Чем заменить частотный преобразователь для электродвигателя
Замена частотного преобразователя
Замена частотного преобразователя
Частотный преобразователь замена или ремонт. Чем заменить. На что обратить внимание
Мы живем во времена, когда преобразователи частоты (ЧРП) для управления двигателем прочно вошли в наш быт. Поскольку они устанавливаются в основном в коммерческих и промышленных зданиях, как новые, так и старые механизмы получают преимущества, которые дают эти интеллектуальные устройства. Но, как и вся электроника, ЧРП не вечны.
Например, замена может потребоваться из-за сбоя в результате скачка напряжения, отсутствия обслуживания или из-за того, что 20-летний частотный преобразователь морально устарел и стал несовместим с современной системой управления зданием. В любом из этих двух сценариев замена преобразователя может быть не такой простой, как просто поменять местами два ЧРП, включить новый и уйти.
С другой стороны, задача на самом деле может быть довольно простой, если вы знаете, что искать и как правильно это делать. Есть два основных варианта, с которыми сталкивается большинство людей при замене ЧРП.
Вариант 1: Заменить частотный преобразователь той же моделью
Есть несколько вещей, на которые стоит обратить внимание при замене ЧРП на одну и ту же модель, как бы просто это не звучало. Важным является проверить соответствие артикула модели, номинальных значений класса напряжения, мощности и тока на обоих устройствах. Это также даст гарантии что габаритные размеры обоих устройств совпадут. Так же вся проводка должна быть заземлена на одно и то же обозначение клеммы. Это гарантирует, что функциональность ввода/вывода нового ЧРП приравнивается к функциональности старого. Наконец, настройки параметров должны соответствовать тем, которые являются ключевыми для механизма.
Существует много вариантов резервного копирования настроек, особенно если старый частотник еще можно включить. Настройки параметров могут быть скачаны на карту памяти, сохранены в программном обеспечении или даже сохранены в памяти панели управления и перезаписаны в новый ЧРП. В идеале это должно быть сделано до начала процесса замены. В тех случаях, когда ЧРП встроен в более крупную часть оборудования, OEM-производитель всего комплекса может иметь свой собственный список параметров. В худшем случае привод может быть настроен вручную и оптимизирован для применения в данной задаче.
Может оказаться полезным сохранить несколько частей от старого ЧРП. В зависимости от характера сбоя некоторые компоненты, такие как клавиатура, охлаждающие вентиляторы и панель управления или клеммная колодка, могут остаться невредимыми и могут быть использованы повторно. Части главных цепей ЧРП, включая конденсаторы, не следует хранить, так как их повторное использование может привести к внутреннему повреждению или значительному износу.
Вариант 2. Замена преобразователя на другой бренд или более новую модель
Немного сложнее обновить или заменить преобразователь частоты на другую модель. Для начала, следует подходить к процессу так, как будто выбор частотного преобразователя делается для нового механизма. Необходимо принимать во внимание такие параметры, как сила тока, напряжение, степень защиты корпуса, и т.д. Также стоит подумать, правильно ли изначально был выбран и настроен существующий ЧРП.
Еще до покупки и установки необходимо проверить физические габариты преобразователя частоты по очевидным причинам. Как правило, новые частотники меньше и компактнее, чем у предыдущего поколения, но это не всегда так. Это также верно при замене на другого производителя. Всегда рекомендуется проверять размерный чертеж для проверки требований к пространству.
Существующее место установки так же должно быть хорошо проанализировано. Большинство частотно-регулируемых приводов рассчитаны на эксплуатацию просто внутри помещения и практически не защищают от находящегося в воздухе мусора. Их часто помещают внутрь электротехнического щита, что обеспечивает большую устойчивость к плохим условиям, таким как пыль и вода. Замена щита (шкафа) в целом может стать дорогостоящей, и, возможно, вышел из строя только сам частотный преобразователь. Замена ЧРП может быть логичной, но такие компоненты, как автоматические выключатели, фильтры, байпасные линии и другое электрооборудование, должны быть проверены на совместимость с новым ЧРП.
Фирменная табличка (шильд) ЧРП содержит полезную информацию при проверке совместимости с двигателем.
