Чем завершается телофаза второго мейоза
по биологии
Часть 1. Задания с выбором одного верного ответа.
1. Процесс деления, в результате которого из исходной диплоидной клетки образуются четыре клетки, называют
а) митозом в) оплодотворением
б) дроблением г) мейозом
2. В процессе мейоза образуются клетки с набором хромосом
а) диплоидным в) равным материнскому
б) гаплоидным г) удвоенным
3. Благодаря конъюгации и кроссинговеру происходит
а) уменьшение числа хромосом вдвое
б) увеличение числа хромосом
в) обмен генетической информацией между гомологичными хромосомами
г) увеличение числа гамет
4. Какие клетки образуются путем мейоза?
а) мышечные в) половые
б) эпителиальные г) нервные
5. Дочерние хроматиды в процессе мейоза расходятся к полюсам клетки в
а) метафазе первого деления
б) профазе второго деления
в) анафазе второго деления
г) телофазе первого деления
6. Первое деление мейоза заканчивается образованием
б) ядер с гаплоидным набором хромосом
в) диплоидных клеток
г) клеток разной плоидности
7. В соматических клетках шимпанзе 48 хромосом. Сколько хромосом содержится
а) в сперматозоидах шимпанзе_____
б) в яйцеклетке_______
в) в соматических клетках после митоза_______
г) в оплодотворенной яйцеклетке________
8. Первая анафаза мейоза завершается
а) расхождением хроматид
б) образованием гамет
г) расхождением к полюсам гомологичных хромосом
9. В результате мейоза образуются
а) сперматозоиды в) эритроциты человека
б) споры мхов г) костные клетки
10. Второе деление мейоза заканчивается образованием
а) соматических клеток
б) диплоидных клеток
в) ядер с гаплоидным набором хромосом
г) клеток разной плоидности
11. В гаплоидных клетках человека 23 хромосомы. Сколько хромосом содержится
а) в сперматозоидах человека_________
б) в яйцеклетке ________
в) в соматических клетках после митоза________
г) в оплодотворенной яйцеклетке________
12. Телофаза II мейоза завершается
а) расхождением к полюсам клетки гомологичных хромосом
б) расхождением хроматид
в) образованием гамет
г) конъюгацией хромосом
13. Количество полноценных яйцеклеток, образующихся в результате овогенеза из двух диплоидных первичных половых клеток, равно
14. Назовите количество клеток, которое образуется в результате сперматогенеза из двух первичных половых клеток
15. Значение деления клеток состоит в
а) увеличении продолжительности жизни
б) усложнении строения организмов
в) увеличении массы и размера организмов
г) усложнении процессов жизнедеятельности
16. Значение образования половых клеток состоит в
а) изменении строения хромосом
б) равномерном распределении цитоплазмы между ними
Мейоз 2
Как правило, второе деление мейоза протекает быстрее первого, в течение нескольких часов. Мейоз в целом процесс более длительный, чем митоз, у человека, допустим, он длится 3,5 недели.
Интерфаза 2, или интеркинез (n2c), является краткой паузой между первым и вторым мейотическими делениями, в это время не идет репликация ДНК.
Интерфаза между мейотическими делениями присуща животным клеткам, у многих растений на этом этапе она отсутствует.
Второе мейотическое деление (мейоз 2) называется эквационным.
Профаза 2 мейоза 2
2. Центриоли разбегаются к противоположным полюсам клетки.
3. Создаются нити веретена деления.
4. Набор хромосом и количество ДНК — n2c.
Метафаза 2 мейоза 2
1. Двухроматидные хромосомы выстраиваются по экватору клетки (метафазная пластинка). Процесс этот очень напоминает митоз. На рисунке показано расположение двухроматидной хромосомы в экваториальной плоскости.
2. Нити веретена деления крепятся одним концом к центриолям, вторым — к центромерам. Как и в митозе, две нити веретена деления прикрепляются к одной центромере с разных сторон. Но в мейозе 1 есть другая особенность прикрепления нитей (см. выше).
3. Идет метафаза 2 мейоза и оогенез (образование женских гамет).
