Формальные языки программирования и для чего они предназначены
Формальные языки и грамматики
Мотивация
Время от времени на Хабре публикуются посты и переводные статьи, посвященные тем или иным аспектам теории формальных языков. Среди таких публикаций (не хочется указывать конкретные работы, чтобы не обижать их авторов), особенно среди тех, которые посвящены описанию различных программных инструментов обработки языков, часто встречаются неточности и путаница. Автор склонен считать, что одной из основных причин, приведших к такому прискорбному положению вещей, является недостаточный уровень понимания идей, лежащих в основании теории формальных языков.
Этот текст задуман как популярное введение в теорию формальных языков и грамматик. Эта теория считается (и, надо сказать, справедливо) довольно сложной и запутанной. На лекциях студенты обычно скучают и экзамены тем более не вызывают энтузиазма. Поэтому и в науке не так много исследователей в этой тематике. Достаточно сказать, что за все время, с зарождения теории формальных грамматик в середине 50-х годов прошлого века и до наших дней, по этому научному направлению было выпущено всего две докторских диссертации. Одна из них была написана в конце 60-х годов Алексеем Владимировичем Гладким, вторая уже на пороге нового тысячелетия — Мати Пентусом.
Далее в наиболее доступной форме описаны два основных понятия теории формальных языков: формальный язык и формальная грамматика. Если тест будет интересен аудитории, то автор дает торжественное обещание разродиться еще парой подобных опусов.
Формальные языки
Коротко говоря, формальный язык — это математическая модель реального языка. Под реальным языком здесь понимается некий способ коммуникации (общения) субъектов друг с другом. Для общения субъекты используют конечный набор знаков (символов), которые проговариваются (выписываются) в строгом временном порядке, т.е. образуют линейные последовательности. Такие последовательности обычно называют словами или предложениями. Таким образом, здесь рассматривается только т.н. коммуникативная функция языка, которая изучается с использованием математических методов. Другие функции языка здесь не изучаются и, потому, не рассматриваются.
В качестве известного примера такой математической абстракции можно привести модель, известную под неблагозвучным для русского уха названием «мешок слов». В этой модели исследуются тексты естественного языка (т.е. одного из тех языков, которые люди используют в процессе повседневного общения между собой). Основной объект модели мешка слов — это слово, снабженное единственным атрибутом, частотой встречаемости этого слова в исходном тексте. В модели не учитывается, как слова располагаются рядом друг с другом, только сколько раз каждое слово встречается в тексте. Мешок слов используется в машинном обучении на основе текстов в качестве одного из основных объектов изучения.
Но в теории формальных языков представляется важным изучить законы расположения слов рядом друг с другом, т.е. синтаксические свойства текстов. Для этого модель мешка слов выглядит бедной. Поэтому формальный язык задается как множество последовательностей, составленных из элементов конечного алфавита. Определим это более строго.
Алфавит представляет собой конечное непустое множество элементов. Эти элементы будем называть символам. Для обозначения алфавита обычно будем использовать латинское V, а для обозначения символов алфавита — начальные строчные буквы латинского алфавита. Например, выражение V = обозначает алфавит из двух символов a и b.
Цепочка представляет собой конечную последовательность символов. Например, abc — цепочка из трех символов. Часто при обозначении цепочек в символах используют индексы. Сами цепочки обозначают строчными символами конца греческого алфавита. Например, omega = a1. an — цепочка из n символов. Цепочка может быть пустой, т.е. не содержать ни одного символа. Такие цепочки будем обозначать греческой буквой эпсилон.
Наконец, формальный язык L над алфавитом V — это произвольное множеств цепочек, составленных из символов алфавита V. Произвольность здесь означает тот факт, что язык может быть пустым, т.е. не иметь ни одной цепочки, так и бесконечным, т.е. составленным из бесконечного числа цепочек. Последний факт часто вызывает недоумение: разве имеются реальные языки, которые содержат бесконечное число цепочек? Вообще говоря, в природе все конечно. Но мы здесь используем бесконечность как возможность образования цепочек неограниченной длины. Например, язык, который состоит из возможных имен переменных языка программирования C++, является бесконечным. Ведь имена переменных в C++ не ограничены по длине, поэтому потенциально таких имен может быть бесконечно много. В реальности, конечно, длинные имена переменных не имеют для нас особого смысла т.к. к концу чтения такого имени уже забываешь его начало. Но в качестве потенциальной возможности задавать неограниченные по длине переменные, это свойство выглядит полезным.
