Чем завершается энергетический обмен
Обмен веществ и превращение энергии. Особенности энергетического обмена
Вопрос 1. Что такое диссимиляция? Перечислите ее этапы.
Диссимиляция, или энергетический обмен, — это совокупность реакций расщепления высокомолекулярных соединений, которые сопровождаются выделением и запасанием энергии. Диссимиляция у аэробных (кислорододышащих) организмов происходит в три этапа:
подготовительный — расщепление высокомолекулярных соединений до низкомолекулярных без запасания энергии; бескислородный — частичное бескислородное расщепление соединений, энергия запасается в виде АТФ; кислородный — окончательное расщепление органических веществ до углекислого газа и воды, энергия также запасается в виде АТФ.
Диссимиляция у анаэробных (не использующих кислород) организмов происходит в два этапа: подготовительный и бескислородный. В данном случае органические вещества расщепляются не полностью и энергии запасается гораздо меньше.
Вопрос 3. Какие структуры клетки осуществляют синтез АТФ?
В эукариотических клетках синтез основной массы АТФ из АДФ и фосфорной кислоты происходит в митохондриях и сопровождается поглощением (запасанием) энергии. В пластидах АТФ образуется как промежуточный продукт световой стадии фотосинтеза.
Вопрос 4. Расскажите об энергетическом обмене в клетке на примере расщепления глюкозы.
Энергетический обмен обычно подразделяют на три этапа. Первый этап — Подготовительный, называемый также пищеварением. Осуществляется он главным образом вне клеток под действием ферментов, секретируемых в полость пищеварительного тракта. На этом этапе крупные молекулы полимеров распадаются на мономеры: белки — на аминокислоты, полисахариды — на простые сахара, жиры — на жирные кислоты и глицерин. При этом выделяется небольшое количество энергии, которая рассеивается и виде теплоты.
Бескислородный. В результате гликолиза одна молекула глюкозы расщепляется до двух молекул пировиноградной кислоты:
Распад одной молекулы глюкозы сопровождается образованием двух молекул АТФ. При этом 60% выделившейся энергии превращается в тепло, а 40% запасается в виде АТФ. При распаде одной молекулы глюкозы образуется 2 молекулы АТФ. Затем у анаэробных организмов происходит брожение — спиртовое (С2НС5ОН — этиловый спирт) или молочнокислое (С3Н403 — молочная кислота). У аэробных организмов наступает третий этап энергетического обмена.
Кислородный. Этот этап катаболизма нуждается в присутствии молекулярного кислорода и называется дыханием. Развитие клеточного дыхания у аэробных микроорганизмов и в клетках эукариот стало возможным лишь после того, как в результате фотосинтеза в атмосфере Земли появился молекулярный кислород. Добавление к каталическому процессу стадии, осуществляющейся в присутствии кислорода, обеспечивает клетки мощным и эффективным путем извлечения из молекул питательных веществ и энергии.
Реакции кислородного расщепления, или окислительного катаболизма, протекают в специальных органоидах клетки — митохондриях, куда поступают молекулы пировиноградной кислоты. После целого ряда прекращений образуются конечные продукты — СО2 и Н2О, которые затем диффундируют из клетки. Суммарное уравнение аэробного дыхания выглядит так:
Таким образом, при окислении двух молекул молочной кислоты образуются 36 молекул АТФ. Всего в ходе второго и третьего этапов энергетического обмена при расщеплении одной молекулы глюкозы образуются 38 молекул АТФ. Следовательно, основную роль в обеспечении клетки энергией играет аэробное дыхание.
Лекция № 11. Энергетический обмен
Энергетический обмен
Энергетический обмен (катаболизм, диссимиляция) — совокупность реакций расщепления органических веществ, сопровождающихся выделением энергии. Энергия, освобождающаяся при распаде органических веществ, не сразу используется клеткой, а запасается в форме АТФ и других высокоэнергетических соединений. АТФ — универсальный источник энергообеспечения клетки. Синтез АТФ происходит в клетках всех организмов в процессе фосфорилирования — присоединения неорганического фосфата к АДФ.
