Чем занято место на диске linux
Свободное место на разделах Linux и занимаемое папками пространство
Системы на базе UNIX, весьма стабильны, и если они перестают работать корректно, первым делом, необходимо убедиться в наличие свободного дискового пространства. В данной инструкции приведены примеры консольных команд.
Занимаемое место всеми разделами
Базовая команда, которая работает для всех систем семейства UNIX:
* -h добавлено для более читабельного вывода информации по занимаемому месту. Без данной опции информация будет показана в килобайтах.
Примерный результат выполнения команды:
1 — путь к файловому разделу (диск, внешний накопитель, сетевая шара и так далее).
2 — полный объем раздела.
3 — объем использованного пространства.
4 — сколько еще осталось места.
5 — сколько использовано в процентах.
6 — куда примонтирована файловая система.
Посмотреть занимаемое место папками
Чтобы узнать, какой именно каталог занимает много места, воспользуемся командой:
* в данном примере смотрим все папки корневого раздела (/).
Примерный вывод будет следующий:
Это очень удобная команда для поиска каталога, который занимает большую часть пространства раздела.
То же самое с сортировкой по весу папки:
Вес одной папки и ее содержимого
Отобразить занимаемое место конкретной папки и всего ее содержимого можно следующей командой:
* отобразит занимаемое место каталогом, в котором мы находимся (можно посмотреть командой pwd).
Что чаще всего занимает место на диске
Из данных, которые могут занимать много места, и которые можно чистить, как правило, являются log-файлы — журналы приложений и операционной системы. Это текстовая информация, которая хорошо поддается сжатию. Чтобы автоматизировать процесс чистки логов, воспользуйтесь инструкцией Ротация логов в Linux и FreeBSD с помощью logrotate.
Также место могут занимать временные данные — они находятся в каталоге /tmp.
Анализ дискового пространства в Linux – команды du и ncdu
Одной из распространённых задач в системном администрировании является оценка состояния жёстких дисков (а также и других устройств хранения), в том числе анализ использования дискового пространства. В Linux для таких целей давно существуют утилиты с удобным графическим интерфейсом, предоставляющих наглядную информацию о занятом пространстве в виде диаграмм и графиков. Однако, для системных администраторов, обслуживающих «серьёзные» сервера на основе Linux-систем, графический интерфейс — чрезмерное удовольствие, не оправдывающее затрачиваемых на него ресурсов. Поэтому необходимо уметь обходиться средствами командной консоли, используя специализированные консольные утилиты для анализа дискового пространства, которые доступны в виде двух команд — du и ncdu.
как посмотреть свободное место на диске
Давайте узнаем сколько у нас свободного места в системе. Узнать это можно с помощью команды
как видим у нас диск занят на 97%, и нам необходимо узнать что у нас заняло место. Давайте этим займемся.
Команда du – синтаксис и опции
Disk Usage – именно так интерпретируется название команды du. Она была написана ещё в самой первой версии UNIX (в определённом роде предшественницы Linux), еще в стенах одной из лабораторий компании AT&T. Этот факт даёт понять, насколько важно следить за дисковым пространством, а также анализировать его при наличии специализированных программных инструментов, ведь du – одна из самых первых утилит из стандартного комплекта UNIX/Linux.
Итак давайте узнаем что у нас занимает место
Более подробное описание команды du и ключей вы можете прочитать ниже. Вывод будет следующий
Отсюда мы видим что самый большой каталог у нас /var. Посмотрим что у на занимает место в каталоге /var
видим что это папка log
Теперь смотрим /var/log
и вот здесь мы уже видим пять самых больших файлов с логами, именно они и заняли все место на диске. Давайте рассмотрим команду du подробнее.