Итак, формальные языки — это просто множества цепочек, составленных из символов некоторого конечного алфавита. Но возникает вопрос: как можно задать формальный язык? Если язык конечен, то можно просто выписать все его цепочки одну за другой (конечно, можно задуматься, имеет ли смысл выписывать цепочки языка, имеющего хотя бы десять тысяч элементов и, вообще, есть ли смысл в таком выписывании?). Что делать, если язык бесконечен, как его задавать? В этот момент на сцену выходят грамматики.
Формальные грамматики
Способ задания языка называет грамматикой этого языка. Таким образом, грамматикой мы называем любой способ задания языка. Например, грамматика L = (здесь n — натуральное число) задает язык L, состоящий из цепочек вида ab, aabb, aaabbb и т.д. Язык L представляет собой бесконечное множество цепочек, но тем не менее, его грамматика (описание) состоит всего из 10 символов, т.е. конечна.
Назначение грамматики — задание языка. Это задание обязательно должно быть конечным, иначе человек не будет в состоянии эту грамматику понять. Но каким образом, конечное задание описывает бесконечные совокупности? Это возможно только в том случае, если строение всех цепочек языка основано на единых принципов, которых конечное число. В примере выше в качестве такого принципа выступает следующий: «каждая цепочка языка начинается с символов a, за которыми идет столько же символов b». Если язык представляет собой бесконечную совокупность случайным образом набранных цепочек, строение которых не подчиняется единым принципам, то очевидно для такого языка нельзя придумать грамматику. И здесь еще вопрос, можно или нет считать такую совокупность языком. В целях математической строгости и единообразия подхода обычно такие совокупности языком считают.
Итак, грамматика языка описывает законы внутреннего строения его цепочек. Такие законы обычно называют синтаксическими закономерностями. таким образом, можно перефразировать определение грамматики, как конечного способа описания синтаксических закономерностей языка. Для практики интересны не просто грамматики, но грамматики, которые могут быть заданы в рамках единого подхода (формализма или парадигмы). Иначе говоря, на основе единого языка (метаязыка) описания грамматик всех формальных языков. Тогда можно придумать алгоритм для компьютера, который будет брать на вход описание грамматики, сделанное на этом метаязыке, и что-то делать с цепочками языка.
Такие парадигмы описания грамматик называют синтаксическими теориями. Формальная грамматика — это математическая модель грамматики, описанная в рамках какой-то синтаксической теории. Таких теорий придумано довольно много. Самый известный метаязык для задания грамматик — это, конечно, порождающие грамматики Хомского. Но имеются и другие формализмы. Один из таких них — окрестностные грамматики, будет описан чуть ниже.
Окрестностные грамматики
В середине 60-х годов советский математик Юлий Анатольевич Шрейдер предложил простой способ описания синтаксиса языков на основе т.н. окрестностных грамматик. Для каждого символа языка задается конечное число его «окрестностей» — цепочек, содержащих данный символ (центр окрестности) где-то внутри. Набор таких окрестностей для каждого символа алфавита языка называется окрестностной грамматикой. Цепочка считается принадлежащей языку, задаваемому окрестностной грамматикой, если каждый символ этой цепочки входит в нее вместе с некоторой своей окрестностью.
Не всякий язык может быть описан окрестностной грамматикой. Рассмотрим, например, язык B, цепочки которого начинаются либо с символа «0», либо с символа «1». В последнем случае далее в цепочке могут идти символы «a» и «b». Если же цепочка начинается с нуля, то далее могут идти только символы «a». Нетрудно доказать, что для этого языка нельзя придумать никакой окрестностной грамматики. Легитимность вхождения символа «b» в цепочку обусловлена ее первым символом. Для любой окрестностной грамматики, в которой задается связь между символами «b» и «1» можно будет подобрать достаточно длинную цепочку, чтобы всякая окрестность символа «b» не доставала до начала цепочки. Тогда в начало можно будет подставить символ «0» и цепочка будет принадлежать языку A, что не отвечает нашим интуитивным представлениям о синтаксическом строении цепочек этого языка.
С другой стороны, легко можно построить конечный автомат, который распознает этот язык. Значит, класс языков, которые описываются окрестностными грамматиками, уже класса автоматных языков. Языки, задаваемые окрестностными грамматиками, будем называть шрейдеровскими. Таким образом, в иерархии языков можно выделить класс шрейдеровских языков, который является подклассом автоматных языков.
Можно сказать, что шрейдеровские языки задают одно простое синтаксическое отношение — «быть рядом» или отношение непосредственного предшествования. Отношение дальнего предшествования (которое, очевидно, присутствует в языке B) окрестностной грамматикой задано быть не может. Но, если визуализировать синтаксические отношения в цепочках языка, то для диаграмм отношений, в которые превращаются такие цепочки, можно придумать окрестностную грамматику.