У аэробных организмов (живущих в кислородной среде) выделяют три этапа энергетического обмена: подготовительный, бескислородное окисление и кислородное окисление; у анаэробных организмов (живущих в бескислородной среде) и аэробных при недостатке кислорода — два этапа: подготовительный, бескислородное окисление.
Подготовительный этап
Заключается в ферментативном расщеплении сложных органических веществ до простых: белковые молекулы — до аминокислот, жиры — до глицерина и карбоновых кислот, углеводы — до глюкозы, нуклеиновые кислоты — до нуклеотидов. Распад высокомолекулярных органических соединений осуществляется или ферментами желудочно-кишечного тракта или ферментами лизосом. Вся высвобождающаяся при этом энергия рассеивается в виде тепла. Образовавшиеся небольшие органические молекулы могут быть использованы в качестве «строительного материала» или могут подвергаться дальнейшему расщеплению.
Бескислородное окисление, или гликолиз
Этот этап заключается в дальнейшем расщеплении органических веществ, образовавшихся во время подготовительного этапа, происходит в цитоплазме клетки и в присутствии кислорода не нуждается. Главным источником энергии в клетке является глюкоза. Процесс бескислородного неполного расщепления глюкозы — гликолиз.
Потеря электронов называется окислением, приобретение — восстановлением, при этом донор электронов окисляется, акцептор восстанавливается.
Следует отметить, что биологическое окисление в клетках может происходить как с участием кислорода:
так и без его участия, за счет переноса атомов водорода от одного вещества к другому. Например, вещество «А» окисляется за счет вещества «В»:
или за счет переноса электронов, например, двухвалентное железо окисляется до трехвалентного:
Гликолиз — сложный многоступенчатый процесс, включающий в себя десять реакций. Во время этого процесса происходит дегидрирование глюкозы, акцептором водорода служит кофермент НАД + (никотинамидадениндинуклеотид). Глюкоза в результате цепочки ферментативных реакций превращается в две молекулы пировиноградной кислоты (ПВК), при этом суммарно образуются 2 молекулы АТФ и восстановленная форма переносчика водорода НАД·Н2:
Дальнейшая судьба ПВК зависит от присутствия кислорода в клетке. Если кислорода нет, у дрожжей и растений происходит спиртовое брожение, при котором сначала происходит образование уксусного альдегида, а затем этилового спирта:
У животных и некоторых бактерий при недостатке кислорода происходит молочнокислое брожение с образованием молочной кислоты:
В результате гликолиза одной молекулы глюкозы высвобождается 200 кДж, из которых 120 кДж рассеивается в виде тепла, а 80% запасается в связях АТФ.
Кислородное окисление, или дыхание
Заключается в полном расщеплении пировиноградной кислоты, происходит в митохондриях и при обязательном присутствии кислорода.
Пировиноградная кислота транспортируется в митохондрии (строение и функции митохондрий — лекция №7). Здесь происходит дегидрирование (отщепление водорода) и декарбоксилирование (отщепление углекислого газа) ПВК с образованием двухуглеродной ацетильной группы, которая вступает в цикл реакций, получивших название реакций цикла Кребса. Идет дальнейшее окисление, связанное с дегидрированием и декарбоксилированием. В результате на каждую разрушенную молекулу ПВК из митохондрии удаляется три молекулы СО2; образуется пять пар атомов водорода, связанных с переносчиками (4НАД·Н2, ФАД·Н2), а также одна молекула АТФ.
Суммарная реакция гликолиза и разрушения ПВК в митохондриях до водорода и углекислого газа выглядит следующим образом:
Две молекулы АТФ образуются в результате гликолиза, две — в цикле Кребса; две пары атомов водорода (2НАДЧН2) образовались в результате гликолиза, десять пар — в цикле Кребса.
