Чем занимается теоретическая информатика
Теоретическая информатика
Теоретическая информатика — это научная область, предметом изучения которой являются информация и информационные процессы, в которой осуществляется изобретение и создание новых средств работы с информацией. Как любая фундаментальная наука, теоретическая информатика (в тесном взаимодействии с философией и кибернетикой) занимается созданием системы понятий, выявлением общих закономерностей, позволяющих описывать информацию и информационные процессы, протекающие в различных сферах (в природе, обществе, человеческом организме, технических системах).
Смотреть что такое «Теоретическая информатика» в других словарях:
Информатика — (ср. нем. Informatik, англ. Information technology, фр. Informatique, англ. computer science компьютерная наука в США, англ. computing science вычислительная наука в Великобритании) наука о способах… … Википедия
Институт автоматики и вычислительной техники МЭИ — Институт автоматики и вычислительной техники Московского энергетического института (технического университета) … Википедия
Московский государственный технический университет имени Н. Э. Баумана — Сюда перенаправляется запрос «Московское техническое училище». На эту тему нужна отдельная статья … Википедия
ИМТУ — Координаты … Википедия
МВТУ — Координаты … Википедия
МВТУ им. Баумана — Координаты … Википедия
МВТУ им. Н.Э. Баумана — Координаты … Википедия
МВТУ им. Н. Э. Баумана — Координаты … Википедия
МВТУ имени Баумана — Координаты … Википедия
МВТУ имени Н. Э. Баумана — Координаты … Википедия
Теоретическая информатика
Как любая фундаментальная наука, теоретическая информатика (в тесном взаимодействии с философией и кибернетикой) занимается созданием системы понятий, выявлением общих закономерностей, позволяющих описывать информацию и информационные процессы, протекающие в различных сферах (в природе, обществе, человеческом организме, технических системах).
Не просто точно описать рамки данной теории. ACM SIGACT (англ. Association for Computing Machinery Special Interest Group on Algorithms and Computation Theory), подгруппа ACM, описывает науку, как поддержку теоретической информатики и отмечает:
Область теоретической информатики толкуется широко и включает в себя алгоритмы, структуры данных, теорию сложности вычислений, распределенные вычисления, параллельные вычисления, СБИС (сверхбольшая интегральная схема), машинное обучение, вычислительную биологию, вычислительную геометрию, теории информации, криптографию, квантовый компьютинг, теорию чисел, алгебру и теорию вычисления (символьные вычисления), семантику и верификацию языков программирования, теорию автоматов, а также теории случайных процессов. Работа в этой области часто отличается акцентом на математической технике и строгости.
К этому списку научный журнал «ACM Transactions on Computation Theory» (TOCT) также добавляет теорию кодирования, теорию вычислительного обучения и аспекты теоретической информатики в таких областях, как базы данных, информационный поиск, экономические модели и сети. Несмотря на такую широкую сферу деятельности, теоретики информатики отличают себя от практиков. Некоторые характеризуют себя как тех, кто делает «более фундаментальный научный труд, что лежит в основе области вычислительной техники». Другие же «теоретики-практики» настаивают, что невозможно отделить теории от практики. Это означает, что теоретики регулярно используют экспериментальную науку, которая выполняется в менее теоретических областях, таких как исследование систем программного обеспечения.
Связанные понятия
Теория комбинаторных схем — это часть комбинаторики (раздела математики), рассматривающая существование, построение и свойства семейств конечных множеств, структура которых удовлетворяет обобщённым концепциям равновесия и/или симметрии. Эти концепции не определены точно, так что объекты широкого диапазона могут пониматься как комбинаторные схемы. Так, в одном случае комбинаторные схемы могут представлять собой пересечения множеств чисел, как в блок-схемах, а в другом случае могут отражать расположение.
Теоретическая информатика.
Теоретическая информатика — математическая дисциплина использующая методы математики для построения и изучения моделей обработки, передачи и использования информации.
Сама теоретическая информатика распадается на ряд самостоятельных дисциплин. По степени близости решаемых задач их можно условно разделить на пять классов.
A.К первому классу относятся дисциплины, опирающиеся на математическую логику. В них разрабатываются методы, позволяющие использовать достижения логики для анализа процессов переработки информации с помощью компьютеров (теория алгоритмов, теория параллельных вычислений), а также методы, с помощью которых можно на основе моделей логического типа изучать процессы, протекающие в самом компьютере во время вычислений (теория автоматов, теория сетей Петри).