После завершения вышеуказанных проверок можно выполнить подключение. Если предположить, что обозначения клемм не совпадают у нового и строго ПЧ, то простая разбивка типа входов/выходов (I/O) может помочь выяснить, где провода должны быть заземлены. После подключения силовой части, переходят к цепям управления. Их на новом ЧРП можно разделить на пять типов. Это цифровые входы, цифровые выходы, аналоговые входы, аналоговые выходы и другие входы/выходы. Лучше всего обратиться к схеме подключения, чтобы получить точную функцию клемм.
В качестве одного из последних шагов, программирование частотного преобразователя. Если список параметров со значениями, отличными от значений по умолчанию, может быть скопирован из старого ЧРП, то настройка новой модели будет менее хлопотной. С другой стороны, частотник возможно потребуется настроить с нуля. В этом случае знание основных требований, которые нужны приводу, таких как частота, значение уставки ПИД и команда запуска, значительно упростит настройку. Расширенные функции могут быть запрограммированы последними. Как правило, руководство пользователя преобразователя содержит подробную информацию о конкретных функциях и полный список параметров. Панель управления так же может иметь мастер настройки с пошаговой процедурой ввода параметров.
Другие варианты
Ремонт частотного преобразователя является еще одним вариантом выхода из ситуации. Обслуженный, продиагностированный, отремонтированный инвертор может прослужить еще десятилетие. Возможность выполнить ремонт зависит от таких факторов, как наличие запчастей, модель или размер привода и степень повреждения. Запасные части обычно доступны даже для старых моделей и, следовательно, могут быть недорогим вариантом.
Определение основной причины сбоя ЧРП часто упускается из виду. Большинство преобразователей заменяются без каких-либо сомнений, как устаревшие, и редко являются просто неисправными. Вопросы окружающей среды в месте эксплуатации, такие как влажность, пыль, температура и подверженность коррозии, должны быть рассмотрены в первую очередь. Другие причины отказа обычно являются внешними по отношению к самому ЧРП. К ним относятся, помимо прочего, проблемы с двигателем и колебания входного напряжения, которые создают нагрузку на внутренние компоненты частотника, такие как конденсаторы.
Защита ЧРП и профилактическое обслуживание имеют решающее значение и никогда не должны быть недооценены.
Частотник своими руками — любительская схема преобразователя
Зачем нужно делать самому преобразователь для 3-фазного электромотора, и как смастерить его своими руками? Чтобы защитить окружающую природу повсюду создаются правила, которые рекомендуют изготовителям электрических устройств делать продукцию, которая будет экономить электрическую энергию. Часто это бывает достигнуто правильным управлением частотой вращения электромотора. Преобразователь частоты легко решает эту задачу.
Частотник электромотора с тремя фазами по-разному называют: инвертор, частотный изменитель тока, приводной механизм, регулируемый частотой. Сегодня такие устройства делают разные заводы, но многие умельцы своими руками изготавливают не хуже.
Как я сам изготовил частотный преобразователь
Я изготовил преобразователь частоты и асинхронный привод для моего товарища. Ему нужен был привод для пилорамы, мощный и хороший. Так как я любил заниматься электроникой, то сразу предложил ему такую схему:
Трехфазный мост на транзисторах с диодами обратной связи я использовал, которые имелись. Управление осуществил через оптодрайвер HCPL 3120 микроконтроллером PIC16F628A. У входа припаял гасящую емкость, чтобы электролиты заряжались плавно. Затем припаял шунтовое реле. Еще установил триггер защиты тока от замыкания и перегрузки. Для управления установил две кнопки и выключатель для обратного вращения.
Силовую часть я собрал на навесном монтаже.
Резисторы, соединил параллельно по 270 кОм с помощью затворных проходных конденсаторов, позади платы их напаял. Моя плата показана на внешнем виде:
Вид этой моей платы с другой стороны:
Для подключения питающего напряжения я собрал блок питания, работающий на импульсах, обратноходовой. Вот привожу схему этого блока питания:
Как я запрограммировал микроконтроллер? Простые моргалки для меня не представляли какой-то проблемы. Получились константы в виде матрицы, над которой работал мой контроллер. Частота и напряжение были заданы этими величинами. Всю схему работы проверил на моторчике вентилятора небольшой мощности, 200 Вт. Эта моя конструкция выглядела так:
Начальные эксперименты дали хороший результат. Затем доработал программу. Раскрутил двигатель на 4 кВт, и пошел собирать управление пилорамой.
