Чем заканчивается черная дыра
Как умирают черные дыры?
Самыми таинственными объектами во Вселенной по праву можно назвать черные дыры – области пространства-времени гравитация которых настолько сильна, что ничто, даже свет, не может их покинуть. Интересно, что на просторах бесконечной Вселенной существуют черные дыры, масса которых превышает массу Солнца в пять-сто раз, но есть и такие, чья масса превышает миллиард солнечных. Сегодня астрономы считают, что сверхмассивные черные дыры скрываются в сердце большинства галактик, отмечая при этом, что Вселенная находится в так называемой «звездной эре» – этапе эволюции Вселенной, во время которого звезды и галактики рождаются непрерывно. Но что лежит за границей звездной эры? Исследователи полагают, что в конечном итоге все ингредиенты для создания черных дыр будут исчерпаны, а звезды в ночном небе медленно погаснут, превратив тем самым черные дыры в единственных обитателей Вселенной. Но даже эти космические монстры не могут существовать вечно. Когда-нибудь и они погибнут, озарив, на прощание, пустое и безжизненное пространство фейерверком.
Доказать существование черных дыр ученым удалось совсем недавно.
Как появляются черные дыры?
Та часть вещества, которую не выбросило в межзвездную среду, как правило, преобразуется либо в компактный объект – нейтронную звезду (в случае, если масса звезды до взрыва составляла более 8 солнечных масс), либо в черную дыру – область пространства-времени, в которой всем управляет ее величество гравитация (в случае, если масса оставшегося после взрыва ядра превышает солнечную в пять раз).
Так выглядит вспышка сверхновой в объективе космического телескопа NASA Hubble.
Как отмечают астрономы, подобная связь между рождением черной дыры и смертью звезды, которая ее образовала, довольно распространенное явление во Вселенной. Особенно близки черные дыры с другими звездами в тех ее уголках, где звездообразование происходит с высокой скоростью. Напомним также, что звездообразование является крупномасштабным процессом, в ходе которого из межзвездного газа в галактике начинают массово формироваться звезды.
Хотите всегда быть в курсе последних новостей из мира астрономии и физики? Подписывайтесь на наш новостной канал в Telegram чтобы не пропустить ничего интересного!
Эволюция черных дыр
Итак, после рождения черной дыры в результате гибели массивной звезды, ее главным занятием становится поглощение любых объектов, оказавшихся поблизости. В некоторых случаях поглощенный материал (газ и звезды) окружает этих космических монстров, двигаясь все быстрее и скапливаясь вокруг. Так как трение между пылью генерирует тепло, аккреционный диск черной дыры начинает светиться, очерчивая ее тень или горизонт событий. Именно его в 2019 году удалось сфотографировать ученым, о чем подробно рассказал мой коллега Николай Хижняк в своем материале.
Но помимо того, что горизонт событий окружает черную дыру, он также является ключом к ее гибели. Все потому, что любой поглощенный черной дырой материал пропадает навсегда, по крайней мере, это следует из нашего понимания гравитации. Однако эта так называемая точка невозврата не учитывает квантовую механику – да, да, физики по-прежнему трудятся над созданием единой теории квантовой гравитации и, кстати, недавно добились довольно интересных результатов.
Стивен Хокинг – английский физик-теоретик, космолог и астрофизик. Хокинг первым изложил космологическую теорию, в которой были объединены представления общей теории относительности и квантовой механики.
Исследователи сравнивают этот процесс с песочными часами, где песок наверху – это количество времени, оставшееся у черной дыры. Поглощая все больше звезд и газа, прожорливый космический монстр продолжает добавлять песчинки в «тикающие» песочные часы, даже когда отдельные частицы просачиваются наружу. Но по мере старения Вселенной материал вокруг черной дыры иссякнет, знаменуя ее неминуемую погибель.
Кстати, самая мощная из когда-либо зарегистрированных сверхновых (ASSASN-15lh) сегодня считается в 22 триллиона раз более взрывоопасной, чем черная дыра в ее последние мгновения. А как вы думаете, каким будет конец Вселенной? Ответ будем ждать здесь, а также в комментариях к этой статье.