1) Смысл сказанного ниже об оогенезе вы лучше поймете после изучения темы «Гаметогенез». Ооциты 1 порядка формируются при образовании яйцеклеток у девочек и «спят» долгие годы, а при половом созревании проходят в стадию роста и могут в ней находиться несколько месяцев, подрастая, увеличиваясь. Затем ооциты 1 порядка проходят мейоз 1, образуются ооциты 2 порядка. Они-то и выходят при овуляции в брюшную полость женщины.
2) Ооциту 2 порядка требуется оплодотворение, и только после этого ооцит еще раз поделится.
3) На данном этапе ооциты ждут оплодотворения, после чего у них пройдет анафаза 2 и телофаза 2. Только после этого образуется яйцеклетка.
4. Набор хромосом и количество ДНК — n2c.
Анафаза 2 мейоза 2
1. Двухроматидные хромосомы делятся на хроматиды. Сестринские хроматиды разбегаются к полюсам клетки, как показано на рисунке. При этом хроматиды превращаются в самостоятельные однохроматидные хромосомы.
2. Набор хромосом и количество ДНК — 2n2c.
Телофаза 2 мейоза 2
1. Происходит деконденсация хромосом.
2. Ядерные мембраны создаются вокруг каждой группы хромосом.
3. Распадаются нити веретена деления, формируется ядрышко, цитоплазма делится (цитотомия), в итоге образуются четыре гаплоидные клетки.
4. Набор хромосом и количество ДНК — nc в каждой клетке.
Особенности и стадии мейоза: определение процесса, первое и второе мейотическое деление, значение мейоза
Особенности и фазы мейоза
Определение мейоза
Мейоз — это форма ядерного деления, при которой происходит уменьшение числа хромосом с диплоидного (2n) до гаплоидного (n).
Исходя из определения мейоза, такое деление сопровождается однократным удвоением хромосом, то есть, репликацией ДНК как при митозе, которое происходит в родительской клетке. Затем идут два цикла клеточных и ядерных делений — первое и второе деление мейоза.
Важно отметить, что второе деление следует непосредственно после первого, при этом синтеза ДНК в промежутке между делениями не происходит. Это значит, что между двумя делениями нет интерфазы.
Мейоз у животных происходит, когда образуются спермии и яйцеклетки (гаметогенез).
Мейоз сопровождается редукцией хромосомного набора, в результате чего из каждой пары материнской клетки одна хромосома передается каждой гаплоидной гамете или споре. При последующем слиянии гамет (оплодотворении) новый организм опять получает диплоидный набор хромосом. Это гарантирует стабильность кариотипа организма конкретного вида на протяжении поколений.
В ходе мейоза два деления происходят быстро и одно за другим. Сначала осуществляется репликация или удвоение каждой хромосомы. Две образованные в итоге копии некоторое время остаются соединенными при помощи центромеры. Из этого следует, что в каждом начинающем мейотически делиться ядре есть эквивалент четырех наборов гомологических хромосом (4с). Поэтому для образования ядра гамет с гаплоидным (одинарным) набором хромосом нужны два ядерных деления.
Остановимся на каждой фазе мейоза подробнее.
Первое деление мейоза
Первая стадия мейоза — первое деление.
Результатом первого мейотического деления (это редукционное деление) являются гаплоидные клетки (n), образованные из диплоидных клеток (2n).
Этот этап начинается с профазы I. Если кратко, то мейоз, как и митоз, на этой фазе предполагает упаковывание наследственного материала — происходит спирализация хромосом. Одновременно с этим происходит конъюгация: наблюдается сближение гомологическим (парных) хромосом одинаковыми участками. Результатом конъюгации является образование пар хромосом — бивалентов. Все вошедшие в мейоз хромосомы состоят из двух хроматид и обладает удвоенным наследственным материалом. По этой причине бивалент состоит из 4 нитей.
Находясь в конъюгированном состоянии, хромосомы подвержены дальнейшей спирализации. Происходит переплетение и перекрещивание отдельных хроматид гомологических хромосом. Позже гомологические хромосомы отталкиваются и частично расходятся, в связи с чем встречается разрыв в местах переплетения хроматид. Когда эти разрывы восстанавливаются, хроматиды гомологических хромосом обмениваются соответствующими участками.