При монтаже у нас с товарищем случайно произошло замыкание и сработала защита, проверили ее работу. Мотор на 2 кВт 1500 оборотов с легкостью пилил доски. Сейчас программа еще дорабатывается для раскрутки двигателя выше номинала. Характеристики: частота от 2 до 50 герц с шагом 1,5 герц, синхронная частота, постоянно меняется, разбег от 1500 до 3500 герц, управление скалярного типа U/F, мощность мотора до 5 кВт.
Удерживаем кнопку RUN и разгоняем двигатель. Отпускаем, частота держится на уровне. Когда загорается светодиод, то привод готов к запуску.
Как сделать инвертор самому своими руками?
Вместе с производством заводских инверторов любители делают их сами, своими руками. Здесь нет ничего сложного. Такой преобразователь частоты преобразовывает одну фазу, делает из нее три фазы. Электродвигатель с похожим частотником используют в домашних условиях, мощность его не будет теряться.
Блок выпрямления в схеме расположен в начале. Далее идут фильтры, которые отсекают токовые переменные. Чтобы изготовить данные инверторы применяют транзисторы IGBT.
За тиристорами стоит будущее, хотя и в настоящем они уже применяются давно. Купленный частотник на биполярных транзисторах стоит дорого и мало где применяется (сервоприводы, металлорежущие станки с векторным управлением). Эти приводы как транспортеры и конвейеры, карусельные станки, станции подкачки воды, климатические системы управления — это большая часть от всего применения устройств заводов, где лучше использовать частотники для управления электромоторами с короткозамкнутыми якорями и можно делать управление оборотами двигателя, если подать потенциал, изменяя частоту до 50 герц.
Приведем простые примеры частотных преобразователей, которые тянули мощные электродвигатели тепловозов и электричек, имеющих в своем составе много вагонов товарных платформ, большие станции с насосами напряжением 600 вольт, обеспечивающие городские районы питьевой водой. Очевидно, что данные сильные электродвигатели не подойдут на биполярных транзисторах. Поэтому применяют активные тиристоры типа GTO, GCT, IGCT и SGCT. Они преобразуют из постоянного тока токовую сеть с тремя фазами с хорошей мощностью. Однако, имеются простые схемы на тиристорах простого типа, закрывающиеся током катода обратного. Такие тиристоры не будут действовать в режиме ШИМ, их хорошо применяют в прямой регулировке электромоторов, без тока постоянного размера. Преобразователи частоты на тиристорах в застойные времена были задействованы для моторов на постоянном токе. Фирма Сименс изобрела векторные частотники, преобразившие промышленность до неузнаваемости.
Стоимость всех деталей самодельного инвертора существенно ниже цены заводского устройства.
Такие самодельные устройства хорошо подходят для электромоторов мощностью до 0,75 кВт.
Для чего предназначен инвертор — его принцип действия
Инвертор действует на частоту вращения асинхронных моторов. Моторы переделывают электроэнергию в механическое движение. Вращательное движение преобразуется в движения механические. Это создает большое удобство. Асинхронные моторы очень популярны во многих сторонах жизни людей.
Обороты электродвигателя можно изменять и другими устройствами. Но, у них много недостатков. Они сложны в пользовании, дорого стоят, работают с плохим качеством, разбег регулировки маленький.
Частотный преобразователь для мотора с тремя фазами легко решает эту проблему. Все знают, что пользование частотниками для изменения частоты вращения есть самый хороший и правильный метод. Такой аппарат дает мягкий пуск и торможение, а также контролирует многие процессы, происходящие в моторе. Аварийные ситуации при этом сводятся на нет.
Чтобы плавно и быстро регулировать работу двигателя, специалисты разработали специальную электрическую схему. Использование в работе частотника дает возможность работать двигателю без перерыва, экономично. Коэффициент полезного действия его достигает 98%. Это происходит за счет повышения частоты коммутации. Механические устройства не могут выполнить такие функции.