Последним этапом является окисление пар атомов водорода с участием кислорода до воды с одновременным фосфорилированием АДФ до АТФ. Водород передается трем большим ферментным комплексам (флавопротеины, коферменты Q, цитохромы) дыхательной цепи, расположенным во внутренней мембране митохондрий. У водорода отбираются электроны, которые в матриксе митохондрий в конечном итоге соединяются с кислородом:
Купить проверочные работы
и тесты по биологии
Протоны закачиваются в межмембранное пространство митохондрий, в «протонный резервуар». Внутренняя мембрана непроницаема для ионов водорода, с одной стороны она заряжается отрицательно (за счет О2 — ), с другой — положительно (за счет Н + ). Когда разность потенциалов на внутренней мембране достигает 200 мВ, протоны проходят через канал фермента АТФ-синтетазы, образуется АТФ, а цитохромоксидаза катализирует восстановление кислорода до воды. Так в результате окисления двенадцати пар атомов водорода образуется 34 молекулы АТФ.
1 — наружная мембрана; 2 — межмембранное пространство, протонный резервуар;
3 — цитохромы; 4 — АТФ-синтетаза.
При перфорации внутренних митохондриальных мембран окисление НАД·Н2 продолжается, но АТФ-синтетаза не работает и образования АТФ в дыхательной цепи не происходит, энергия рассеивается в форме тепла (клетки «бурого жира» млекопитающих).
Суммарная реакция расщепления глюкозы до углекислого газа и воды выглядит следующим образом:
где Qт — тепловая энергия.
Перейти к лекции №10 «Понятие об обмене веществ. Биосинтез белков»
Перейти к лекции №12 «Фотосинтез. Хемосинтез»
Смотреть оглавление (лекции №1-25)
Энергетический обмен
Этапы энергетического обмена
Энергетический обмен состоит из трех этапов: подготовительного, бескислородного (гликолиз, анаэробное дыхание) и кислородного (аэробное дыхание). У многих многоклеточных животных связан с пищеварительной, дыхательной и кровеносной системами.
Подготовительный этап энергетического обмена
Происходит в цитоплазме клеток всех организмов, в желудочно-кишечном тракте у большинства многоклеточных животных и человека. Под действием ферментов большие органические молекулы расщепляются на мономеры. Эти процессы происходят с выделением незначительного количества энергии, которое рассеивается в виде тепла.
Бескислородный (анаэробный) этап энергетического обмена
Происходит в клетках, всегда предшествует аэробному у большинства организмов (способных использовать кислород).
Анаэробное расщепление – это простейшая известная форма образования и аккумулирования энергии в макроэргических связях молекул АТФ. Суть его состоит в расщеплении молекулы глюкозы преимущественно путем гликолиза на две молекулы пировиноградной или молочной кислоты (особенно в мышечных клетках). Две молекулы пировиноградной кислоты (С3Н403) при определенных условиях могут восстанавливаться до молочной (С3Н603). Суммарное уравнение гликолиза:
Во время гликолиза выделяется около 200 кДж энергии, часть которой расходуется на синтез двух молекул АТФ (84 кдж), а часть рассеивается в виде тепла (116 кДж).
Процесс гликолиза энергетически малоэффективный, так как в макроэргических связях АТФ аккумулируется лишь 35-40 % энергии. Это связано с тем, что не происходит полного распада веществ. Конечные продукты гликолиза еще содержат в себе много энергии в химических связях.
Гликолиз имеет чрезвычайно большое физиологическое значение, несмотря на его низкую эффективность. В условиях дефицита кислорода организм благодаря гликолизу может получать энергию. И вдобавок конечные продукты – пировиноградная и молочная кислоты – в аэробных условиях подвергаются дальнейшему ферментативному расщеплению.
Некоторые микроорганизмы и беспозвоночные животные (преимущественно паразиты) являются анаэробами и не могут использовать кислород. Им присущ лишь анаэробный энергетический обмен.
Существует несколько типов преобразования глюкозы, органических соединений без доступа кислорода с аккумуляцией энергии в виде АТФ, которые называются брожением. Известны спиртовое брожение (у некоторых дрожжей и бактерий с образованием спирта), маслянокислое (с образованием масляной кислоты), молочнокислое (у молочнокислых бактерий с образованием молочной кислоты) и т. п.