Спросите Итана №57: как умирают чёрные дыры?
Самые плотные и массивные объекты Вселенной живут ужасно долго, но не вечно. И вот, что с ними случается
Перед фактом сядьте, словно ребёнок, и приготовьтесь расстаться с любым предубеждением, следуя скромно куда и к чему бы не привели бездны природы, или же вы ничему не научитесь.
— Т. Г. Хаксли
Представляя себе чёрные дыры вы, наверно, думаете о сверхплотных и очень массивных участках пространства, откуда ничто не может убежать. Ни материя, ни антиматерия, ни даже свет! Вы также можете думать, что они продолжают питаться всем, чему не посчастливилось столкнуться с ними, даже тёмной материей. Но в какой-то момент любая чёрная дыра во Вселенной не только закончит расти, но и начнёт уменьшаться, терять массу, до тех пор, пока не испарится полностью! На этой неделе в нашей колонке мы ответим на вопрос Павла Жужельского, который спрашивает:
Я часто видел объяснения излучения Хокинга типа: «пары виртуальных частиц появляются на горизонте событий. Одна падает в дыру, другая убегает, унеся с собой частичку массы дыры». И обычно мелким шрифтом указано, что это – упрощение. Наверно, это так и есть – ведь если одна из частиц падает в дыру, её масса должна увеличиваться на массу частицы. В чём подвох?
Это очень сложная тема, но такая, которую мы понимаем. Начнём с обсуждения того, как выглядит пустое пространство.
В общей теории относительности пространство и время имеют запутанную связь, и формируют четырёхмерную ткань пространства-времени. Если вы уберёте все частицы во Вселенной на бесконечно большое расстояние от нужной вам точки, если вы уберёте факт расширения пространства из уравнений, если вы также устраните все виды излучений, и присущую космосу кривизну – вы сможете заявить, что создали плоское пустое пространство.
Но когда вы начинаете принимать во внимание, что живёте во Вселенной, где всеми частицами и их взаимодействиями управляет квантовая теория поля, вам придётся признать, что даже в отсутствие физических частиц, физические поля, управляющие их взаимодействиями, никуда не денутся. Одним из последствий этого будет то, что сущность, которую мы представляем себе, как «плоское пустое пространство», не избавлено от энергии. Вместо этого нужно представлять себе плоское пустое пространство как квантовый вакуум, где повсюду есть квантовые поля.
Вам может быть знакомой идея, что на квантовых масштабах во Вселенной существуют присущие пространству неопределённости конкретных параметров. Мы не можем одновременно знать расположение и импульс частицы, и чем лучше измеряем один из них, тем больше неопределённость у второго. Такое же взаимоотношение неопределённостей свойственно энергии и времени, что для нас сейчас важно.
Если вы наблюдаете за тем, что представляете себе, как пустое пространство, но при этом наблюдаете за этим в определённый момент времени, вам нужно учесть, что момент – это бесконечно малый промежуток времени. Из-за этого взаимоотношения неопределённостей существует огромная неопределённость в общем количестве энергии, содержащемся даже в пустом пространстве в это время. Это значит, что там может, в принципе, быть несколько пар из частиц и античастиц, существующих на очень кратких промежутках времени, пока они подчиняются известным законам сохранения, действующим в физической Вселенной.
Мы часто слышим объяснение вроде «пары частица-античастица возникают и исчезают в квантовом вакууме», и хотя такое объяснение довольно наглядно, на самом деле происходит не совсем это. Там нет настоящих частиц, в том смысле, что если вы запустите фотон или электрон через эту область пространства, они никогда не отразятся от частицы квантового вакуума. Это описание даёт нам возможность заглянуть в присущую квантовому вакууму «дрожь», и показывает, что там есть резервуар виртуальных частиц, позволяющий нам трактовать присущую пустому пространству энергию как сумму всех этих виртуальных частиц.