B.Это вычислительная математика и вычислительная геометрия. Слово «вычислительная» подчеркивает, что эти науки направлены на создание методов, ориентированных на реализацию в компьютерах.
C.Специально изучением информации как таковой (т. е. в виде абстрактного объекта, лишенного конкретного содержания), выявлением общих свойств информации, законов, управляющих ее рождением, развитием и уничтожением, занимается теория информации. К этой науке близко примыкает теория кодирования, в задачу которой входит изучение тех форм, в которые может быть «отлито» содержание любой конкретной информационной единицы (передаваемого сообщения, гранулы знаний и т. п.). В теории информации имеется раздел, специально занимающийся теоретическими вопросами передачи информации по различным каналам связи.
D.Переход от реальных объектов к моделям, которые можно использовать для изучения и реализации в компьютерах, требует развития особых приемов. Их изучением занимается системный анализ — наука, возникшая чуть более трех десятилетий назад. Системный анализ изучает структуру реальных объектов и дает способы их формализованного описания. Частью системного анализа является общая теория систем, изучающая самые разнообразные по характеру системы с единых позиций. Системный анализ занимает пограничное положение между теоретической информатикой и кибернетикой. Такое же пограничное положение занимают еще две дисциплины. Имитационное моделирование — одна из них. В этой науке создаются и используются специальные приемы воспроизведения процессов, протекающих в реальных объектах, в тех моделях этих объектов, которые реализуются в вычислительных машинах. Вторая наука — теория массового обслуживания изучает специальный, но весьма широкий класс моделей передачи и переработки информации, так называемые системы массового обслуживания.
E.Последний класс дисциплин, входящих в теоретическую информатику, ориентирован на использование информации для принятия решений в самых различных ситуациях, встречающихся в окружающем нас мире. Сюда, прежде всего, входит теория принятия решений, изучающая общие схемы, используемые людьми при выборе нужного им решения из множества альтернативных возможностей. Такой выбор часто происходит в условиях конфликта или противоборства. Модели такого типа изучаются в теории игр. Всегда хочется среди всех возможных решений выбрать наилучшее или близкое к такому. Проблемы, возникающие при решении этой задачи, изучаются в дисциплине, получившей название математическое программирование (не путать с программированием для компьютеров, слово «программирование» здесь употребляется в ином смысле). При организации поведения, ведущего к нужной цели, принимать решения приходится многократно. Поэтому выбор отдельных решений должен подчиняться единому плану. Изучением способов построения таких планов и их использованием для достижения поставленных целей занимается еще одна научная дисциплина — исследование операций. В этой же науке изучаются и способы организации различного рода процессов, ведущих к получению нужных результатов. Если решения принимаются не единолично, а в коллективе, то возникает немало специфических ситуаций: образование партий, коалиций, появление соглашений и компромиссов. Эти проблемы частично изучаются в уже упомянутой теории игр, но в последнее время активно развивается новая дисциплина — теория коллективного поведения, для которой задачи коллективного принятия решений — предмет специального изучения.
Кибернетика.
Кибернетика может рассматриваться как прикладная информатика в области создания и использования автоматических или автоматизированных систем управления разной степени сложности, от управления отдельным объектом (станком, промышленной установкой, автомобилем и т. п.) до сложнейших систем управления целыми отраслями промышленности, банковскими системами, системами связи и даже сообществами людей.
Кибернетика возникла в конце 40-х гг., когда Н. Винер впервые выдвинул идею о том, что системы управления в живых, неживых и искусственных системах обладают многими общими чертами. Установление аналогий обещало создание «общей теории управления«, результаты которой могли бы использоваться в самых разнообразных системах.
Эта идея получила подкрепление, когда появились компьютеры, способные единообразно решать самые разные задачи. Универсальность компьютерных вычислений наталкивала на справедливость гипотезы о существовании универсальных схем управления.