В итоге хромосома, которая перешла к новому организму от родителя, включает часть материнской хромосомы. И наоборот.
Процесс перекрещивания гомологических хромосом с последующим обменом участками хроматид — это кроссинговер.
Измененные в результате кроссинговера хромосомы (обладающие другими объединениями генов) расходятся.
Кроссинговер — закономерный процесс, в результате которого каждый раз происходит обмен разными по размеру участками, что обеспечивает эффективную рекомбинацию материала хромосом гамет.
Далее наступает метафаза I. На этом этапе мейоза завершается формирование веретена деления. Нити этого веретена закрепляются за центромеры хромосом. Последние, в свою очередь, таким образом соединены в биваленты, что от каждой центромеры отходит только одна нить — к одному из полюсов клетки. Как результат — биваленты располагаются по экватору веретена деления за счет связанных с центромерами гомологических хромосом нитей.
Затем следует анафаза I. На этой стадии мейоза происходит рассоединение хромосом и расхождение их к полюсам клетки.
В процессе анафазы к каждому полюсу отходит одинарный набор хромосом — он состоит из двух хроматид.
Телофаза I связана с образованием возле полюсов веретена одинарного (гаплоидного) набора хромосом. В нем каждый вид представлен не парой, а только одной хромосомой — она состоит из двух хроматид. Телофаза по длительности короткая, но за это время происходит возобновление оболочки ядра и деление материнской клетки на две дочерние.
Так за счет образования бивалентов при конъюгации гомологических хромосом в профазе I мейоза обеспечиваются условия для последующей редукции числа хромосом. Осуществляется формирование гаплоидного набора в гаметах — благодаря ему происходит расхождение в анафазе I гомологических хромосом, ранее соединенных в биваленты, а не хроматид, как во время митоза.
Второе мейотическое деление
Как уже упоминалось, второе мейотическое деление следует непосредственно за первым и похоже на обычный митоз — иногда этот процесс называют митозом мейоза. Но отличие заключается в том, что делящиеся клетки содержат гаплоидный набор хромосом.
Теперь о второй фазе мейоза кратко:
Значение мейоза
Теперь о значении мейоза кратко.
Редукционное деление регулирует постоянное увеличение количество хромосом в ходе слияния гамет. Без этого в процессе полового размножения происходило бы удваивание числа хромосом из поколения в поколение.
Мейоз — процесс, поддерживающий постоянное количество хромосом в клетках всех поколений каждого вида растений, животных, грибов и протистов.
Также мейоз важен потому, что, благодаря ему обеспечивается большое разнообразие генетического состава гамет. Это возможно благодаря кроссинговеру и различному объединению материнских и отцовских хромосом при их расхождении в анафазе I мейоза. Все это способствует разнообразию и разнокачественности будущего потомства в ходе полового размножения.
Также мейоз обеспечивает постоянство кариотипа в ряду поколений данного вида организмов и большое разнообразие в генетическом составе гамет и спор.
На этом материале можно проследить различия между митозом и мейозом в кратком виде.
Деление клетки: мейоз — фазы и биологическое значение
В этой статье мы разберемся, что такое мейоз и через какие фазы он проходит. Поймем какой хромосомный набор на каждом этапе такого деления и что обозначают все эти n и c. А самое главное — какое биологическое значение у мейоза. В конце сравним его с митозом, выявим сходства и различия между ними.
Что же такое мейоз?
Мейоз — это способ деления клетки. Его еще называют редукционным делением, потому что из одной диплоидной клетки получается четыре гаплоидных, то есть происходит уменьшение хромосом в два раза.
Какие клетки могут так делиться? Эукариотические, но не все, а только избранные. Прежде всего, это предшественники половых клеток человека — сперматоциты и овоциты (или ооциты). Ещё таким способом образуются споры у высших растений.
Хромосомный набор
Начнем с хромосомы. Представьте себе мешок с картошкой. Вот хромосома — это такой мешок, только вместо картошки в ней длинная молекула ДНК, которая связана с белками — гистонами и негистонами.
