от таких переменных, как температура, pH и интенсивность света. Скорость фотосинтеза обычно измеряется косвенно путем определения количества углекислого газа, выделяемого растениями.
Фотосинтез определяет процесс, с помощью которого растения и некоторые бактерии производят глюкозу. Ученые резюмируют этот процесс следующим образом: с использованием солнечного света углекислый газ + вода = глюкоза + кислород. Процесс происходит внутри специальных структур, называемых хлоропластами, расположенных в клетках листьев. Оптимальная скорость фотосинтеза приводит к удалению большего количества углекислого газа из местной атмосферы, производя большее количество глюкозы. Поскольку уровень глюкозы в растениях трудно измерить, ученые используют количество ассимиляции углекислого газа или его высвобождение как средство измерения скорости фотосинтеза. Например, ночью или в неблагоприятных условиях растения выделяют углекислый газ.
Максимальная скорость фотосинтеза варьируется в зависимости от вида растений, но такие культуры, как кукуруза, могут достигать скорости ассимиляции углекислого газа до 0,075 унции на кубический фут в час или 100 миллиграммов на дециметр в час. Чтобы добиться оптимального роста некоторых растений, фермеры держат их в теплицах, в которых регулируются такие условия, как влажность и температура. Существует три температурных режима, при которых изменяется скорость фотосинтеза.
При средних температурах, от 50 до 68 градусов по Фаренгейту или от 10 до 20 градусов по Цельсию, фотосинтетические ферменты работают на своем оптимальном уровне, поэтому скорость фотосинтеза высока. В зависимости от конкретного растения установите термостат теплицы на температуру в этом диапазоне для достижения наилучших результатов. При этих оптимальных температурах ограничивающим фактором становится диффузия углекислого газа в листья.
Влияние концентрации углекислого газа и температуры на фотосинтез
Не менее важный фактор, оказывающий непосредственное влияние на процесс фотосинтеза, — это концентрация углекислого газа в окружающей среде. Увеличение интенсивности фотосинтеза с ростом содержания CO2 в воздухе происходит лишь до некоторого предела, при котором наступает насыщение фотосинтеза углекислотой, и дальнейшее повышение концентрации практически уже не отражается на скорости данного процесса. Незначительный подъем кривой на рисунке при освещенности в 3 тыс. лк свидетельствует о том, что ассимиляция углекислого газа тормозится особенно сильно, когда недостаток CO2 сочетается со слабым светом. Насыщение фотосинтеза при слабом освещении вызывается меньшей концентрацией, чем при более ярком освещении. Причем даже на слабом свету интенсивность фотосинтеза не является еще максимальной при обычном, т. е. близком к 0,03% по объему, содержании CO2 в воздухе.
Зависимость фотосинтеза у проростков пшеницы от концентрации CO2 в воздухе при разной освещенности (по А. Леопольду). Цифры на кривых указывают интенсивность света в люксах
Слишком высокие концентрации углекислого газа приводят к снижению его ассимиляции. У наземных растений в зависимости от вида и внешних условий (освещенности, температуры и др.) угнетение фотосинтеза наблюдается в пределах от 2,5 до 20% CO2 по объему. Одна из причин такого угнетения заключается в том, что в ответ на высокую концентрацию CO2 устьица закрываются и поступление воздуха в лист резко снижается. Влияние на фотосинтез степени открытия устьиц можно проиллюстрировать схемой на рисунке.
Влияние меры открытия устьиц на интенсивность фотосинтеза у овса при освещенности в 20 тыс. лк (по М. Стольфельту)
В атмосфере благодаря постоянной и интенсивной циркуляции воздушных масс содержание углекислого газа поддерживается в настоящее время примерно на одном и том же уровне — 0,03% по объему для всех географических широт. Исключение составляют приземные слои воздуха в травостоях, значительно обогащенные углекислым газом вследствие «дыхания» почвы. Под «дыханием» почвы понимают выделение из нее CO2, образующегося при дыхании микроорганизмов и корней. Особенно много CO2 выделяют почвы, богатые перегноем, — от 10 до 25 кг с 1 га в течение часа.
Обычное (т. е. близкое к 0,03%) содержание CO2 в воздухе не является оптимальным, как уже отмечалось, и может обеспечить достаточно высокую интенсивность фотосинтеза только в случае очень быстрого обмена больших масс воздуха в травостое. Однако даже при соблюдении этого условия интенсивность фотосинтеза не достигает еще максимума; для этого необходимо повысить концентрацию CO2. В полевых условиях фотосинтез очень часто тормозится именно недостатком CO2 в воздухе, что в конечном счете приводит к снижению урожая. Все это послужило основанием для применения воздушного удобрения растений углекислым газом, которое может оказаться особенно перспективным при выращивании их в теплицах и оранжереях. Экспериментальные данные показывают, что путем повышения концентрации CO2 в теплицах до 0,1—0,3% можно увеличить урожай овощных культур в 1,5—2 раза и даже больше.