Суммарное уравнение спиртового брожения:
Кислородный этап энергетического обмена (аэробное дыхание)
Происходит в митохондриях. Органические соединения, которые образовались в бескислородном этапе, окисляются до конечных продуктов (углекислого газа и воды). Соединения окисляются с отщеплением от них водорода. С помощью веществ-переносчиков он передается кислороду с образованием воды. Этот процесс называется тканевым дыханием. При этом выделяется большое количество энергии, которое аккумулируется в связях АТФ. В кислородном этапе можно выделить реакции цикла Кребса и те, что протекают на дыхательной цепи.
Цикл Кребса
В 1937 году английский биохимик X. Кребс открыл этот процесс. Происходит в матриксе митохондрий.
Начинается с реакции продукта гликолиза – пировиноградной кислоты с щавлевоуксусной. При этом образуется лимонная кислота, которая после целого ряда преобразований на другие кислоты, снова становится щавлевоуксусной. Щавлевоуксусная кислота снова вступает в реакцию с пировиноградной.
Во время реакций цикла Кребса образуются 4 пары атомов водорода и 2 молекулы углекислого газа. Углекислый газ выводится из клетки.
Дыхательная цепь
Организация дыхательной цепи
Протекает на внутренних мембранах митохондрий, где расположен ряд ферментов в определенной последовательности (дыхательная цепь). Атомы водорода попадают на мембраны митохондрий. Через ряд этапов происходит с их помощью восстановление АТФ.
Возникает разница электрических потенциалов, концентраций ионов водорода по разные стороны внутренней мембраны.
АДФ и фосфорная кислота восстанавливают АТФ с помощью особой ферментной системы, которая использует для этого разницу электрических потенциалов, различие концентраций ионов водорода. Эта ферментная система переводит ионы водорода на внутреннюю поверхность внутренней мембраны с внешней поверхности. Процесс образования АТФ из АДФ и фосфорной кислоты называется окислительным фосфорилированием. Процесс перенесения электрона по дыхательной цепи митохондрий имеет название сопряжение окисления.
При окислении двух молекул молочной кислоты выделяется энергия, которая обеспечивает образование 36 молекул АТФ:
Суммарное уравнение энергетического обмена:
Выделяется почти 2,8 тыс. кДж энергии. 1596 кДж (55 %) – запасается в виде макроэргических связей АТФ. Оставшиеся (45 %) рассеиваются в виде тепла.
Экскреция
Экскреция — это выделение из организма продуктов обмена веществ, особенно азотосодержащих соединений (белков и т. п.). Жиры и углеводы расщепляются на воду и углекислый газ.
Аммиак выделяют прокариоты, растения и большинство водных животных. Он хорошо растворяется в воде.
Мочевую кислоту выделяет большинство наземных животных: насекомые, пресмыкающие, птицы. Она плохо растворяется в воде.
Гуанин выделяют паукообразные, частично – птицы.
Пластический и энергетический обмен
Обмен веществ (метаболизм) – это совокупность всех химических реакций, которые происходят в организме. Все эти реакции делятся на 2 группы
1. Пластический обмен (ассимиляция, анаболизм, биосинтез) – это когда из простых веществ с затратой энергии образуются (синтезируются) более сложные. Пример:
2. Энергетический обмен (диссимиляция, катаболизм, дыхание) – это когда сложные вещества распадаются (окисляются) до более простых, и при этом выделяется энергия, необходимая для жизнедеятельности. Пример:
Взаимосвязь пластического и энергетического обмена
АТФ – универсальное энергетическое вещество клетки (универсальный аккумулятор энергии). Образуется в процессе энергетического обмена (окисления органических веществ).