Всего у нас 46 хромосом или 23 пары. Почему пары? Дело в том, что у каждой хромосомы есть своя сестричка — двойняшка (гомолог). Вроде они и очень похожи, но разница есть. Они содержат похожие молекулы ДНК, но не такие же! Гомологичные хромосомы могут содержать немного разные нуклеотидные последовательности, а значит по-разному проявляют признаки.
Когда у каждой хромосомы есть своя пара, то это диплоидный набор — 46 хромосом. Если пары нет, то это гаплоидный набор — 23 хромосомы.
n — это число хромосом. У каждой есть своя пара, значит всего 2n.
c — это число молекул ДНК, в одной хромосоме одна молекула. Всего молекул = 2c
Редукционный этап или первое деление мейоза
Его суть — изменение числа хромосом внутри клетки. То есть из одной диплоидной (2n4c) клетки получаем две гаплоидных (1n2c). Так стоп, откуда 4c? До этого же было 2n2c. Ах да… Сейчас разберемся.
Интерфаза
Перед вступлением в мейоз клетка проходит через интерфазу. Ей нужно подготовиться к делению — запасти энергетических субстратов (АТФ), синтезировать необходимые белки и удвоить количество молекул ДНК. Еще в интерфазу происходит удваивание центромер.
В интерфазу произошла репликация ДНК — образовалась идентичная цепь. Но эти две цепи, или хроматиды, связаны между собой при помощи центромеры, значит количество хромосом такое же. Итого набор — 2n4c
Ну вы ведь понимаете, что таким образом реплицируются все 46 хромосом. Просто удобнее показать на паре. Помните, что все 23 пар вступают в мейоз, а не только одна. После репликации начинается собственно мейоз, а именно его первая фаза:
Профаза мейоза I
Лептотена
Какая основная задача у клетки? Правильно, передать генетический материал своим потомкам. Поэтому она начинает упаковывать молекулы ДНК как можно плотнее, она собирает чемодан, ведь не хочет ничего не потерять в пути. Этот процесс называется спирализация или конденсация хромосомы. Клетка так старается, что невидимые раньше в микроскоп хромосомы становятся видимыми. Они похожи на длинные и тонкие нити.
Зиготена
Здесь происходит конъюгация хромосом — их сближение с образованием бивалентов. Связь обеспечивает синаптонемальный комплекс — он удерживает гомологичные хромосомы рядом это необходимо для запуска кроссинговера на следующем этапе.
Связи между хромосомами могут иметь разный вид, но они должны быть. Если в клетке останутся хромосомы, которые не сблизились, то она запускает апотоз и погибает. Клетка — с заботой о будущих поколениях!
Пахитена
Начинается с еще большей конденсации хромосом, они становятся короче и толще. Но в местах образования синаптонемальных комплексов происходит частичное раскручивание (деконденсация) хромосом.
Все это для начала кроссинговера — обмена участками ДНК у гомологичных хромосом. Обмен обеспечивает перекомбинацию генетического материала. Если бы мы могли рассоединить хромосомы сразу после кроссинговера, то увидели примерно такую картину:
Схема. Кроссинговер.
В конце пахитены мостики между хромосомами разрушаются, они начинают отдаляться друг от друга.
Диплотена
Хромосомы расходятся в области центромер, но остаются связаны между собой в местах кроссинговера — перекрестах или хиазмах. В микроскоп можно увидеть все четыре хроматиды, так сильно они упаковались (спирализовались).
Диакинез
Хромосомный набор в конце профазы I
Метафаза мейоза I
В этой фазе заканчивается образование веретена деления. Нити веретена прикрепляются к центромерам и начинают притягивать хромосомы, из-за этого они располагаются на экваторе клетки.
Набор в метафазе I
Анафаза мейоза I
Нити веретена деления продолжают тянуть хромосомы на себя — они расходятся к полюсам клетки. На полюсах клетки располагается по 23 хромосомы, но они все еще состоят из двух нитей ДНК.
n2c у полюсов, но вся клетка 2n4c
Телофаза мейоза I
Образование двух гаплоидных клеток — n2c
Результат редукционного деления
Второй этап мейоза — эквационный
Начинается сразу же после первого. Эквация — это уравнивание. Так что задача клетки на этом этапе — сделать так, чтобы в одной хромосоме была одна молекула ДНК.