Согласно описанию из официального man-руководства, утилита du суммирует использование дискового пространства набора элементов, рекурсивно с каталогами. Синтаксис команды не простой, а очень простой, поскольку представляет собой классический прототип команды Linux:
Если дать команду du без параметров, то по-умолчанию будет выведен список всех каталогов и подкаталогов для текущего каталога. Также по-умолчанию единицей измерения объёма является 1024 байта или 512 байт, в зависимости от конфигурации используемой системы:
Как видно, code_text.txt занимает 4 килобайта (т. к. 1024 байта = 1 килобайт) дискового пространства. То же самое и с папками, но по-умолчанию будет указан общий размер папки без детализации по файлам и подкаталогам. В следующей таблице приведены опции команды du:
Опция | Назначение |
-a | Выводит объём для всех элементов, а не только для каталогов |
—apparent-size | Выводит действительные размеры, но не занимаемое место а диске |
-B, —block-size=РАЗМЕР | Задаёт использование определённых единиц измерения объёма |
-b, —bytes | То же самое, что и «—block-size —apparent-size=1» |
-с, —total | Выводит общий результат |
-D, —dereference-args | Указывает обрабатывать только те символьные ссылке, которые перечислены в командной строке |
-d, —max-depth=N | Выводит общий размер только до N-го уровня (включительно) дерева каталогов |
-h, —human-readable | Выводит размеры в удобном для человека виде |
-k | Эквивалентно —block-size=1K |
-L, —dereference | Разыменовывает символьные ссылки |
-l, —count-links | Складывает размеры, если несколько жёстких ссылок |
-m | Эквивалентно —block-size=1M |
-t, —threshold=РАЗМЕР | Исключает элементы, которые меньше РАЗМЕРА, если это значение положительно или размер которых больше, если это значение отрицательно |
—time | Выводит время последнего изменения в каталоге и во всех подкаталогах |
—time=АТРИБУТ | Выводит указанный атрибут времени (atime, access, use, ctime, status), а не время последнего изменения |
—time-style=СТИЛЬ | Выводит время в указанном в СТИЛЬ формате: full-iso, long-iso, iso |
-X, —exclude-from=ФАЙЛ | Исключает все эдементы, которые совпадают с шаблоном из ФАЙЛа |
—exclude=ШАБЛОН | Исключает элементы, совпадающие с шаблоном |
-x, —one-file-system | Пропускать каталоги из других систем |
Используемые командой du единицы измерения размера (или объёма) задаются в формате «цифраБуква», где цифра — это коэффициент, а Буква — степень единицы измерения, например: 5K = 5 * 1024 = 5120 = 5 килобайт и по аналогии для M – мегабайт, G – гигабайт.
Примеры использования команды du
Узнать общий размер каталога (например с резервными копиями):
Вывод размеров всех подкаталогов (рекурсивно):
С фильтрацией в зависимости от размера файла/каталога:
Как видно, были отброшены файлы/каталоги размером меньше 2 мегабайт. Следующая команда, напротив — исключит из вывода только файлы/каталоги больше 2 мегабайт:
Команда ncdu
Более удобный способ найти что занимает место на диске можно с помощью команды ncdu. Утилита ncdu (Ncurses Disk Usage) способна делать всё то же самое, что и утилита du и даже немного больше. К тому же, она предоставляет пользователю удобный в использовании псевдографический интерфейс, с помощью которого можно быстро перемещаться по дереву системы, оценивая размеры интересующих элементов и папок.
Фактически, ncdu может выполнять функции полноценного браузера системы, при этом имеет большое количество опций, позволяющих настраивать псевдоинтерфейс для разных режимов работы, экспортировать и импортировать результаты работы в файлы, выполнять сортировки, экономить сетевой трафик, если это нужно, когда анализируется удалённая (например по SSH) система.
По-умолчанию, выполнение команды ncdu без параметров, выводит файловый браузер, в котором после предварительного сканирования (с показом прогресса выполнения) отображается список элементов и подкаталогов текущего каталога. По этому списку можно перемещаться, используя клавиши курсора, спускаться в подкаталоги ( ) выходить из них, при этом информация о размере представленных элементах и папок отображается «как на ладони». В строке состояния отображается общий используемый объём (Total disk usage), фактический объём (Apparent size), а также количество файлов и папок для текущего анализируемого каталога.
Основные опции команды ncdu:
—exclude-from-file
Интерфейс ncdu действительно очень дружественный — размеры всегда отображаются в «человекопонятных» единицах.
Для работы с псевдоинтерфейсом ncdu предусмотрен целый набор «горячих клавиш», позволяющих удалять выбранные файлы и каталоги, включать режим представления используемого пространства в процентах, отображать информацию о выбранных элементах, а также выполнять другие полезные функции. Об этом более подробно можно прочитать в соответствующих man-страницах в разделе «KEYS», используя команду man ncdu.
Примеры команд ncdu
Сделаем поиск занимаемого пространства с помощью ncdu
ncdu /
Снова видим большой каталог /var, и уже с помощью клавишь и ENTER мы можем передвигаться по каталогам. Видим каталог log
А здесь мы видим наши большие логи
Еще несколько полезных примеров.