Еще можно почитать
Задания части 1
Выберите один, наиболее правильный вариант. В процессе пластического обмена
1) более сложные углеводы синтезируются из менее сложных
2) жиры превращаются в глицерин и жирные кислоты
3) белки окисляются с образованием углекислого газа, воды, азотсодержащих веществ
4) происходит освобождение энергии и синтез АТФ
Выберите один, наиболее правильный вариант. В процессе пластического обмена в клетках синтезируются молекулы
1) белков
2) воды
3) АТФ
4) неорганических веществ
Выберите один, наиболее правильный вариант. Азотистое основание аденин, рибоза и три остатка фосфорной кислоты входят в состав
1) ДНК
2) РНК
3) АТФ
4) белка
Выберите один, наиболее правильный вариант. В чем проявляется взаимосвязь пластического и энергетического обмена
1) пластический обмен поставляет органические вещества для энергетического
2) энергетический обмен поставляет кислород для пластического
3) пластический обмен поставляет минеральные вещества для энергетического
4) пластический обмен поставляет молекулы АТФ для энергетического
Выберите один, наиболее правильный вариант. В процессе энергетического обмена, в отличие от пластического, происходит
1) расходование энергии, заключенной в молекулах АТФ
2) запасание энергии в макроэргических связях молекул АТФ
3) обеспечение клеток белками и липидами
4) обеспечение клеток углеводами и нуклеиновыми кислотами
Выберите один, наиболее правильный вариант. Энергия, необходимая для мышечного сокращения, освобождается при
1) расщеплении органических веществ в органах пищеварения
2) раздражении мышцы нервными импульсами
3) окислении органических веществ в мышцах
4) синтезе АТФ
Выберите один, наиболее правильный вариант. Значение пластического обмена – снабжение организма
1) минеральными солями
2) кислородом
3) биополимерами
4) энергией
Выберите один, наиболее правильный вариант. Окисление органических веществ в организме человека происходит в
1) легочных пузырьках при дыхании
2) клетках тела в процессе пластического обмена
3) процессе переваривания пищи в пищеварительном тракте
4) клетках тела в процессе энергетического обмена
ПЛАСТИЧЕСКИЙ КРОМЕ
1. Все приведенные ниже термины, кроме двух, используются для описания пластического обмена. Определите два термина, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) репликация
2) дупликация
3) трансляция
4) транслокация
5) транскрипция
2. Все перечисленные ниже понятия, кроме двух, используют для описания пластического обмена веществ в клетке. Определите два понятия, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) ассимиляция
2) диссимиляция
3) гликолиз
4) транскрипция
5) трансляция
3. Перечисленные ниже термины, кроме двух, используются для характеристики пластического обмена. Определите два термина, выпадающих из общего списка, и запишите цифры, под которыми они указаны.
1) расщепление
2) окисление
3) репликация
4) транскрипция
5) хемосинтез
ЭНЕРГЕТИЧЕСКИЙ
Выберите три процесса, относящихся к энергетическому обмену веществ.
1) выделение кислорода в атмосферу
2) образование углекислого газа, воды, мочевины
3) окислительное фосфорилирование
4) синтез глюкозы
5) гликолиз
6) фотолиз воды
ЭНЕРГЕТИЧЕСКИЙ КРОМЕ
1. Все приведённые ниже признаки, кроме двух, можно использовать для характеристики энергетического обмена в клетке. Определите два признака, «выпадающих» из общего списка, и запишите в ответ цифры, под которыми они указаны.
1) идёт с поглощением энергии
2) завершается в митохондриях
3) завершается в рибосомах
4) сопровождается синтезом молекул АТФ
5) завершается образованием углекислого газа
2. Все перечисленные ниже процессы, кроме двух, относятся к энергетическому обмену. Определите два процесса, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) дыхание
2) фотосинтез
3) синтез белка
4) гликолиз
5) брожение
3. Все перечисленные ниже признаки, кроме трех, используются для описания процессов энергетического обмена. Определите три признака, «выпадающих» из общего списка, и запишите в таблицу цифры, под которыми они указаны.
1) гликолиз
2) репликация
3) синтез молекул АТФ
4) фиксация углекислого газа
5) окислительное фосфорилирование
6) синтез глюкозы
2. Установите соответствие между характеристикой обмена веществ в клетке и его видом: 1) энергетический, 2) пластический. Запишите цифры 1 и 2 в порядке, соответствующим буквам.