Он похож на митоз, здесь к полюсам клетки отправятся хроматиды, а не целые хромосомы и мы получим из каждой клетки по две — с набором nc.
Протекает он через такие же фазы, но с одним исключением. Здесь не будет интерфазы — клетка уже готова к делению, она запасла энергетические субстраты и белки ещё перед началом первого деления. Поэтому сразу начинается профаза II.
Профаза мейоза II
Клетка уже сделала свою работу — упаковала генетический материал как можно лучше. Ей ничего не нужно делать, ну почти. Разве что растворить ядерные оболочки и достроить веретено деления. Этим она и займется.
Вы конечно понимаете, что вторая клетка идет по такому же пути. Просто мне лень рисовать сразу две.
Набор в профазу II
Метафаза мейоза II
Прикрепление нитей веретена деления к центриолям — хромосомы снова на экваторе клетки.
Анафаза мейоза II
Торжественный момент — сейчас наши хроматиды станут полноценными хромосомами. Каждая разойдется к своему полюсу.
Поздравляем, ох уж эти хроматиды, они так быстро растут…
У полюсов — nc, всего 2n2c, так как каждая хроматида теперь — это полноценная хромосома.
Набор в анафазу II
Телофаза мейоза II
Вокруг хромосом формируются ядерные мембраны, появляется перетяжка и делит клетку на две.
Вторая клетка прошла через такое же деление. Всего из одной диплоидной клетки 2n2c получилось четыре гаплоидных с набором nc.
Четыре клетки с хромосомным набором — nc
Биологическое значение мейоза
1)Передать свой генетический материал будущим поколениям.
2)Поддержать диплоидный набор хромосом у организма. В конце мейоза формируются гаплоидные клетки, которые после оплодотворения образуют диплоидный набор.
3)Мейоз обеспечивает не только передачу генетической информации, но и ее преобразование — основа изменчивости. Кроссинговер обеспечивает взаимный обмен у гомологичных хромосом. В анафазу I к полюсам клетки независимо расходятся гомологичные хромосомы, а в анафазу II — хроматиды. Так формируются уникальные комбинации генов.
Биология. 11 класс
§ 18. Мейоз
Мейоз — особый способ деления эукариотических клеток, в результате которого из одной материнской клетки образуются четыре дочерние с уменьшенным в 2 раза набором хромосом. Если в мейоз вступает диплоидная клетка (2n4c), то образуются четыре гаплоидные клетки (1n1c). Клетки с гаплоидным набором хромосом не способны делиться мейозом.
Мейоз представляет собой два последовательных деления — мейоз I и мейоз II. Важно отметить, что репликация ДНК предшествует только первому мейотическому делению. Между мейозом I и мейозом II удвоения ДНК не происходит. Каждое из двух делений обычно включает профазу, метафазу, анафазу и телофазу. Рассмотрим процесс мейотического деления диплоидной клетки. Первое деление мейоза осуществляется следующим образом (табл. 18.1)
Таблица 18.1. Первое деление мейоза (мейоз I)
Схема
Фаза и процессы, происходящие в ней
Гомологичные хромосомы попарно сближаются и соединяются друг с другом *сначала в нескольких участках, а затем по всей своей длине*. Этот процесс называется конъюгацией гомологичных хромосом, *а образовавшиеся хромосомные пары — бивалентами. В ходе конъюгации хромосомы тесно соприкасаются. В некоторых точках соприкосновения, называемых хиазмами, вследствие разрыва и последующего воссоединения молекул ДНК,* между хроматидами гомологичных хромосом может происходить обмен соответствующими участками — кроссингóвер. *Далее гомологичные хромосомы в составе каждого бивалента начинают отталкиваться друг от друга и в результате остаются связанными только в областях хиазм.*
Метафаза I. Завершается формирование веретена деления. Спирализация хромосом достигает максимума. * Биваленты * располагаются в центральной части клетки, *образуя метафазную пластинку. Каждый бивалент ориентирован таким образом, что центромеры гомологичных хромосом находятся по разные стороны от экваториальной плоскости клетки, на одинаковом расстоянии от нее.* При этом нити веретена деления, идущие от противоположных полюсов клетки, прикреплены к центромерам разных гомологичных хромосом. Таким образом, в составе каждого *бивалента* одна из хромосом оказывается связанной с одним полюсом клетки, а другая — с противоположным
Телофаза I. Веретено деления разрушается. Происходит деспирализация хромосом и формирование двух ядер. Далее клетка разделяется на две дочерние. Они имеют гаплоидный набор хромосом, каждая хромосома состоит из двух хроматид (1n2c)
Промежуток времени между первым и вторым делениями мейоза обычно очень короткий. В этот период, как уже отмечалось, не осуществляется репликация ДНК. Каждая из двух клеток, образовавшихся в результате мейоза I, вступает в мейоз II. Это деление протекает аналогично митозу (табл. 18.2).