Повторюсь, так как это важно: существует энергия, присущая самому пустому пространству, и её можно представить, как сумму квантовых флуктуаций, присущих этому пространству.
Пойдём дальше. Представим, что пространство, вместо того, чтобы быть плоским и пустым, всё ещё пустое, но уже искривлено – то есть, в гравитационном поле космоса существуют отклонения.
Как будут выглядеть наши квантовые флуктуации? В частности, если мы позволим пространству искривляться из-за присутствия чёрной дыры, как они будут выглядеть снаружи и внутри горизонта событий?
Вопросы хорошие, и чаще всего в поисках ответа вы увидите следующую (неправильную) картинку, которая являет собою суть вопроса Павла:
Если представлять себе пары частица/античастица как реальные, и если одна убежит от чёрной дыры, а другая упадёт за горизонт событий – то получится, что во Вселенной прибавилось энергии: половина вне чёрной дыры и половина к массе чёрной дыры. Но эти пары частиц и античастиц не являются реальными, а представляют собою лишь способ визуализации и подсчёта энергии, присущей пространству.
Дело в том, что при искривлённом пространстве, как вы помните, существуют отклонения гравитационного поля. Мы используем флуктуации для помощи в визуализации энергии, присущей пустому пространство, но могут возникать флуктуации, начинающиеся снаружи горизонта событий, которые попадут внутрь горизонта, не успев ре-аннигилировать. Но нельзя украсть энергию у пустого пространства – что-то должно случиться, чтобы её сохранить. Поэтому каждый раз, когда виртуальная частица (или античастица) падает внутрь, настоящий фотон (или их набор) должен появиться для компенсации. И этот реальный фотон, покидающий горизонт событий, и уносит энергию от чёрной дыры.
Тот способ, который мы ранее использовали для визуализации процесса, когда одна из пары частиц падала, а другая – убегала, слишком наивен, чтобы быть полезным, поскольку уменьшению чёрных дыр способствуют не частицы или античастицы, а фотоны, соответствующие спектру чёрного тела.
Я предпочитаю картинку получше, хотя она всё равно ещё довольно наивна. Представьте квантовые флуктуации, при которых каждый раз, когда у вас появляется пара частица-античастица, из которых одна падает внутрь, появляется ещё одна пара частица-античастица, у которой внутрь падает другая. Оставшаяся снаружи пара из частицы и античастицы аннигилирует, испуская реальные фотоны, а те, что падают внутрь, забирают соответствующее количество массы (Е = мс 2 ) у чёрной дыры.
Это всё ещё не идеальная аналогия (потому что это всего лишь аналогия), но, по крайней мере горизонт событий в ней покидают фотоны, что соответствует предсказаниям излучения Хокинга. Фактически – хотя вам придётся провести подсчёты квантовой теории поля в искривлённом пространстве-времени, чтобы это выяснить – излучение Хокинга предсказывает, что спектр фотона будет соответствовать абсолютно чёрному телу с температурой, заданной:
что даст температуру меньше одного микроКельвина для чёрной дыры массой равной массе Солнца, меньше одного пикоКельвина для чёрной дыры в центре нашей галактики, и всего лишь несколько десятых от аттоКельвина для самой крупной из известных чёрных дыр. Скорость уменьшения, которому соответствует это излучение, настолько мало, что чёрные дыры будут расти, даже если они будут поглощать один протон за промежуток времени, сравнимый с возрастом нашей Вселенной – это будет продолжаться ещё примерно 10 20 лет.
После этого чёрные дыры массой с Солнце, наконец, начнут терять из-за излучения Хокинга в среднем больше энергии, чем поглощают, и полностью испарятся через 10 67 лет, а самые крупные из них – через 10 100 лет. Это может сильно превышать возраст Вселенной, но это и не вечность. А уменьшаться они будут благодаря излучению Хокинга, испуская фотоны.