Язык программирования
Язы́к программи́рования — формальная знаковая система, предназначенная для записи компьютерных программ. Язык программирования определяет набор лексических, синтаксических и семантических правил, задающих внешний вид программы и действия, которые выполнит исполнитель (компьютер) под её управлением.
Со времени создания первых программируемых машин человечество придумало более двух с половиной тысяч языков программирования. [1] Каждый год их число увеличивается. Некоторыми языками умеет пользоваться только небольшое число их собственных разработчиков, другие становятся известны миллионам людей. Профессиональные программисты иногда применяют в своей работе более десятка разнообразных языков программирования.
Создатели языков по-разному толкуют понятие язык программирования. К наиболее распространённым утверждениям, признаваемым большинством разработчиков, относятся следующие: [источник не указан 1249 дней]
Содержание
Стандартизация языков программирования
Язык программирования может быть представлен в виде набора спецификаций, определяющих его синтаксис и семантику.
Для многих широко распространённых языков программирования созданы международные стандарты. Специальные организации проводят регулярное обновление и публикацию спецификаций и формальных определений соответствующего языка. В рамках таких комитетов продолжается разработка и модернизация языков программирования и решаются вопросы о расширении или поддержке уже существующих и новых языковых конструкций.
Типы данных
Современные цифровые компьютеры обычно являются двоичными и данные хранят в двоичном (бинарном) коде (хотя возможны реализации и в других системах счисления). Эти данные как правило отражают информацию из реального мира (имена, банковские счета, измерения и др.), представляющую высокоуровневые концепции.
Особая система, по которой данные организуются в программе, — это система типов языка программирования; разработка и изучение систем типов известна под названием теория типов. Языки могут быть классифицированы как системы со статической типизацией и языки с динамической типизацией.
Статически-типизированные языки могут быть в дальнейшем подразделены на языки с обязательной декларацией, где каждая переменная и объявление функции имеет обязательное объявление типа, и языки с выводимыми типами. Иногда динамически-типизированные языки называются латентно-типизированными.
Структуры данных
Системы типов в языках высокого уровня позволяют определять сложные, составные типы, так называемые структуры данных. Как правило, структурные типы данных образуются как декартово произведение базовых (атомарных) типов и ранее определённых составных типов.
Основные структуры данных (списки, очереди, хеш-таблицы, двоичные деревья и пары) часто представлены особыми синтаксическими конструкциями в языках высокого уровня. Такие данные структурируются автоматически.
Семантика языков программирования
Существует несколько подходов к определению семантики языков программирования.
Наиболее широко распространены разновидности следующих трёх: операционного, деривационного (аксиоматического) и денотационного (математического).
Парадигма программирования
Язык программирования строится в соответствии с той или иной базовой моделью вычислений и парадигмой программирования.
Несмотря на то, что большинство языков ориентировано на императивную модель вычислений, задаваемую фон-неймановской архитектурой ЭВМ, существуют и другие подходы. Можно упомянуть языки со стековой вычислительной моделью (Форт, Factor, PostScript и др.), а также функциональное (Лисп, Haskell, ML, F# и др.) и логическое программирование (Пролог) и язык РЕФАЛ, основанный на модели вычислений, введённой советским математиком А. А. Марковым-младшим.
В настоящее время также активно развиваются проблемно-ориентированные, декларативные и визуальные языки программирования.
Способы реализации языков
Языки программирования могут быть реализованы как компилируемые и интерпретируемые.
Программа на компилируемом языке при помощи компилятора (особой программы) преобразуется (компилируется) в машинный код (набор инструкций) для данного типа процессора и далее собирается в исполнимый модуль, который может быть запущен на исполнение как отдельная программа. Другими словами, компилятор переводит исходный текст программы с языка программирования высокого уровня в двоичные коды инструкций процессора.
Если программа написана на интерпретируемом языке, то интерпретатор непосредственно выполняет (интерпретирует) исходный текст без предварительного перевода. При этом программа остаётся на исходном языке и не может быть запущена без интерпретатора. Процессор компьютера, в этой связи, можно назвать интерпретатором для машинного кода.
Разделение на компилируемые и интерпретируемые языки является условным. Так, для любого традиционно компилируемого языка, как, например, Паскаль, можно написать интерпретатор. Кроме того, большинство современных «чистых» интерпретаторов не исполняют конструкции языка непосредственно, а компилируют их в некоторое высокоуровневое промежуточное представление (например, с разыменованием переменных и раскрытием макросов).