Как регулировать скорость инвертором?
Как частотник может изменять частоту вращения трехфазного электромотора? Сначала он меняет напряжение сетевое. Далее, из него получается нужная амплитуда и частота напряжения, поступает на электромотор.
Разбег интервала регулирования скорости преобразователем большой. Можно изменять вращение мотора в другую сторону. Чтобы двигатель не вышел из строя, нужно брать во внимание данные из его характеристики, допускаемые обороты, мощность.
Из чего состоит привод регулирования?
Он имеет в составе три звена:
Режим управления частотников
Их делят на виды управления оборотами двигателя:
В первом случае управляется статор с его магнитным полем. Управление вектором учитывает действие полей магнита ротора и статора, улучшается крутящий момент при разных скоростях вращения. Это и есть основное различие их режимов управления.
Способ векторов точнее и эффективнее. Обслуживать его дороже. Он больше подходит для специалистов с хорошими профессиональными умениями и знаниями. Метод управления скалярного типа наиболее прост в работе. Применяется он с выходными параметрами, не требующими регулировки особой точности.
Как подключить инвертор треугольником и звездой?
Когда мы купили инвертор по недорогой цене, то возникает необходимость: подключение его к электромотору самому без специалистов. Сначала надо установить для безопасности автоматический выключатель для обесточивания. Если возникнет короткое замыкание на фазах, то отключится вся система.
Подключить частотник к мотору можно звездой или треугольником.
Когда привод регулирования с одной фазой, то контакты электромотора присоединяют треугольником. Тогда мощность не потеряется. Мощность этого преобразователя частоты будет не более 3 кВт.
Инверторы с тремя фазами технически наиболее современны. Они питаются от заводских трехфазных сетей, подключаются звездой.
Для ограничения тока пуска и уменьшения момента пуска при пуске электромотора свыше 5 кВт можно использовать способ включения треугольник и звезда.
При включении статора применяется схема звезды, а если обороты двигателя нормальные, то переходят на вариант треугольника. Но это используется при существовании возможности соединения по двум схемам.
Отмечаем, что в варианте звезда-треугольник большие перепады тока будут всегда. При переключении на вторую схему обороты двигателя сильно снизятся. Для восстановления скорости вращения надо повысить силу тока.
Большой применяемостью оказывают пользу частотники для моторов мощностью до 8 кВт.
Применение инверторов нового поколения
Современные частотные преобразователи делаются с применением таких устройств как микроконтроллеры. Это значительно повышает функции инверторов в алгоритмах управления и контролирования с точки зрения безопасности работ.
Частотники имеют успешное применение в областях производства:
Чтобы управлять и контролировать частотники изготовитель прибора предлагает созданную программу, которая будет всегда иметь связь с контроллером посредством порта, будет показывать на мониторе состояние и позволит производить управление. Данные документируются протоколом обмена и используются пользователями, создающими программы управления для электронной техники и контроллеров.
Данные обмениваются в три этапа:
Стоимость блоков питания бесперебойного напряжения имеет зависимость от того, есть ли в нем частотный преобразователь. За такими устройствами будущее. Отрасли экономики и энергетики будут быстрее развиваться благодаря новым современным устройствам.
Использование электродвигателей без частотных преобразователей
Работа электродвигателей, используемых в быту и производственных сферах, позволяет заменить человеческие усилия, при этом, ещё и во много раз превосходя их в потенциале. Благодаря таким агрегатам стало возможным обеспечения человека различными благами, решение необходимых задач, в числе которых:
Для улучшения качественной работы электродвигателей, сегодня широко применимы частотные преобразователи. Так, например, современные частотные преобразователи Веспер умеют понимать степень нагрузки, задавать электродвигателю нужную скорость, обеспечивать защиту для агрегатов в процессе эксплуатационных операций. При этом использование электротехнических двигателей без частотников тоже вполне возможно, но, выполняемая работа асинхронными агрегатами будет неконтролируемая в плане её качеств. Как минимум, обеспечены затраты со стороны финансов и энергетических ресурсов. Кроме того, отпадает возможность:
Как видно, чтобы иметь возможность брать непосредственное участие в процессе работы электродвигателя, управляя им и координируя возможности, использование частотных преобразователей просто необходимо, ведь множество процессов производства не смогли бы достичь такого высокого уровня без факта прямого управления приводом.