Эта гипотеза не выдержала проверку временем, но накопленные в кибернетике сведения о самых разных системах управления, общие принципы, которые частично все-таки удалось обнаружить, замена узкопрофессиональной точки зрения специалиста в данной области на взгляд с позиции общности внешне разнородных объектов и систем принесли большую пользу. Перенос идей и моделей из одних областей в другие, общение между собой специалистов разного профиля на некотором едином языке кибернетики сделали свое дело. Появились кибернетические по своему духу модели в науках, доселе не знавших точных методов и расчетов. Кибернетика сыграла большую роль в возникновении структурной лингвистики, в недрах которой активно развиваются математическая лингвистика и прикладная лингвистика. Возникли научные направления, получившие характерные названия: химическая кибернетика, юридическая кибернетика, техническая кибернетика и т. п. Все эти «кибернетики» изучают использование информации при управлении в том классе систем, который изучает соответствующая наука. А общая методология и ряд общих положений помогают получать в этом направлении теоретически и практически значимые результаты.
Наиболее активно развивается техническая кибернетика. В ее состав входит теория автоматического управления, которая стала теоретическим фундаментом автоматики. Трудно переоценить важность исследований в этой области. Без них невозможны были бы достижения в области приборостроения, станкостроения, атомной энергетики да, пожалуй, всех тех систем управления промышленными процессами и научными исследованиями, которые составляют значительную часть среды обитания человека. С теорией автоматического управления связана техническая диагностика, в задачи которой входит контроль за функционированием систем и поиск повреждений в них.
Заметное место в кибернетике занимает распознавание образов. Основная задача этой дисциплины — поиск решающих правил, с помощью которых можно было бы классифицировать многочисленные явления реальности, соотносить их с некоторыми эталонными классами. Распознавание образов — это пограничная наука между кибернетикой и искусственным интеллектом, ибо поиск решающих правил чаще всего осуществляется путем обучения, а обучение, конечно, интеллектуальная процедура. В кибернетике выделяется даже специальная область исследований, получившая название обучение на примерах.
Еще одно научное направление тесно связывает кибернетику с биологией. Аналогии между живыми и неживыми системами многие столетия волнуют ученых. Насколько принципы работы живых систем могут быть использованы в искусственных объектах? Что можно заимствовать у талантливого конструктора живых систем — Природы? Ответы на эти вопросы ищет бионика — пограничная наука между кибернетикой и биологией. Нейрокибернетика, как показывает ее название, пытается применить кибернетические модели в изучении структуры и действия нервных тканей.
Кибернетика, как уже говорилось, больше всего интересуется общими принципами управления в объектах различной природы. Поэтому ее весьма интересуют равновесные состояния в таких системах и способы их достижения. Равновесие тесно связано с идеей устойчивости, а именно устойчивость и способность сохранять длительное время свою форму, структуру и жизнедеятельность — характерное свойство не только живых, но и целесообразных искусственных систем. Упоминавшаяся уже теория автоматического управления в своей значительной части есть наука о достижении устойчивых состояний и способах их сохранения.Особенно сложен случай, когда равновесие достигается путем взаимодействия многих систем, соперничающих и даже конфликтующих между собой. Модели такого типа рассматриваются в теории игр или в системах взаимодействующих устройств различного типа (Коллективное поведение автоматов). Общие модели такого типа рассматриваются в гомеостатике — недавно возникшей и еще находящейся в стадии оформления науке.
Программирование.
Это научное направление своим появлением полностью обязано вычислительным машинам. Именно с ними связано программирование. (Правда этот термин встречается и в другом смысле, когда говорится о математическом программировании, линейном программировании и т.п., т.е. о программировании как специальной вычислительной процедуре. Встречаются и иные случаи использования термина «программирование». Например, одно время весьма популярным методом обучения было программированное обучение.).
В начальный период своего развития программирование не имело под собой прочной теоретической базы и напоминало труд ремесленников высшей квалификации, когда качество работы определяется не знаниями, а профессиональным умением. Но с накоплением опыта программирования нащупывались общие идеи и положения, лежащие в основе построения программ для компьютеров и в самих процедурах программирования. Это повлекло за собой постепенное создание теоретического программирования, в котором сейчас можно выделить несколько направлений.
Одно из них связано с созданием разнообразных языков программирования, предназначенных для облегчения взаимодействия человека с вычислительной машиной и информационными системами. Кроме разработки языка, на котором пользователь записывает программы, необходимы еще специальные средства, обеспечивающие автоматический перевод записи программы на некотором языке программирования в форму, воспринимаемую устройствами компьютера. Этот перевод осуществляется специальными программными системами — трансляторами, разработка которых, как и создание языков программирования и решение еще целого ряда задач, связанных с обеспечением взаимодействия пользователя и машины, есть поле деятельности системных программистов. (Системное программирование — особая отрасль, в которой трудятся профессионалы высокого уровня, создающие программный продукт, тиражируемый вместе с математическим обеспечением).