В итоге: у пустого пространства есть энергия нулевого уровня, которая не равна нулю, а в искривлённом пространстве на горизонте событий чёрной дыры появляется низкоэнергетический спектр излучения абсолютно чёрного тела. Это излучение отнимает массу у чёрной дыры и слегка сжимает горизонт событий со временем. Если вы настаиваете на представлении источника этого излучения в виде пар частица/античастица, хотя бы представляйте по две пары за раз. Тогда частица от одной пары и античастица от другой аннигилируют, создавая реальные фотоны, покидающие чёрную дыру, а другая виртуальная пара частиц падает в дыру и забирает её энергию (или массу).
Вот так чёрные дыры и умрут! Спасибо за отличный вопрос, Павел, и если у вас есть вопросы или предложения, отправляйте их мне.
Все за сегодня
Политика
Экономика
Наука
Война и ВПК
Общество
ИноБлоги
Подкасты
Мультимедиа
Как умирают черные дыры
Черные дыры, самые плотные, самые массивные объекты во Вселенной, могут существовать очень долгое время, но они не вечны. Вот, что с ними происходит
«Сядьте перед фактом, как маленький ребенок, будьте готовы отказаться от всех заранее предуготовленных представлений, смиренно следуйте за природой, в какую бы пропасть она вас ни завела, иначе вы ничему не научитесь», — Томас Хаксли (T.H. Huxley).
Когда речь заходит о черных дырах, вы, вероятнее всего, представляете себе эти сверхплотные и сверхмассивные участки пространства, от которых ничто не может ускользнуть. Ни материя, ни антиматерия, ни даже свет! Вы также, возможно, размышляете над тем, как они продолжают питаться тем, что имеет несчастье оказаться внутри них, в том числе темной материей. Тем не менее, в какой-то момент все черные дыры во Вселенной не только перестают расти, но и начинают уменьшаться и терять массу до тех пор, пока они полностью не испарятся! На этой неделе в рубрике вопросов к Этану мы попытаемся ответить на письмо Павла Жужельского (Paweł Zuzelski), в котором он спрашивает следующее:
В объяснениях излучения Хокинга я часто встречаю следующие строки: «На горизонте событий рождается пара виртуальных частиц. Одна частица попадает внутрь чёрной дыры, а другая улетает, унося с собой часть массы дыры». Обычно рядом с этими строками мелким шрифтом указано, что это является упрощением. Такое объяснение на самом деле, должно быть, представляет собой чрезмерное упрощение: если одна из частиц попадает в черную дыру, то масса последней должна увеличиться на массу этой частицы. В чем тут фокус?
Это чрезвычайно сложная тема, тем не менее, это именно та тема, в которой мы разбираемся. Давайте начнем с объяснения того, что из себя представляет вакуум.
В общей теории относительности пространство и время тесным образом связаны и образуют четырехмерную структуру пространственно-временного континуума. Если вы возьмете все частицы во Вселенной и удалите их на бесконечно далекое расстояние от того района, где мы находимся, если вы примете тот факт, что пространство постоянно расширяется, если вы также удалите все формы излучения и внутреннюю кривизну самого пространства, вы будете вправе сказать, что вы создали плоское пустое пространство.
Но когда вы задумаетесь над тем, что мы живем во Вселенной, где всеми частицами и их взаимодействиями управляет квантовая теория поля, вам придется признать, что, даже если убрать все физические частицы, то физические поля, управляющие их взаимодействиями, все равно останутся. И одним из следствий этого становится тот факт, что то, что мы считаем «плоским пустым пространством», на самом деле не является некой постоянной величиной, лишенной всякой энергии. В этом смысле правильнее было бы рассматривать плоское пустое пространство как квантовый вакуум, в котором присутствует множество квантовых полей.
Возможно, вы слышали о гипотезе о том, что на квантовом уровне Вселенной мы порой сталкиваемся с внутренними неопределенностями, когда речь заходит о конкретных величинах. Мы не можем одновременно знать и месторасположение частицы, и ее импульс, и чем точнее мы измеряем одну из этих величин, тем более неопределенной становится другая. То же самое соотношение неопределенностей применимо к энергии и времени, и это крайней важно.