А) происходит бескислородное расщепление глюкозы
Б) происходит на рибосомах, в хлоропластах
В) конечные продукты обмена – углекислый газ и вода
Г) органические вещества синтезируются
Д) используется энергия, заключенная в молекулах АТФ
Е) освобождается энергия и запасается в молекулах АТФ
3. Установите соответствие между признаками обмена веществ у человека и его видами: 1) пластический обмен, 2) энергетический обмен. Запишите цифры 1 и 2 в правильном порядке.
А) вещества окисляются
Б) вещества синтезируются
В) энергия запасается в молекулах АТФ
Г) энергия расходуется
Д) в процессе участвуют рибосомы
Е) в процессе участвуют митохондрии
4. Установите соответствие между характеристиками обмена веществ и его видом: 1) энергетический, 2) пластический. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) репликация ДНК
Б) биосинтез белка
В) окисление органических веществ
Г) транскрипция
Д) синтез АТФ
Е) хемосинтез
5. Установите соответствие между характеристиками и видами обмена: 1) пластический, 2) энергетический. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) запасается энергия в молекулах АТФ
Б) синтезируются биополимеры
В) образуются углекислый газ и вода
Г) происходит окислительное фосфорилирование
Д) происходит репликация ДНК
6. Установите соответствие между характеристикой и видом обмена веществ: 1) пластический, 2) энергетический. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) расщепление жиров в тонком кишечнике
Б) синтез гликогена из глюкозы в печени
В) потребление АТФ в процессе синтеза полимеров
Г) окисление органических веществ с выделением углекислого газа
Д) образование в мышцах молочной кислоты
СОБИРАЕМ 7:
А) из жирных кислот и глицерина образуются жиры
Б) из аминокислот синтезируются белки
В) энергия выделяется
Г) из глюкозы образуется гликоген
А) белок расщепляется до аминокислот
2. Установите соответствие между характеристиками и процессами обмена веществ: 1) ассимиляция (анаболизм), 2) диссимиляция (катаболизм). Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) синтез органических веществ организма
Б) включает подготовительный этап, гликолиз и окислительное фосфорилирование
В) освобожденная энергия запасается в АТФ
Г) образуются вода и углекислый газ
Д) требует энергетических затрат
Е) происходит в хлоропластах и на рибосомах
МЕТАБОЛИЗМ
Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Обмен веществ – одно из основных свойств живых систем, он характеризуется тем, что происходит
1) избирательное реагирование на внешние воздействия окружающей среды
2) изменение интенсивности физиологических процессов и функций с различными периодами колебаний
3) передача из поколения в поколение признаков и свойств
4) поглощение необходимых веществ и выделение продуктов жизнедеятельности
5) поддержание относительно-постоянного физико-химического состава внутренней среды
АТФ
1. Все перечисленные ниже признаки, кроме двух, можно использовать для описания молекулы АТФ. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) вещество нестойкое, средняя продолжительность жизни одной молекулы менее одной минуты
2) в состав молекулы входит азотистое основание урацил
3) молекула является мономером нуклеиновых кислот
4) по структуре молекула является нуклеотидом
5) фосфатные группы, входящие в состав молекулы, соединены между собой макроэргическими связями
2. Все перечисленные ниже характеристики, кроме двух, используют для описания изображенной на рисунке молекулы органического вещества клетки. Определите две характеристики, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) мононуклеотид
2) цитозин
3) рибоза
4) тимин
5) макроэргические связи
3. Установите соответствие между характеристиками и веществами: 1) АТФ, 2) ДНК. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) содержит макроэргические связи
Б) имеет в составе рибозу
В) является полимером
Г) хранит и передаёт наследственную информацию
Д) аккумулирует энергию в клетке
Е) состоит из двух цепей
4. Установите соответствие между характеристиками и видами молекул: 1) РНК, 2) АТФ. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) содержит один вид азотистых оснований
Б) обеспечивает энергией реакции синтеза
В) входит в состав рибосом
Г) содержит макроэргические связи
Д) содержит четыре вида азотистых оснований
Е) служит матрицей при трансляции