Другая область деятельности системных программистов — создание операционных систем, без которых не может функционировать никакая вычислительная машина. Программисты такого профиля работают, как правило, на тех фирмах и в тех организациях, где производятся или разрабатываются компьютеры.
Тенденцией последних десятилетий стал переход от отдельных вычислительных машин к объединениям многих разнотипных машин в единую сеть сбора, обработки и передачи данных. Такая сеть напоминает развитую сеть связи. Она содержит в себе специальные каналы и сопутствующие им устройства для организации обмена данными между машинами. Для того чтобы различные компьютеры «понимали» сообщения друг друга, нужны специальные языки, записи на которых одинаково понятны всем абонентам сети. Такие языки называются протоколами связи. Разработкой протоколов также занимаются системные программисты.
Кроме системного выделяют проблемно-ориентированное программирование. Специалисты, работающие в этой сфере, создают пользовательские программы, нацеленные на решение задач в той или иной области человеческой деятельности, например для решения задач из области аэромеханики, банковских задач, задач медицинской диагностики и т. п. Эти же программисты создают специальные пакеты прикладных программ — удобное средство для пользователя, работающего в фиксированной проблемной области.
Наконец, большой отряд программистов связан с созданием программ для разного рода информационных систем, например для банков данных.
Теоретическая информатика
Из Википедии — свободной энциклопедии
Теоретическая информатика — это научная область, предметом изучения которой являются информация и информационные процессы, в которой осуществляется изобретение и создание новых средств работы с информацией. Это подразделение общей информатики и математики, которое сосредотачивается на более абстрактных или математических аспектах вычислительной техники и включает в себя теорию алгоритмов.
Как любая фундаментальная наука, теоретическая информатика (в тесном взаимодействии с философией и кибернетикой) занимается созданием системы понятий, выявлением общих закономерностей, позволяющих описывать информацию и информационные процессы, протекающие в различных сферах (в природе, обществе, человеческом организме, технических системах).
Не просто точно описать рамки данной теории. ACM SIGACT (англ. Association for Computing Machinery Special Interest Group on Algorithms and Computation Theory ), подгруппа ACM, описывает науку, как поддержку теоретической информатики и отмечает:
Область теоретической информатики толкуется широко и включает в себя алгоритмы, структуры данных, теорию сложности вычислений, распределённые вычисления, параллельные вычисления, СБИС (сверхбольшая интегральная схема), машинное обучение, вычислительную биологию, вычислительную геометрию, теории информации, криптографию, квантовый компьютинг, теорию чисел, алгебру и теорию вычисления (символьные вычисления), семантику и верификацию языков программирования, теорию автоматов, а также теории случайных процессов. Работа в этой области часто отличается акцентом на математической технике и строгости.
К этому списку научный журнал «ACM Transactions on Computation Theory» (TOCT) также добавляет теорию кодирования, теорию вычислительного обучения и аспекты теоретической информатики в таких областях, как базы данных, информационный поиск, экономические модели и сети. Несмотря на такую широкую сферу деятельности, теоретики информатики отличают себя от практиков. Некоторые характеризуют себя как тех, кто делает «более фундаментальный научный труд, что лежит в основе области вычислительной техники». Другие же «теоретики-практики» настаивают, что невозможно отделить теории от практики. Это означает, что теоретики регулярно используют экспериментальную науку, которая выполняется в менее теоретических областях, таких как исследование систем программного обеспечения.
Теоретическая информатика и её направления
Вы будете перенаправлены на Автор24
Теоретическая информатика и её направления — это научная дисциплина о способах и операциях поиска, сохранения, переработки, трансляции и аналитической оценки информации с использованием компьютеров, а также её разные ответвления.
Теоретическая информатика
Примерно до середины семидесятых годов прошлого века в ходу был термин «кибернетика», а не «информатика», и по этой причине не было теоретической информатики, а было определение «теоретическая (математическая) кибернетика».
Под теоретической информатикой понимается математическая дисциплина, применяющая математические методики для формирования и анализа моделей обработки, трансляции и применения информации.