Если вы посмотрите на то, что считаете абсолютно пустым пространством или вакуумом, но посмотрите на него в течение одного конкретного мгновения, вы должны помнить, что мгновение — это бесконечно малый промежуток времени. В силу действия принципа соотношения неопределенностей общее количество энергии в вашем (даже пустом!) пространстве в этот момент будет чрезвычайно неопределенным. Это значит, что в принципе там могут находиться пары частица-античастица, которые существуют на протяжении самых коротких мгновений в каждый конкретный период времени, при условии что они подчиняются всем известным законам сохранения, действующим в физической Вселенной.
Мы часто слышим, что этот процесс описывается как процесс «появления и исчезновения пар частица-античастица в квантовом вакууме», и хотя такое объяснение можно назвать вполне наглядным, на самом деле все происходит не совсем так. Речь не идет о реальных частицах в том смысле, что если вы пропустите фотон или электрон через этот участок пространства, он не сможет оттолкнуться от этой частицы квантового вакуума. Вместо этого такое объяснение дает нам возможность увидеть некую внутреннюю «возбудимость» квантового вакуума и представить себе, что существует некий резервуар виртуальных частиц, позволяющий нам рассматривать энергию, присущую самому вакууму, как сумму энергий всех этих виртуальных частиц.
Я скажу это еще раз, потому что это важно: вакууму присуща энергия, если мы рассмотрим все квантовые флуктации, присущие этому вакууму, и суммируем их, то мы получим его энергию.
Давайте двигаться дальше. Представим себе, что вместо плоского и пустого пространства наше пространство является пустым, но уже искривленным, то есть что существует некий градиент в гравитационном поле пространства.
Как теперь будут выглядеть квантовые флуктуации? В частности, если пространство искривляется в силу присутствия черной дыры, как будут выглядеть эти флуктуации внутри и за пределами горизонта событий?
Это очень важные вопросы, и чаще всего в ответ на них вы получаете ту картину (довольно обманчивую), которая представлена ниже — в сущности, Павел спрашивает нас именно об этом.
Если вы рассматриваете пары частица-античастица как «реальные» объекты и если одна из них ускользает от горизонта событий черной дыры, а другая попадает в него, тогда вы предполагаете, что энергия Вселенной должна увеличиться за счет энергии частиц: половина энергии уходит вовне, а половина добавляется к массе черной дыры. Но эти пары частица-античастица не являются реальными объектами, это всего лишь визуализация (и способ расчета) энергии, присущей самому пространству.
Суть в том, что, когда пространство искривлено, то, как я писал выше, существует некий градиент гравитационного поля. У нас есть флуктуации, которые помогают нам визуализировать энергию, присущую вакууму, но должны быть также флуктуации, которые начинаются за пределами горизонта событий черной дыры и которые попадают внутрь горизонта событий раньше, чем они могут исчезнуть. Но нельзя просто так забрать энергию у вакуума: должно произойти что-то, что поможет сохранить ее. Таким образом, каждый раз, когда виртуальная частица (или античастица) исчезает, должен появиться реальный фотон (или набор фотонов), чтобы компенсировать его исчезновение. И именно этот реальный фотон, покидающий горизонт событий, и есть то, как черная дыра лишается своей энергии.
То, как мы воспринимали этот процесс прежде — то есть когда одна частица пары частица-античастица попадала внутрь дыры, а другая — за ее пределы — слишком наивно, чтобы оказаться полезным, потому что угасание черных дыр вызывают не частицы и античастицы, а скорее фотоны, следующие спектру абсолютно черного тела.
Более правдоподобная картина (лично я предпочитаю именно ее), которая, тем не менее, тоже немного наивна, заключается в том, что все эти квантовые флуктуации сохраняются, но что каждый раз, когда возникает пара частица-античастица, одна из частиц которой попадает внутрь горизонта событий, возникает аналогичная пара частица-античастица, противоположная частица которой также попадает внутрь горизонта событий. Пара частица-античастица, оказавшаяся за пределами горизонта событий, исчезает, выделяя реальные, обладающие энергией фотоны, а частицы, которые попадают внутрь горизонта событий, забирают у черной дыры соответствующее количество массы (E = mc^2).