Сканирование объёмных каталогов с экспортом/архивированием в лог для последующего использования или просмотра:
Сканирование текущей директории, экспорт результатов в лог, и последующий просмотр этих результатов в браузере ncdu:
Работа с удалённой системой:
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Понимая, как используется дисковое пространство в Linux
Прим перев.: Автор оригинальной статьи — испанский Open Source-энтузиаст nachoparker, развивающий проект NextCloudPlus (ранее известен как NextCloudPi), — делится своими знаниями об устройстве дисковой подсистемы в Linux, делая важные уточнения в ответах на простые, казалось бы, вопросы…
Сколько пространства занимает этот файл на жёстком диске? Сколько свободного места у меня есть? Сколько ещё файлов я смогу вместить в оставшееся пространство?
Ответы на эти вопросы кажутся очевидными. У всех нас есть инстинктивное понимание работы файловых систем и зачастую мы представляем хранение файлов на диске аналогично заполнению корзины яблоками.
Однако в современных Linux-системах такая интуиция может вводить в заблуждение. Давайте разберёмся, почему.
Размер файла
Что такое размер файла? Ответ вроде бы прост: совокупность всех байтов его содержимого, от начала до конца файла.
Зачастую всё содержимое файла представляется как расположенное байт за байтом:
Здесь можно увидеть знакомые атрибуты, такие как время доступа и модификации, а также i_size — это и есть размер файла, как он был определён выше.
Размышлять в терминах размера файла интуитивно понятно, но больше нас интересует, как в действительности используется пространство.
Блоки и размер блока
Для внутреннего хранения файла файловая система разбивает хранилище на блоки. Традиционным размером блока были 512 байт, но более актуальное значение — 4 килобайта. Вообще же при выборе этого значения руководствуются поддерживаемым размером страницы на типовом оборудовании MMU (memory management unit, «устройство управления памятью» — прим. перев.).
Файловая система вставляет порезанный на части (chunks) файл в эти блоки и следит за ними в метаданных. В идеале всё выглядит так:
… но в действительности файлы постоянно создаются, изменяются в размере, удаляются, поэтому реальная картина такова:
Это называется внешней фрагментацией (external fragmentation) и обычно приводит к падению производительности. Причина — вращающейся головке жёсткого диска приходится переходить с места на место, чтобы собрать все фрагменты, а это медленная операция. Решением данной проблемы занимаются классические инструменты дефрагментации.
Что происходит с файлами меньше 4 КБ? Что происходит с содержимым последнего блока после того, как файл был порезан на части? Естественным образом будет возникать неиспользуемое пространство — это называется внутренней фрагментацией (internal fragmentation). Очевидно, этот побочный эффект нежелателен и может привести к тому, что многое свободное пространство не будет использоваться, особенно если у нас большое количество очень маленьких файлов.
Таким образом, мы смотрим на две величины: размер файла и использованные блоки. Мы привыкли думать в терминах первого, однако должны — в терминах последнего.
Специфичные для файловой системы возможности
Помимо актуального содержимого файла ядру также необходимо хранить все виды метаданных. Метаданные inode’а мы уже видели, но есть и другие данные, с которыми знаком каждый пользователь UNIX: права доступа, владелец, uid, gid, флаги, ACL.
Наконец, существуют ещё и другие структуры — вроде суперблока (superblock) с представлением самой файловой системы, vfsmount с представлением точки монтирования, а также информация об избыточности, именные пространства и т.п. Как мы увидим далее, некоторые из этих метаданных также могут занимать значительное место.
Метаданные размещения блоков
Эти данные сильно зависят от используемой файловой системы — в каждой из них по-своему реализовано сопоставление блоков с файлами. Традиционный подход ext2 — таблица i_block с прямыми и непрямыми блоками (direct/indirect blocks).
Эту же таблицу можно увидеть в структуре памяти (фрагмент из fs/ext2/ext2.h ):
Для больших файлов такая схема приводит к большим накладным расходам, поскольку единственный (большой) файл требует сопоставления тысяч блоков. Кроме того, есть ограничение на размер файла: используя такой метод, 32-битная файловая система ext3 поддерживает файлы не более 8 ТБ. Разработчики ext3 спасали ситуацию поддержкой 48 бит и добавлением extents:
Идея по-настоящему проста: занимать соседние блоки на диске и просто объявлять, где extent начинается и каков его размер. Таким образом мы можем выделять файлу большие группы блоков, минимизируя количество метаданных и заодно используя более быстрый последовательный доступ.