Для любого интерпретируемого языка можно создать компилятор — например, язык Лисп, изначально интерпретируемый, может компилироваться без каких бы то ни было ограничений. Создаваемый во время исполнения программы код может так же динамически компилироваться во время исполнения.
Как правило, скомпилированные программы выполняются быстрее и не требуют для выполнения дополнительных программ, так как уже переведены на машинный язык. Вместе с тем, при каждом изменении текста программы требуется её перекомпиляция, что замедляет процесс разработки. Кроме того, скомпилированная программа может выполняться только на том же типе компьютеров и, как правило, под той же операционной системой, на которую был рассчитан компилятор. Чтобы создать исполняемый файл для машины другого типа, требуется новая компиляция.
Интерпретируемые языки обладают некоторыми специфическими дополнительными возможностями (см. выше), кроме того, программы на них можно запускать сразу же после изменения, что облегчает разработку. Программа на интерпретируемом языке может быть зачастую запущена на разных типах машин и операционных систем без дополнительных усилий.
Однако интерпретируемые программы выполняются заметно медленнее, чем компилируемые, кроме того, они не могут выполняться без программы-интерпретатора.
Некоторые языки, например, Java и C#, находятся между компилируемыми и интерпретируемыми. А именно, программа компилируется не в машинный язык, а в машинно-независимый код низкого уровня, байт-код. Далее байт-код выполняется виртуальной машиной. Для выполнения байт-кода обычно используется интерпретация, хотя отдельные его части для ускорения работы программы могут быть транслированы в машинный код непосредственно во время выполнения программы по технологии компиляции «на лету» (Just-in-time compilation, JIT). Для Java байт-код исполняется виртуальной машиной Java (Java Virtual Machine, JVM), для C# — Common Language Runtime.
Подобный подход в некотором смысле позволяет использовать плюсы как интерпретаторов, так и компиляторов. Следует упомянуть, что есть языки, имеющие и интерпретатор, и компилятор (Форт).
Используемые символы
Современные языки программирования рассчитаны на использование ASCII, то есть доступность всех графических символов ASCII является необходимым и достаточным условием для записи любых конструкций языка. Управляющие символы ASCII используются ограниченно: допускаются только возврат каретки CR, перевод строки LF и горизонтальная табуляция HT (иногда также вертикальная табуляция VT и переход к следующей странице FF).
Заметным исключением является язык APL, в котором используется очень много специальных символов.
Использование символов за пределами ASCII (например, символов KOI8-R или символов Юникода) зависит от реализации: иногда они разрешаются только в комментариях и символьных/строковых константах, а иногда и в идентификаторах. В СССР существовали языки, где все ключевые слова писались русскими буквами, но большу́ю популярность подобные языки не завоевали (исключение составляет Встроенный язык программирования 1С:Предприятие).
Расширение набора используемых символов сдерживается тем, что многие проекты по разработке программного обеспечения являются международными. Очень сложно было бы работать с кодом, где имена одних переменных записаны русскими буквами, других — арабскими, а третьих — китайскими иероглифами. Вместе с тем, для работы с текстовыми данными языки программирования нового поколения (Delphi 2006, C#, Java) поддерживают Unicode.
Языки программирования
Язы́к программи́рования — формальная знаковая система, предназначенная для записи компьютерных программ. Язык программирования определяет набор лексических, синтаксических и семантических правил, задающих внешний вид программы и действия, которые выполнит исполнитель (компьютер) под ее управлением.
Со времени создания первых программируемых машин человечество придумало уже более восьми с половиной тысяч языков программирования. Каждый год их число пополняется новыми. Некоторыми языками умеет пользоваться только небольшое число их собственных разработчиков, другие становятся известны миллионам людей. Профессиональные программисты иногда применяют в своей работе более десятка разнообразных языков программирования.
Создатели языков по-разному толкуют понятие язык программирования. К наиболее распространённым утверждениям, признаваемым большинством разработчиков, относятся следующие:
Содержание
Стандартизация языков программирования [ ]
Язык программирования может быть представлен в виде набора спецификаций, определяющих его синтаксис и семантику.
Для многих широко распространённых языков программирования созданы международные стандарты. Специальные организации проводят регулярное обновление и публикацию спецификаций и формальных определений соответствующего языка. В рамках таких комитетов продолжается разработка и модернизация языков программирования и решаются вопросы о расширении или поддержке уже существующих и новых языковых конструкций.