Возможные неприятности при таком подходе
Отсутствие частотников в паре с электромотором могут стать причиной как упомянутых выше, так и прочих проблем. Для наглядности, рассмотрим примеры:
Кроме указанных, так же могут быть и прочие неблагоприятные ситуации, фактором которых является нерегулируемые процессы работы электрических двигателей, которые мы используем практически в каждой нашей деятельности: быт, производство, добыча, обслуживания и прочих.
Остались вопросы?
Специалисты ЭНЕРГОПУСК ответят на Ваши вопросы:
8-800-700-11-54 (8-18, Пн-Вт)
Отличия частотного преобразователя и устройства плавного пуска
Эти устройства существенно различаются как по принципу действия, так и по функциональному назначению.
Благодаря невысокой стоимости, простоте конструкции и другим достоинствам, асинхронные электрические двигатели широко используются в приводах бытовых инструментов и промышленного оборудования. Их основные недостатки – большие пусковые токи и затруднения регулирования частоты вращения.
Для регулировки скорости вращения ротора электрических машин такого типа, обеспечения плавного запуска и торможения в схемах электропривода используются частотные преобразователи и устройства плавного пуска (УПП).
Принцип действия
Принцип действия частотных преобразователей основан на изменении скорости вращения электродвигателя при изменении частоты питающего напряжения. Самое широкое распространение получили ЧП на базе схемы двойного преобразования с ШИМ-модуляцией. Такая схема включает в себя выпрямитель, блок управления и инвертор. Питающее переменное напряжение сначала выпрямляется, затем инвертируется в напряжение другой частоты. Задание значений частоты определяется широтой и длительностью управляющих импульсов, отпирающих полевые транзисторы инвертора.
Устройства плавного пуска бесступенчато изменяют величину напряжения, подаваемого на обмотки электродвигателя во время его пуска, разгона и торможения. Принцип действия УПП основан на бестрансформаторном регулировании напряжения в цепи обмоток статора электродвигателя.
При достижении номинальной частоты вращения вала двигателя, включаются шунтирующий контактор, ток в силовой цепи протекает, минуя УПП. Таким образом, устройство плавного пуска включатся только при запуске и остановке электрической машины.
Назначение преобразователя частоты и устройства плавного пуска
Частотные преобразователи – многофункциональные устройства. Их используют:
ЧП позволяет обойтись без редукторов, электромагнитных муфт и других устройств для механического регулирования скорости.
Устройства плавного пуска применяются:
Назначение УПП и частотных регуляторов существенно различаются. Существуют модели УПП, позволяющие изменять скорость вращения ротора электродвигателя. Они не заменяют частотный преобразователь, так как не предназначены для длительной эксплуатации в таком режиме.
Когда следует выбрать УПП и в каких случаях необходим частный преобразователь
При помощи преобразователя частоты можно решить практически любые задачи. Выбор УПП вместо частотника имеет в основном только экономическое обоснование. Перед выбором необходимо тщательно проанализировать условия работы электропривода, его цели и задачи, параметры питающей сети и другие факторы.
Частотные преобразователи целесообразно выбрать:
Главные преимущества устройств плавного пуска перед преобразователями частоты – небольшие габариты и низкая стоимость. Размеры и стоимость этих устройств одинаковой мощности могут различаться в 1, 5–10 раз.
Частотные преобразователи и УПП обеспечивают:
Выбор конкретного устройства зависит от требований к электроприводу и промышленному оборудованию и особенностей сети. Он осуществляется на основании анализа производственных факторов, инженерно-технических и экономических расчетов.
Частотник для трехфазного электродвигателя своими руками
Сегодня асинхронные двигатели являются основными тяговыми приводами для станков, конвейеров, и прочих промышленных агрегатов.
Для того чтобы моторы могли нормально функционировать, им нужен частотный преобразователь. Он позволяет оптимизировать работу агрегата и продлить срок его службы. Покупать устройство необязательно — частотник для трехфазного электродвигателя можно сделать своими руками.