*У некоторых организмов перерыв между мейозом I и мейозом II — так называемый интеркинез вообще отсутствует. При этом клетки, завершившие телофазу I, сразу же переходят в профазу II. Более того, могут выпадать и эти фазы. Так, у большинства растений, клетки, делящиеся мейозом, после окончания анафазы I вступают непосредственно в метафазу II. В этом случае переход от первого мейотического деления ко второму не сопровождается деспирализацией хромосом, формированием двух ядер и разделением материнской клетки на две дочерние.*
Таблица 18.2. Второе деление мейоза (мейоз II)
Схема
Фаза и процессы, происходящие в ней
Профаза II. В результате спирализации хроматина формируются двухроматидные хромосомы (набор 1n2c). В это же время начинается образование веретена деления. После распада ядерной оболочки отдельные хромосомы беспорядочно располагаются в гиалоплазме
Анафаза II. Происходит разделение центромер. Сестринские хроматиды (теперь уже дочерние хромосомы ) растягиваются к разным полюсам клетки. В конце анафазы II набор хромосом и хроматид у каждого полюса составляет 1n1c
Телофаза II. Хромосомы деспирализуются, формируются ядра, и происходит разделение клеток. При этом образуются четыре дочерние клетки, имеющие набор 1n1c
Таким образом, в результате первого деления мейоза исходная материнская клетка (2n4c) разделилась на две дочерние, имеющие гаплоидный набор хромосом. *Следовательно, в мейозе I произошла редукция (уменьшение) числа хромосом в 2 раза. Поэтому первое деление называют редукционным. В образовавшихся гаплоидных клетках каждая хромосома представлена двумя хроматидами (1n2c).
В результате второго деления, протекающего по типу митоза, набор хромосом (1n) не изменяется. Это деление мейоза называется эквационным (от лат. aequatio — уравнивание). Эквационное деление, в отличие от редукционного, сопровождается расхождением сестринских хроматид. Поэтому итогом второго деления является образование четырех гаплоидных клеток с однохроматидными хромосомами (1n1c).*
*Как и в случае митоза, правильное протекание мейоза может быть нарушено действием определенных внешних или внутриклеточных факторов. Последствия таких воздействий могут быть разными, вплоть до образования нежизнеспособных дочерних клеток. Наиболее часто встречающейся патологией мейоза является нерасхождение хромосом в анафазе I. Оно происходит вследствие нарушения разделения бивалентов и выражается в том, что обе гомологичные хромосомы перемещаются к одному из полюсов клетки. Нерасхождение может наблюдаться и на стадии анафазы II. При этом к одному и тому же полюсу отходят две сестринские хроматиды (дочерние хромосомы ). Как в первом, так и во втором случае результатом нерасхождения хромосом является образование генетически неравноценных клеток. В одних клетках наблюдается избыток хромосом (1n + 1), а в других — недостаток (1n — 1).*
Биологическое значение мейоза. У животных и человека путем мейоза образуются гаметы — гаплоидные половые клетки. В результате последу ющего оплодотворения формируется зигота с двойным набором хромосом, из которой развивается новый организм. Он является диплоидным, как и его родители, а значит, сохраняет свойственный данному виду организмов кариотип. Без мейоза, приводящего к уменьшению набора хромосом в 2 раза, половое размножение сопровождалось бы удвоением числа хромосом в каждом новом поколении. У растений, многих водорослей и грибов мейоз приводит к формированию спор, с помощью которых осуществляется бесполое размножение.