Типы данных [ ]
Современные цифровые компьютеры обычно являются двоичными и данные хранят в двоичном (бинарном) коде (хотя возможны реализации и в других системах счисления). Эти данные как правило отражают информацию из реального мира (имена, банковские счета, измерения и др.), представляющую высокоуровневые концепции.
Особая система, по которой данные организуются в программе, — это система типов языка программирования; разработка и изучение систем типов известна под названием теория типов. Языки могут быть классифицированы как системы со статической типизацией и языки с динамической типизацией.
Статически-типизированные языки могут быть в дальнейшем подразделены на языки с обязательной декларацией, где каждая переменная и объявление функции имеет обязательное объявление типа, и языки с выводимыми типами. Иногда динамически-типизированные языки называются латентно-типизированными.
Структуры данных [ ]
Системы типов в языках высокого уровня позволяют определять сложные, составные типы, так называемые структуры данных. Как правило, структурные типы данных образуются как декартово произведение базовых (атомарных) типов и ранее определённых составных типов.
Основные структуры данных (списки, очереди, хеш-таблицы, двоичные деревья и пары) часто представлены особыми синтаксическими конструкциями в языках высокого уровня. Такие данные структурируются автоматически.
Семантика языков программирования [ ]
Существует несколько подходов к определению семантики языков программирования.
Наиболее широко распространены разновидности следующих трёх: операционного, денотационного (математического) и деривационного (аксиоматического).
При описании семантики в рамкахоперационного подхода обычно исполнение конструкций языка программирования интерпретируется с помощью некоторой воображаемой (абстрактной) ЭВМ.
Деривационная семантика описывает последствия выполнения конструкций языка с помощью языка логики и задания пред- и постусловий.
Денотационная семантика оперирует понятиями, типичными для математики— множества, соответствия, а также суждения, утверждения и др.
Парадигма программирования [ ]
Язык программирования строится в соответствии с той или иной базовой вычислений и парадигмой программирования.
В настоящее время также активно развиваются проблемно-ориентированные, декларативные и визуальные языки программирования.
Способы реализации языков [ ]
Языки программирования могут быть реализованы как компилируемые и интерпретируемые.
Программа на компилируемом языке при помощи специальной программы компилятора преобразуется (компилируется) в набор инструкций для данного типа процессора (машинный код) и далее записывается в исполнимый модуль, который может быть запущен на выполнение как отдельная программа. Другими словами, компилятор переводит исходный текст программы с языка программирования высокого уровня в двоичные коды инструкций процессора.
Если программа написана на интерпретируемом языке, то интерпретатор непосредственно выполняет (интерпретирует) исходный текст без предварительного перевода. При этом программа остаётся на исходном языке и не может быть запущена без интерпретатора. Можно сказать, что процессор компьютера — это интерпретатор машинного кода.
Кратко говоря, компилятор переводит исходный текст программы на машинный язык сразу и целиком, создавая при этом отдельную машинно-исполняемую программу, а интерпретатор выполняет исходный текст прямо во время исполнения программы («интерпретируя» его своими средствами).
Для любого интерпретируемого языка можно создать компилятор — например, язык Лисп, изначально интерпретируемый, может компилироваться без каких бы то ни было ограничений. Создаваемый во время исполнения программы код может так же динамически компилироваться во время исполнения.
Как правило, скомпилированные программы выполняются быстрее и не требуют для выполнения дополнительных программ, так как уже переведены на машинный язык. Вместе с тем, при каждом изменении текста программы требуется её перекомпиляция, что создаёт трудности при разработке. Кроме того, скомпилированная программа может выполняться только на том же типе компьютеров и, как правило, под той же операционной системой, на которую был рассчитан компилятор. Чтобы создать исполняемый файл для машины другого типа, требуется новая компиляция.
Интерпретируемые языки обладают некоторыми специфическими дополнительными возможностями (см. выше), кроме того, программы на них можно запускать сразу же после изменения, что облегчает разработку. Программа на интерпретируемом языке может быть зачастую запущена на разных типах машин и операционных систем без дополнительных усилий.
Однако интерпретируемые программы выполняются заметно медленнее, чем компилируемые, кроме того, они не могут выполняться без дополнительной программы-интерпретатора.
Используемые символы [ ]
Использование символов за пределами ASCII (например, символов KOI8-R или символов Юникода) зависит от реализации: иногда они разрешаются только в комментариях и символьных/строковых константах, а иногда и в идентификаторах. ВСССР существовали языки, где все ключевые слова писались русскими буквами, но большу́ю популярность подобные языки не завоевали (исключение составляет Встроенный язык программирования 1С: Предприятие ).