Назначение частотного преобразователя
Асинхронный электродвигатель может работать и без частотника, но в этом случае у него будет постоянная скорость без возможности регулировки. К тому же отсутствие частотного преобразователя приведет к возрастанию пускового тока в 5−7 раз от номинального, что вызовет увеличение ударных нагрузок, повысит потери электроэнергии и приведет к существенному сокращению срока службы агрегата.
Для нивелирования всех вышеперечисленных негативных факторов были изобретены преобразователи частоты для асинхронных двигателей трехфазного и однофазного тока.
Частотник дает возможность в широких пределах регулировать скорость электродвигателя, обеспечивает плавный пуск, позволяет регулировать как скорость запуска, так и скорость торможения, подключать трехфазный мотор к однофазной сети и многое другое. Все эти функции зависят от микроконтроллера, на котором он построен, и могут отличаться у разных моделей.
Принцип работы устройства
Переменный ток поступает из сети на диодный мост, где он выпрямляется и попадает на батарею сглаживающих конденсаторов, где окончательно превращается в постоянный ток, который поступает на стоки мощных IGBT транзисторов, управляемых главным контроллером. Истоки транзисторов, в свою очередь, подключены к двигателю.
Вот упрощенная схема преобразователя частоты для трехфазного асинхронного двигателя.
Теперь рассмотрим, что происходит с транзисторами и как они работают.
Полевой транзистор (он же ключ, мосфет и пр.) — это электронный выключатель, принцип его действия основан на возникновении проводимости между двумя выводами (сток и исток) мосфета, при появлении на управляющем выводе (затворе) напряжения, превышающего напряжение стока.
В отличие от обычных реле, ключи работают на очень высоких частотах (от нескольких герц до сотен килогерц) так что заменить их на реле не получится.
С помощью этих быстродействующих переключателей микроконтроллер получает возможность управления силовыми цепями.
К контроллеру, кроме мосфетов, также подключены датчики тока, органы управления частотником, и другая периферия.
При работе частотного преобразователя микроконтроллер измеряет потребляемую мощность и, в соответствии с установленными на панели управления параметрами, изменяет длительность и частоту периодов, когда транзистор открыт (включен) или закрыт (выключен), тем самым изменяя или поддерживая скорость вращения электродвигателя.
Самостоятельное изготовление прибора
Несмотря на множество агрегатов заводского производства, люди делают преобразователи частоты самостоятельно, благо на сегодняшний день все его компоненты можно купить в любом радиомагазине или заказать из Китая. Такой частотник обойдется вам значительно дешевле покупного, к тому же вы не будете сомневаться в качестве его сборки и надежности.
Делаем трехфазный преобразователь
Собирать наш преобразователь будем на мосфетах G4PH50UD, которыми будет управлять контроллер PIC16F628A посредством оптодрайверов HCPL3120.
Собранный частотник при подключении в однофазную сеть 220 В будет иметь на выходе три полноценные фазы 220 В, со сдвигом 120°, и мощность 3 КВт.
Схема частотника выглядит так:
Так как частотный преобразователь состоит из частей, работающих как на высоком (силовая часть), так и на низком (управление) напряжении, то логично будет разбить его на три платы (основная плата, плата управления, и низковольтный блок питания для неё) для исключения возможности пробоя между дорожками с высоким и низким напряжением и выхода устройства из строя.
Вот так выглядит разводка платы управления:
Для питания платы управления можно использовать любой блок питания на 24 В, с пульсациями не более 1 В в размахе, с задержкой прекращения подачи питания на 2−3 секунды с момента исчезновения питающего напряжения 220 В.
Блок питания можно собрать и самим по этой схеме:
Обратите внимание, что номиналы и названия всех радиокомпонентов на схемах уже подписаны, так что собрать по ним работающее устройство может даже начинающий радиолюбитель.
Перед тем как приступить к сборке преобразователя, убедитесь:
Если вы все сделали правильно и ничего не забыли, можете приступать к сборке.