В последние годы предпринимаются попытки шире использовать углекислоту в качестве удобрения и в условиях открытого грунта. Одним из простых способов обогащения приземного слоя воздуха углекислым газом может служить полив растений водой, насыщенной CO2. Так, применяя 6-кратный полив растений сахарной свеклы такой водой (30 кг CO2 на 1 га), Н. М. Константинов смог повысить урожай корней на 46% по сравнению с урожаем, получаемым при поливе обыкновенной водой.
В этих же целях можно использовать и тот углекислый газ, который в огромных количествах выбрасывается промышленными предприятиями как отход, перекачивая его на поля по трубам. Правда, применение воздушного удобрения не получило пока широкого размаха из-за некоторых технических трудностей. Однако оно таит в себе очень большие возможности и, безусловно, станет в недалеком будущем мощным средством повышения урожайности.
Зависимость фотосинтеза от температурного фактора выражается графически одновершинной кривой с максимумом при оптимальной температуре. Такие кривые хорошо известны для культурных растений (картофеля, томата, огурца) — они приводятся во многих учебниках по физиологии растений. Неодинаковый температурный оптимум фотосинтеза у разных растений указывает на выработанную в процессе длительной эволюции приспособленность того или иного вида к определенным условиям существования. В качестве примера приведем кривые изменения интенсивности фотосинтеза с повышением температуры у двух видов водоросли диатомеи.
Изменение интенсивности фотосинтеза в зависимости от температуры при высокой интенсивности света: I — Nitzschia closterium; II — N. palea
У морской диатомеи (Nitzschia closterium), обитающей в относительно прохладной воде, оптимальная температура для фотосинтеза равняется 27° С, тогда как у пресноводного вида этой водоросли (N. palea) она приходится на 33° С и, вероятно, позволяет выдерживать значительный подогрев воды в неглубоких водоемах летом.
Высокие температуры обычно вызывают снижение интенсивности фотосинтеза, особенно при длительном их воздействии на растение. Однако некоторые водоросли, приспособившиеся к существованию в горячих источниках, могут переносить продолжительное действие очень высоких температур, близких к 80 и даже 90° С, без заметного вреда для их фотосинтетической деятельности.
Нижний температурный предел фотосинтеза также неодинаков у разных растений. Тропические растения прекращают фотосинтезировать, как правило, уже при положительных температурах в интервале от 4 до 8° С, а у растений северных широт температурный предел часто лежит гораздо ниже 0° С. Способность к фотосинтезу может еще сохраняться при — 14° С, как например у ели, и даже при —24° С у некоторых лишайников.
Источник: Н.Н. Овчинников, Н.М. Шиханова. Фотосинтез. Пособие для учителей. Изд-во «Просвещение». Москва. 1972
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Влияние температуры на интенсивность фотосинтеза
Общая зависимость фотосинтеза от температуры выражается одновершинной кривой. Кривая имеет три основные (кардинальные) температурные точки: минимальную, при которой начинается фотосинтез, оптимальную и максимальную. Интенсивность фотосинтеза при супероптимальных температурах зависит от продолжительности их воздействия на растения. Нижняя температурная граница фотосинтеза у растений северных широт находится в пределах —15 °С (сосна, ель) —0,5 °С, а у тропических растений — в зоне низких положительных температур 4 — 8 °С. У растений умеренного пояса в интервале 20 — 25 °С достигается максимальная интенсивность фотосинтеза, а дальнейшее повышение температуры до 40 °С приводит к быстрому ингибированию процесса (при 45 °С растения погибают). Некоторые растения пустынь способны осуществлять фотосинтез при 58 °С. Температурные границы фотосинтеза можно раздвинуть предварительным закаливанием, адаптацией растений к градиенту температур. Наиболее чувствительны к действию температуры реакции карбоксилирования, превращения фруктозо-6-фосфата в сахарозу и крахмал, а также транспорт сахарозы из листьев в другие органы
Необходимо отметить, что влияние на фотосинтез света, концентрации СО2 и температуры осуществляется в сложном взаимодействии. Особенно тесно взаимосвязаны свет, действующий на скорость фотохимических реакций, и температура, контролирующая скорость энзиматических реакций. В условиях высокой интенсивности света и низких температур (5—10°С), когда главным фактором, лимитирующим скорость всего процесса, являются ферментативные реакции, контролируемые температурой, значения Q10 могут быть > 4. При более высоких температурах Q10 снижается до 2. При низких интенсивностях света Q10 = 1, т. е. фотосинтез относительно независим от температуры, так как его скорость в данном случае ограничивается фотохимическими реакциями.