Это не является идеальной аналогией (потому что это всего лишь аналогия), но, по крайней мере, на этот раз мы говорим о том, что горизонт событий покидают именно фотоны — как раз это предсказывает теория излучения Хокинга. На самом деле — хотя вам придется выполнить вычисления в рамках квантовой теории поля в искривленном пространстве, чтобы это выяснить — теория излучения Хокинга предполагает, что вы получите фотонный спектр абсолютно черного тела с температурой, вычисляемой по сложной формуле, и эта температура составляет менее 1 микрокельвина для черной дыры такой же массы, как наше солнце, менее 1 пикокельвина для черной дыры, находящейся в центре нашей галактики, и всего лишь несколько десятых аттокельвина для самой большой черной дыры, известной людям. Такие скорости угасания черных дыр, которым соответствует это излучение, являются ничтожно малыми, и это значит, что черные дыры продолжат расти до тех пор, пока они будут поглощать всего один протон на то количество времени, в течение которого существует наша Вселенная. То есть это будет происходить в течение 10^20 с лишним лет.
Потом вследствие излучения Хокинга черные дыры, масса которых равна массе Солнца, наконец, начнут терять больше энергии, чем они будут поглощать, и полностью они испарятся через
10^67 лет, а самые большие черные дыры во Вселенной исчезнут спустя примерно
10^100 лет. Это намного больше возраста нашей Вселенной, тем не менее, это не бесконечность. И исчезнут они благодаря механизму излучения фотонов в процессе излучения Хокинга.
Подведем итоги: вакуум обладает нулевой энергией, которая на самом деле не нулевая, и в искривленном пространстве это приводит к возникновению чрезвычайно низкоэнергетического спектра излучения абсолютно черного тела, который образуется прямо на горизонте событий черной дыры. Это излучение забирает массу у центральной черной дыры и приводит к тому, что горизонт событий со временем немного сокращается. Если вы настаиваете на том, что источником этого излучения являются пары частица-античастица, пожалуйста, по крайней мере, представляйте себе сразу две такие пары, чтобы частица одной пары и античастица другой могли исчезнуть, породив при этом реальные фотоны, которые покидают черную дыру, и чтобы та (виртуальная) пара, которая попадет в нее, забрала энергию (или массу) у самой черной дыры.
Материалы ИноСМИ содержат оценки исключительно зарубежных СМИ и не отражают позицию редакции ИноСМИ.
Никто не знает, куда черные дыры девают информацию
Если «погуглить», Стивен Хокинг будет среди самых известных физиков последнего времени. Его самая известная работа касается информационного парадокса черной дыры. Если вы интересуетесь физикой, вам это, конечно же, известно. До Хокинга черные дыры не были парадоксальными. Да, если бы вы бросили книгу в черную дыру, вы бы не смогли ее прочитать. Потому что все, что пересекает горизонт событий черной дыры, уже недоступно извне. Горизонт событий — это замкнутая поверхность, которую не может покинуть изнутри даже свет. Нет никакого способа извлечь информацию из черной дыры; книги больше нет. Это печально, но не особо расстраивает физиков. Информацию из книги уже не извлечь, но в этом нет ничего парадоксального.
В черных дырах еще слишком много загадок
Излучение черных дыр
И затем пришел Стивен Хокинг. В 1974 году он показал, что черные дыры испускают излучение, и это излучение не переносит информацию. Оно совершенно случайно, за исключением распределения частиц в зависимости от энергии, которая является спектром Планка с температурой, обратно пропорциональной массе черной дыры. Если черная дыра излучает частицы, она теряет массу, сжимается и становится горячее. По прошествии достаточного количества времени и излучив достаточно частиц, черная дыра исчезнет, и вы уже никак не сможете достать информацию, попавшую в нее. Черная дыра испарилась, книги внутри больше нет. Куда же делась информация?