После сборки у вас получится что-то похожее:
Теперь вам осталось проверить устройство: для этого подключаем двигатель к частотнику и подаем на него напряжение. После того как загорится светодиод, сигнализирующий о готовности, нажмите на кнопку «Пуск». Двигатель должен начать медленно вращаться. При удержании кнопки двигатель начинает разгоняться, при отпускании — поддерживает обороты на том уровне, до которого успел разогнаться. При нажатии кнопки «Сброс» двигатель останавливается с выбегом. Кнопка «Реверс» задействуется только при остановленном двигателе.
Если проверка прошла успешно, то можете начинать изготавливать корпус и собирать в нем частотник. Не забудьте сделать в корпусе отверстия для притока холодного и оттока горячего воздуха от радиатора IGBT транзисторов.
Частотник для однофазного двигателя
Преобразователь частоты для однофазного двигателя отличается от трехфазного тем, что имеет на выходе две фазы (ошибки тут нет, двигатель однофазный, при подключении без частотника рабочая обмотка подключается в сеть напрямую, а пусковая — через конденсатор; но при использовании частотника пусковая обмотка подключается через вторую фазу) и одну нейтраль — в отличие от трех фаз у последнего, так что сделать частотник для однофазного электродвигателя, используя в качестве основы схему от трехфазного, не получится, поэтому придется начинать все сначала.
В качестве мозга этого преобразователя мы будем использовать МК ATmega328 с загрузчиком ардуины. В принципе, это и есть Arduino, только без своей обвязки. Так что, если у вас в закромах завалялась ардуинка с таким микроконтроллером, можете смело выпаивать его и использовать для дела, предварительно залив на него скетч (прошивку) из этого архива:
К атмеге будет подключен драйвер IR2132, а уже к нему — мосфеты IRG4BC30, к которым мы подключим двигатель мощностью до 1 КВт включительно.
Схема частотного преобразователя для однофазного двигателя:
Также для питания ардуины (5в) и для питания силового реле (12в), нам понадобятся 2 стабилизатора. Вот их схемы:
Стабилизатор на 12 вольт.
Стабилизатор на 5 вольт.
Внимание! Эта схема не из простых. Возможно, придется настраивать и отлаживать прошивку для достижения полной работоспособности устройства, но это несложно, и мануалов по программированию Arduino в интернете — великое множество. К тому же сам скетч содержит довольно подробные комментарии к каждому действию. Но если для вас это слишком сложно, то вы можете попробовать найти такой частотник в магазине. Пусть они и не так распространены, как частотники для трехфазных двигателей, но купить их можно, пусть и не в каждом магазине.
Еще обратите внимание на то, что включать схему без балласта нельзя — сгорят выходные ключи. Балласт нужно подключать через диод, обращенный анодом к силовому фильтрующему конденсатору. Если подключите балласт без диода — опять выйдут из строя ключи.
Если вас все устраивает, можете приступать к изготовлению платы, а затем — к сборке всей схемы. Перед сборкой убедитесь в правильности разводки платы и отсутствии дефектов в ней, а также — в наличии у вас всех указанных на схеме радиодеталей. Также не забудьте установить IGBT-транзисторы на массивный радиатор и изолировать их от него путем использования термопрокладок и изолирующих шайб.
После сборки частотника можете приступать к его проверке. В идеале у вас должен получиться такой функционал: кнопка «S1» — пуск, каждое последующее нажатие добавляет определенное (изменяется путем редактирования скетча) количество оборотов; «S2» — то же самое, что и «S1», только заставляет двигатель вращаться в противоположном направлении; кнопка «S3» — стоп, при её нажатии двигатель останавливается с выбегом.
Обратите внимание, что реверс осуществляется через полную остановку двигателя, при попытке сменить направление вращения на работающем двигателе произойдет его мгновенная остановка, а силовые ключи сгорят от перегрузки. Если вам не жаль денег, которые придется потратить на замену мосфетов, то можете использовать эту особенность в качестве аварийного тормоза.
Возможные проблемы при проверке
Если при проверке частотника схема не заработала или заработала неправильно, значит, вы где-то допустили ошибку. Отключите частотник от сети и проверьте правильность установки компонентов, их исправность и отсутствие разрывов/замыканий дорожек там, где их быть не должно. После обнаружения неисправности устраните её и проверьте преобразователь снова. Если с этим все в порядке, приступайте к отладке прошивки.