4 Влияние оводненности и минерального питания на фотосинтез. Вода непосредственно участвует в фотосинтезе синтезе как субстрат окисления и источник кислорода. Другой аспект влияния содержания воды на фотосинтез состоит н том, что величина оводненности листьев определяет степени открывания устьиц и, следовательно, поступления СО2 в лист При полном насыщении листа водой устьица закрываются что снижает интенсивность фотосинтеза. В условиях засухе чрезмерная потеря воды листом также вызывает закрывании устьиц под влиянием увеличения содержания в листья абсцизовой кислоты в ответ на недостаток влаги. Длительный водный дефицит в тканях листа при засухе приводит к ингибированию нециклического и циклического транспорта электронов и фотофосфорилирования и к снижению величины отношения ATP/NADPH за счет большего торможения образования АТР. Максимальный фотосинтез наблюдается при небольшом водном дефиците листа (порядка 5 — 20% от полного насыщения) при открытых устьицах.
Минеральное питание. Для нормального функционирования фотосинтетического аппарата растение должно быть обеспечено всем комплексом макро- и микроэлементов. Два основных процесса питания растительного организма — воздушный и корневой — тесно взаимосвязаны. Зависимость фотосинтеза от элементов минерального питания определяется их необходимостью для формирования фотосинтетического аппарата (пигментов, компонентов электронтранспортной цепи, каталитических систем хлоропластов, структурных и транспортных белков), а также для его обновления и функционирования.
Кислород. Процесс фотосинтеза обычно осуществляется в аэробных условиях при концентрации кислорода 21%. Увеличение содержания или отсутствие кислорода для фотосинтеза неблагоприятны.
Обычная концентрация О2 превышает оптимальную для фотосинтеза величину. У растений с высоким уровнем фотодыхания (бобы и др.) уменьшение концентрации кислорода с 21 до 3% усиливало фотосинтез, а у растений кукурузы (с низким уровнем фотодыхания) такого рода изменение не влияло на интенсивность фотосинтеза.
Высокие концентрации О2 (25 — 30%) снижают фотосинтез («эффект Варбурга»). Предложены следующие объяснения этого явления. Повышение парциального давления О2 и уменьшение концентрации СО2 активируют фотодыхание. Кислород непосредственно снижает активность РДФ-карбоксилазы. Наконец, О2 может окислять первичные восстановленные продукты фотосинтеза.
Литература:2, т.1, с.280-300
Контрольные вопросы:
1 Каковы оптические свойства хлорофилла?
2 Какие свойства проявляет хлорофилл в растворе и в хлоропластах?
3 Каковы исходные вещества и продукты световых реакций?
4 Какова роль АТФ и фермента – переносчика водорода в процессе фотосинтеза?
5 Каковы исходные вещества и конечные продукты темновых реакций?
Может ли фотосинтез протекать при температуре ниже 0°C?
Влияние температуры на фотосинтез находится в зависимости от интенсивности освещения. При низкой освещенности фотосинтез от температуры не зависит (Q10 = 1). Следовательно, при низком уровне освещенности фотосинтез идет с одинаковой скоростью при 15° и 25°С. Это связано с тем, что при низкой освещенности интенсивность фотосинтеза лимитируется скоростью световых реакций. Напротив, при высокой освещенности скорость фотосинтеза определяется протеканием темновых реакций. В этом случае влияние температуры проявляется очень отчетливо и температурный коэффициент Q10 может быть около двух. Так, для подсолнечника повышение температуры в интервале от 9 до 19°С увеличивает интенсивность фотосинтеза в 2,5 раза.
Температурные пределы, в которых возможно осуществление процессов фотосинтеза, различны для разных растений. Понижение температуры влияет на фотосинтез прямо, уменьшая активность ферментов, участвующих в темновых реакциях, и косвенно, благодаря повреждению органелл. Минимальная температура для фотосинтеза растений средней полосы около 0°С, для тропических растений 5—10°С. Имеются данные, что ранневесенние и высокогорные растения могут осуществлять фотосинтез и при температуре ниже 0°С. Лишайники могут ассимилировать С02 при температуре —25°С. Оптимальная температура фотосинтеза для большинства растений средней полосы составляет примерно 20—25°С. При этом для растений, ведущих фотосинтез по С4-пути, оптимальная температура более высокая (35—45°С и выше), для цианобактерий оптимум температуры фотосинтеза значительно выше. При температуре выше оптимальной интенсивность фотосинтеза резко падает. Это связано с тем, что зависимость процесса фотосинтеза от температуры представляет собой равнодействующую противоположных процессов. Так, повышение температуры увеличивает скорость темновых реакций фотосинтеза. Одновременно при температуре 25—30°С происходит процесс инактивации хлоропластов. Повышение температуры может вызвать также закрытие устьичных щелей. Наконец, как уже говорилось, повышение температуры увеличивает интенсивность дыхания, и в этой связи видимый фотосинтез (разность между фотосинтезом и дыханием) уменьшается. Понижение температуры также снижает фотосинтез, поскольку тормозится активность ферментов, уменьшается скорость диффузионных процессов, а также отток ассимилятов.