Вы можете пожать плечами и сказать: «Ну и хрен с ней, делась и всё. Разве мы не теряем информацию постоянно?». Нет, не теряем. По крайней мере не принципиально. На практике мы постоянно теряем информацию, это правда. Если вы сожжете книгу, вы уже не сможете прочитать то, что в ней было. Однако, с фундаментальной точки зрения, вся информация, представляющая собой книгу, по-прежнему содержится в дыму и пепле.
Что будет с информацией?
Потому что законы природы, насколько известно лучшим нашим физикам, можно прокручивать вперед и назад — каждое уникальное изначальное состояние соответствует уникальному конечному состоянию. Не бывает два изначальных состояния, которые оказываются в одном конечном состоянии. История сожженной вами книги будет совершенно другой задом-наперед. Если бы вы могли очень и очень аккуратно собрать дым и пепел нужным образом, вы могли бы сжечь книгу наоборот и восстановить ее, буквально собрав из пепла. Это крайне маловероятный процесс, и вряд ли вы когда-нибудь засвидетельствуете его на практике. Но, в принципе, это возможно.
Все происходит именно тут.
Только не с черными дырами. Из чего бы черная дыра ни сложилась, это уже будет не важно, когда вы заглянете на последнюю страницу. В конечном счете у вас останется только тепловое излучение, которое — в честь его первооткрывателя — называется «излучение Хокинга». В этом парадокс: процесс испарения черной дыры нельзя провернуть задом наперед. Он необратим. И это очень печалит физиков, потому что громогласно заявляет: вы не понимаете законов природы.
Подписывайтесь на наш канал в Яндекс Дзен. Там можно найти много всего интересного, чего нет даже на нашем сайте.
Куда девается информация в черной дыре
Потеря информации в черной дыре парадоксальна, потому что указывает на внутреннюю несогласованность наших теорий. Когда мы «женим» общую теорию относительности на квантовых теориях поля стандартной модели, и Хокинг проделал это в своих расчетах, результаты больше не совместимы с квантовой теорией. На фундаментальном уровне каждое взаимодействие с участием частиц должно быть обратимым. Но поскольку процесс испарения черной дыры необратим, Хокинг показал, что две этих теории, увы, не сочетаются.
Казалось бы, это противоречие, очевидно, вытекает из того, что необратимое испарение было получено без принятия во внимание квантовых свойств пространства и времени. Для этого нам понадобилась бы квантовая теория гравитации, которой у нас пока нет. Поэтому большинство физиков верят в то, что квантовая гравитация устранит парадокс — пока они просто не знают, как он работает.
Как правило, вопросов больше, чем ответов.
Сложность обвинения квантовой гравитации, однако, в том, что на горизонте не происходит ничего интересного — это царство, в котором прекрасно работает общая теория относительности. Потому что сила квантовой гравитации должна зависеть от кривизны пространства-времени, но эта кривизна на горизонте черной дыры обратно зависит от массы черной дыры. То есть чем больше черная дыра, тем меньше будут ожидаемые квантово-гравитационных эффекты на горизонте.
Квантово-гравитационные эффекты станут заметны только тогда, когда черная дыра достигнет массы Планка, примерно 10 микрограммов. Когда черная дыра усыхает до такого размера, информация может быть высвобождена благодаря квантовой гравитации. Но в зависимости от того, из чего сформировалась черная дыра, в ней к тому моменту может застрять сколь угодно большое количество информации. И когда остается только масса Планка, выудить так много информации при наличии столь малой энергии для ее декодирования будет трудно.
В течение последних сорока лет решить эту загадку пытались самые светлые умы планеты. Может показаться странным, что такая далекая от нас проблема привлекает так много внимания, но у физиков есть на то веские причины. Испарение черных дыр — лучше всего изученный случай взаимодействия квантовой теории и гравитации, а значит, в этом может быть ключ к созданию правильной теории квантовой гравитации. Решение этого парадокса может быть прорывным и, без сомнения, приведет к принципиально новому пониманию природы.