Примечание для любопытных: у ext4 предусмотрена обратная совместимость, то есть в ней поддерживаются оба метода: непрямой (indirect) и extents. Увидеть, как распределено пространство, можно на примере операции записи. Запись не идёт напрямую в хранилище — из соображений производительности данные сначала попадают в файловый кэш. После этого в определённый момент кэш записывает информацию на постоянное хранилище.
Контрольные суммы
Файловые системы последнего поколения хранят также контрольные суммы (checksums) для блоков данных во избежание незаметного повреждения данных. Эта возможность позволяет обнаруживать и корректировать случайные ошибки и, конечно, ведёт к дополнительным накладным расходам в использовании диска пропорционально размеру файлов.
Более современные системы вроде BTRFS и ZFS поддерживают контрольные суммы для данных, а у более старых, таких как ext4, реализованы контрольные суммы для метаданных.
Журналирование
Это специальный скрытый файл, обычно с номером inode 8 и размером 128 МБ, объяснение про который можно найти в официальной документации:
Журнал, представленный в файловой системе ext3, используется в ext4 для защиты ФС от повреждений в случае системных сбоев. Небольшой последовательный фрагмент диска (по умолчанию это 128 МБ) зарезервирован внутри ФС как место для сбрасывания «важных» операций записи на диск настолько быстро, насколько это возможно. Когда транзакция с важными данными полностью записана на диск и сброшена с кэша (disk write cache), запись о данных также записывается в журнал. Позже код журнала запишет транзакции в их конечные позиции на диске (операция может приводить к продолжительному поиску или большому числу операций чтения-удаления-стирания) перед тем, как запись об этих данных будет стёрта. В случае системного сбоя во время второй медленной операции записи журнал позволяет воспроизвести все операции вплоть до последней записи, гарантируя атомарность всего, что пишется на диск через журнал. Результатом является гарантия, что файловая система не застрянет на полпути обновления метаданных.
«Упаковка хвостов»
Возможность tail packing, ещё называемая блочным перераспределением (block suballocation), позволяет файловым системам использовать пустое пространство в конце последнего блока («хвосты») и распределять его среди различных файлов, эффективно упаковывая «хвосты» в единый блок.
Замечательно иметь такую возможность, что позволяет сохранить много пространства, особенно если у вас большое количество маленьких файлов… Однако она приводит к тому, что существующие инструменты неточно сообщают об используемом пространстве. Потому что с ней мы не можем просто добавить все занятые блоки всех файлов для получения реальных данных по использованию диска. Эту фичу поддерживают файловые системы BTRFS и ReiserFS.
Разрежённые файлы
Большинство современных файловых систем поддерживают разрежённые файлы (sparse files). У таких файлов могут быть дыры, которые в действительности не записаны на диск (не занимают дисковое пространство). На этот раз реальный размер файла будет больше, чем используемые блоки.
Такая особенность может оказаться очень полезной, например, для быстрой генерации больших файлов или для предоставления свободного пространства виртуальному жёсткому диску виртуальной машины по запросу.
Чтобы медленно создать 10-гигабайтный файл, который занимает около 10 ГБ дискового пространства, можно выполнить:
Чтобы создать такой же большой файл мгновенно, достаточно лишь записать последний байт… или даже сделать:
Или же воспользоваться командой truncate :
Команда cp поддерживает работу с разрежёнными файлами. С помощью простой эвристики она пытается определить, является ли исходный файл разрежённым: если это так, то результирующий файл тоже будет разрежённым. Скопировать же неразрежённый файл в разрежённый можно так:
… а обратное действие (сделать «плотную» копию разрежённого файла) выглядит так:
Таким образом, если вам нравится работать с разрежёнными файлами, можете добавить следующий алиас в окружение своего терминала (
Когда процессы читают байты в секциях дыр файловая система предоставляет им страницы с нулями. Например, можно посмотреть, что происходит, когда файловый кэш читает из файловой системы в области дыр в ext4. В этом случае последовательность в readpage.c будет выглядеть примерно так:
Файловые системы COW (copy-on-write)
Следующее (после семейства ext) поколение файловых систем принесло очень интересные возможности. Пожалуй, наибольшего внимания среди фич файловых систем вроде ZFS и BTRFS заслуживает их COW (copy-on-write, «копирование при записи»).