Теоретическая информатика предоставляет теоретическую базу для практического использования информатики. Сама природа информации предполагает её дискретное представление. Большинство информационных посланий чаще всего могут быть представлены дискретными множествами, что означает близость содержания теоретической информатики к дискретной математике, которая изучает как раз такие вещи. По этой причине большинство моделей теоретической информатики пришли из дискретной математики. Но почти всегда такие модели наполняются фактическими данными, которые связаны с информацией об объекте исследования.
Направления теоретической информатики
Теоретическую информатику можно разложить на несколько вполне оформившихся дисциплин. По уровню схожести подлежащих решению задач, они делятся на следующие классы.
Дисциплины, которые опираются на алгебру логики (математическую логику). В этих дисциплинах формируются способы, которые позволяют применять логические обоснования при анализе операций обработки информационных данных посредством электронных вычислительных машин (к примеру, теория алгоритмов, теория параллельного вычисления). Кроме того, способы, позволяющие на базе логического моделирования, строить изучение процессов, происходящих в самой электронной вычислительной машине при выполнении операций вычисления (теория автоматов, теория сетей).
Готовые работы на аналогичную тему
Компьютеры, как общеизвестно, работают с числовыми данными, то есть с информацией, которая представлена в дискретном формате. А непосредственно операции, которые выполняет компьютер, это алгоритмическая структура, реализуемая программным обеспечением. Для проектирования прикладных программ требуется выработать специализированные методы разрешения поставленных задач. Ранее специалисты математической сферы не были озадачены возможностью перевести свои способы разрешения задач в формат, позволяющий осуществлять программную реализацию, то есть в виде программ, выполняемых электронными вычислительными машинами. Стремительный прогресс в области аппаратуры, позволяющей автоматизировать вычислительные процессы, привёл к созданию современных компьютеров, что явилось стимулом развития в математических дисциплинах операций и способов разрешения задач. Отсюда появились дисциплины, которые стали пограничными между теоретической информатикой и дискретной математикой. А именно вычислительная математика и вычислительная геометрия. Термин «вычислительная» определяет, что данные дисциплины служат для формирования методик, которые предназначены для компьютерной реализации.
Дисциплиной, которая изучают собственно информацию, как абстрактный объект без фактического наполнения, является теория информации. Она определяет общие свойства информации, законы, которые управляют её зарождением, прогрессом и окончанием её актуальности. К теории информации очень близка теория кодирования, которая занимается изучением тех форматов, в которые возможно преобразовать содержимое каждого информационного объекта (транслируемого сообщения, базы знаний и тому подобное).
В теории информации существует подраздел, который занимается конкретно вопросами теории трансляции информационных данных по разным системам связи. Информатика рассматривает как реальные, так и абстрактные информационные данные. Информация, перемещаясь в виде реальных данных, выражается в разных фактических процессах, но в информатике она проявляется в виде некой абстракции. Эта трансформация обуславливает применение в электронных вычислительных машинах формальных абстрактных моделей той области, к которой относится информация в фактическом мире. Говоря иначе, реальные объекты в компьютерах замещаются использованием их моделирования. Преобразование реальных объектов в модели, которые применяются для исследования в электронных вычислительных машинах, можно выполнить, формируя и развивая специальные операции и приёмы. А помогает их изучать системный анализ, который появился как наука примерно двадцать лет тому назад.
Системный анализ занимается изучением структуры реального объекта и предоставляет методы их формального представления. Элементом системного анализа считается обобщённая теория систем, которая изучает различные по характеристикам информационные системы с единой платформы. Системный анализ находится на границе кибернетики и теоретической информатики. Примерно там же располагаются другие похожие дисциплины.
Одной из них является имитационное моделирование. Эта дисциплина создаёт и применяет некоторые методы исследования процессов, которые происходят в физических объектах, а также при их моделировании в электронных вычислительных машинах. Второй наукой считается теория массового обслуживания, которая анализирует специфический, но очень популярный тип моделирования трансляции и обработки информации, носящий название систем массового обслуживания.
И, наконец, завершающий набор дисциплин, которые входят в теоретическую информатику и ориентированы на применение информации для выработки решений в некоторых ситуационных положениях, случающихся в сегодняшней действительности. Одна из дисциплин называется теория принятия решений, и она изучает обобщённые структуры, применяемые человеком при нахождении оптимальных решений среди многих возможных.