Что происходит с информацией в черный дырах
До сих пор большинство попыток разрешить потерю информации в черной дыре попадали в одну из четырех больших категорий, каждая со своими плюсами и минусами.
1. Информация рано высвобождается. Информация начинает утекать задолго до того, как черная дыра достигает планковской массы. Сейчас этот вариант самый популярный. Но до сих пор неясно, каким образом эта информация кодируется в излучении и как обходит расчеты Хокинга.
Преимущество этого решения заключается в его совместимости с тем, что мы знаем о термодинамике черных дыр. Недостаток же в том, что для этой работы будет неизбежным своего рода нелокальность — жуткое действие на расстоянии. Что еще хуже, недавно было заявлено, что если информация будет утекать рано, черные дыры будут окружены высокоэнергетическим барьером: огненной стеной (firewall). Если файрвол существует, это будет означать, что будет нарушаться лежащий в основе общей теории относительности принцип эквивалентности. Не очень красиво.
Красота черной дыры
2. Информация хранится либо высвобождается позднее. В этом случае информация остается в черной дыре, пока квантово-гравитационные эффекты не станут сильными, когда черная дыра достигнет планковской массы. Тогда информация будет либо высвобождена с оставшейся энергией, либо навсегда останется в ее остатке.
Чтобы не пропустить ничего интересного из мира высоких технологий, подписывайтесь на наш новостной канал в Telegram. Там вы узнаете много нового.
Преимущество этого варианта в том, что он не требует модификации общей теории относительности или квантовой теории в тех местах, где нам этого не хотелось бы. Они ломаются именно там, где должны ломаться: когда кривизна пространства-времени становится чересчур большой. Недостаток заключается в том, что все это приводит к еще одному парадоксу: в слабом фоновом поле могут бесконечно появляться пары черных дыр, то есть постоянно вокруг нас. Теоретическое подкрепление этому аргументу есть, но очень слабенькое.
3. Информация уничтожается. Сторонники этого подхода просто соглашаются с тем, что информация теряется, попадая в черную дыру. Но этот вариант давно считается грубым нарушением закона сохранения энергии и приводит к куче несоответствий. За последние годы, однако, появились лазейки, указывающие на возможность сохранения энергии при потере информации, и вариант воскресили. Хоть он и не очень популярный.
Но как и с первым вариантом, чтобы проверить возможность уничтожения информации, нужно модифицировать квантовую теорию. Потребуется такая модификация, которая не приведет к конфликту с какими-либо другими экспериментами, проверившими и подтвердившими квантовую механику. Но поскольку квантовая механика — экспериментально самая проверенная наука, сделать это будет сложнее.
4. Черной дыры нет. Черная дыра никогда не сформировалась, и информация никогда не пересекла горизонт. Это решение всплывало раньше и всплывает сейчас, но так и не нашло широкого круга сторонников. Преимущество его в том, что оно обходит расчеты Хокинга. Недостаток в том, что оно требует серьезных отклонений в ОТО в малых режимах кривизны и его трудно совместить с точными тестами гравитации.
Все самые свежие новости из мира высоких технологий вы также можете найти в Google News.
Есть несколько других решений, которые пока не вошли ни в одну из категорий, но мы не будем сегодня их затрагивать. По сути, нет ни одного хорошего обзора на эту тему — наверное, потому что одна мысль о его компиляции ввергает в ужас и шок. Литературы очень много. Потеря информации в черной дыре, наверное, остается самым обсуждаемым парадоксом современности. И будет оставаться таковым.
Температура черных дыр, которые мы можем наблюдать сегодня, слишком мала, чтобы мы могли ее уловить. Таким образом, в обозримом будущем никто не сможет измерить, что происходит с информацией, которая пересекает горизонт. И спустя десять лет проблема, вероятно, останется нерешенной.