Когда мы выполняем операцию copy-on-write или клонирования, или копии reflink, или поверхностной (shallow) копии, на самом деле никакого дублирования extent’ов не происходит. Просто создаётся аннотация в метаданных для нового файла, которая отсылает к тем же самым extents оригинального файла, а сам extent помечается как разделяемый (shared). При этом в пользовательском пространстве создаётся иллюзия, что существуют два отдельных файла, которые можно отдельно модифицировать. Когда какой-то процесс захочет написать в разделяемый extent, ядро сначала создаст его копию и аннотацию, что этот extent принадлежит единственному файлу (по крайней мере, на данный момент). После этого у двух файлов появляется больше отличий, однако они все ещё могут разделять многие extents. Другими словами, extents в файловых системах с поддержкой COW можно делить между файлами, а ФС обеспечит создание новых extents только в случае необходимости.
Как видно, клонирование — очень быстрая операция, не требующая удваивания пространства, которое используется в случае обычной копии. Именно эта технология и стоит за возможностью создания мгновенных снапшотов в BTRFS и ZFS. Вы можете буквально клонировать (или сделать снапшот) всей корневой файловой системы меньше чем за секунду. Очень полезно, например, перед обновлением пакетов на случай, если что-то сломается.
/.bashrc ) может пригодиться, если вы хотите по умолчанию делать быстрые shallow-копии:
Следующий шаг — если есть не-shallow-копии или файл, или даже файлы, с дублирующимися extents, можно дедуплицировать их, чтобы они использовали (через reflink) общие extents и освободили пространство. Один из инструментов для этого — duperemove, однако учтите, что это естественным образом приводит к более высокой фрагментации файлов.
Если мы попытаемся теперь разобраться, как дисковое пространство используется файлами, всё будет не так просто. Утилиты вроде du или dutree всего лишь считают используемые блоки, не учитывая, что некоторые из них могут быть разделяемыми, поэтому они покажут больше занятого места, чем на самом деле используется.
К сожалению, я не знаю простых способов отслеживания занятого пространства отдельными файлами в файловых системах с COW. На уровне подтома с помощью утилит вроде btrfs-du мы можем получить приблизительное представление о количестве данных, которые уникальны для снапшота и которые разделяются между снапшотами.
Чем занято место на диске Linux
Ситуация, когда на разделах Linux заканчивается место может быть очень часто встречаемой. На вебсерверах такая проблема возникает еще чаще, т.к. большое количество посетителей и ошибки в программах могут приводить к огромному росту лог-файлов и т.д. и появляется необходимость определить чем занято место на диске Linux, чтобы удалить ненужные данные и освободить место. Есть несколько вариантов как это сделать.
Воспользоваться встроенной утилитой du. Сделать это достаточно просто. Например, чтобы определить в текущей папке занимаемое место всеми подкаталогами и файлами, нужно использовать команду:
Вывод этой команды будет примерно такой:
Когда папок и файлов много, можно отсортировать результаты, чтобы было проще определить, какая папка или файл заняли больше всего места:
Эта простая команда поможет вам выяснить, чем занято место в конкретной папке или на всем разделе Linux. Команда универсальна, проста в использовании и есть в любых дистрибутивах Linux.
Дальше просто запустите ncdu и подождите, когда она подсчитает занимаемое место. По-умолчанию программа посчитает размеры папкой текущей папки, из которой программа была запущена. Если нужно посчитать какую-то другую папку, просто добавьте к команде путь к папке, например, так: ncdu /var/www. Если нужно посчитать занимаемое место на всем диске, можно использовать ncdu /.
Программа показывает занимаемое папками место, позволяет заходить в них и сразу видеть сколько подпапки занимают места. Так же в этой утилите можно выполнять различные действия над файлами и папками. Получить справку по клавишам управления можно нажав «?«. Ниже приведу список некоторых из клавиш управления:
Программа очень удобная, простая и выполняет задачу по анализу и освобождению свободного места полностью, рекомендую ее к использованию.
3-й способ. Графические утилиты.
Есть большое количество графических программ, которые позволяют делать примерно то же, что ncdu, только в графике. В Ubuntu, например, есть графическая программа, которая находится в Приложения > Системные утилиты > Анализатор использования диска. Кроме того, есть много и других программ. Приведу небольшой список, чтобы вы могли их попробовать и выбрать, какая больше нравится:
Вот пожалуй, основной набор способов определения занятого места на дисках Linux. Можно конечно найти еще множество других способов, здесь я привел самые основные и распространенные.