Формат tls что это
Расширение файла TLS
TuneUp Utilities Logon Screen
Что такое файл TLS?
Программы, которые поддерживают TLS расширение файла
Программы, обслуживающие файл TLS
Как открыть файл TLS?
Причин, по которым у вас возникают проблемы с открытием файлов TLS в данной системе, может быть несколько. К счастью, наиболее распространенные проблемы с файлами TLS могут быть решены без глубоких знаний в области ИТ, а главное, за считанные минуты. Приведенный ниже список проведет вас через процесс решения возникшей проблемы.
Шаг 1. Установите TuneUp программное обеспечение
Проблемы с открытием и работой с файлами TLS, скорее всего, связаны с отсутствием надлежащего программного обеспечения, совместимого с файлами TLS на вашем компьютере. Решение простое, просто скачайте и установите TuneUp. Полный список программ, сгруппированных по операционным системам, можно найти выше. Если вы хотите загрузить установщик TuneUp наиболее безопасным способом, мы рекомендуем вам посетить сайт TuneUp Corporation и загрузить его из официальных репозиториев.
Шаг 2. Убедитесь, что у вас установлена последняя версия TuneUp
Если проблемы с открытием файлов TLS по-прежнему возникают даже после установки TuneUp, возможно, у вас устаревшая версия программного обеспечения. Проверьте веб-сайт разработчика, доступна ли более новая версия TuneUp. Иногда разработчики программного обеспечения вводят новые форматы вместо уже поддерживаемых вместе с новыми версиями своих приложений. Это может быть одной из причин, по которой TLS файлы не совместимы с TuneUp. Самая последняя версия TuneUp обратно совместима и может работать с форматами файлов, поддерживаемыми более старыми версиями программного обеспечения.
Шаг 3. Назначьте TuneUp для TLS файлов
После установки TuneUp (самой последней версии) убедитесь, что он установлен в качестве приложения по умолчанию для открытия TLS файлов. Следующий шаг не должен создавать проблем. Процедура проста и в значительной степени не зависит от системы
Изменить приложение по умолчанию в Windows
Изменить приложение по умолчанию в Mac OS
Шаг 4. Проверьте TLS на наличие ошибок
Если вы выполнили инструкции из предыдущих шагов, но проблема все еще не решена, вам следует проверить файл TLS, о котором идет речь. Отсутствие доступа к файлу может быть связано с различными проблемами.
Если TLS действительно заражен, возможно, вредоносное ПО блокирует его открытие. Сканируйте файл TLS и ваш компьютер на наличие вредоносных программ или вирусов. TLS файл инфицирован вредоносным ПО? Следуйте инструкциям антивирусного программного обеспечения.
2. Проверьте, не поврежден ли файл
Если файл TLS был отправлен вам кем-то другим, попросите этого человека отправить вам файл. В процессе копирования файла могут возникнуть ошибки, делающие файл неполным или поврежденным. Это может быть источником проблем с файлом. Это может произойти, если процесс загрузки файла с расширением TLS был прерван и данные файла повреждены. Загрузите файл снова из того же источника.
3. Проверьте, есть ли у вашей учетной записи административные права
Некоторые файлы требуют повышенных прав доступа для их открытия. Переключитесь на учетную запись с необходимыми привилегиями и попробуйте снова открыть файл TuneUp Utilities Logon Screen.
4. Убедитесь, что в системе достаточно ресурсов для запуска TuneUp
Если система перегружена, она может не справиться с программой, которую вы используете для открытия файлов с расширением TLS. В этом случае закройте другие приложения.
5. Убедитесь, что ваша операционная система и драйверы обновлены
Современная система и драйверы не только делают ваш компьютер более безопасным, но также могут решить проблемы с файлом TuneUp Utilities Logon Screen. Возможно, что одно из доступных обновлений системы или драйверов может решить проблемы с файлами TLS, влияющими на более старые версии данного программного обеспечения.
Вы хотите помочь?
Если у Вас есть дополнительная информация о расширение файла TLS мы будем признательны, если Вы поделитесь ею с пользователями нашего сайта. Воспользуйтесь формуляром, находящимся здесь и отправьте нам свою информацию о файле TLS.
Основы HTTPS, TLS, SSL. Создание собственных x509 сертификатов. Пример настройки TLSv1.2 в Spring Boot
Привет, Хабр! В современном мире абсолютное большинство сайтов используют HTTPS (Google даже снижает рейтинг сайтов работающих по HTTP в поисковой выдаче), а подключение к различным системам происходит по протоколу TLS/SSL. Поэтому любой разработчик рано или поздно сталкивается с этими технологиями на практике. Данная статья призвана помочь разобраться, если вы совершенно не в курсе что это такое и как оно устроено. Мы разберем как работает соединение по протоколу TLS, как выпустить собственные сертификаты и настроем TLS в Spring Boot приложении. Поехали!
Что не так с HTTP?
Симметричное шифрование предполагает наличие общего ключа одновременно у отправителя и получателя, с помощью которого происходит шифровка и дешифровка данных. Данный тип не требователен к ресурсам, однако существенно страдает безопасность из-за опасности кражи ключа злоумышленником.
При использовании ассиметричного шифрования существует открытый ключ, который можно свободно распространять, и закрытый ключ, который держится в секрете у одной из сторон. Этот тип работает медленно, относительно симметричного шифрования, однако скомпрометировать закрытый ключ сложнее.
Что происходит на практике
Что такое Message Authentication Code или MAC? Это хэш, сгенерированный с использованием выбранной криптографической хэш-функции и разделяемого ключа, который добавляется сзади к сообщению. Перед отправкой данных отправитель вычисляет MAC для них, а получатель перед обработкой вычисляет MAC для принятого сообщения и сравнивает его с MAC этого принятого сообщения. Предназначен для проверки целостности, то есть что сообщение не было изменено при его передаче.
Для чего нужен идентификатор сессии? Как мы посмотрим далее, процесс установления TLS соединения затратен по времени и ресурсам. Предусмотрен механизм возобновления соединения с помощью отправки клиентом этого идентификатора. Если сервер тоже все еще хранит соответствующие настройки, то клиент и сервер смогут продолжить общение использую ранее выбранные алгоритмы и ключи.
Кем подписан сертификат корневого CA? А никем, нет инстанции выше корневого CA. Сертификат (открытый ключ) в этом случае подписан собственным закрытым ключом. Такие сертификаты называют самоподписанные (sefl-signed).
Сервер случайно генерирует число 6, передает клиенту числа p = 17, g = 3, Ys = 3 6 mod 17 = 15
Клиент случайно генерирует число 7 и возвращает серверу Yc = 3 7 mod 17 = 11
Сервер считает итоговое число 11 6 mod 17= 8, и клиент 15 7 mod 17 = 8
После этого соединение считается установленным, и происходит передача полезной информации
Двусторонний TLS
Двусторонний TLS или Two Way TLS или mutual TLS (mTLS) означает проверку сертификата клиента. Сервер после своего сообщения Certificate посылает запрос сертификата клиента CertificateRequest. Клиент в ответ отправляет Certificate, сервер производит проверку, аналогичную проверке сертификата сервера клиентом. Далее настройка TLS происходит в описанном выше порядке.
TLSv1.3
Стоит отметить, что все выше написанное относится к TLSv1.2, которая начинает понемногу устаревать. В 2018 году была разработана новая версия 1.3 в которой: были запрещены уже ненадежные алгоритмы, ускорен процесс соединения, переработан протокол рукопожатия и др. Интернет медленно но верно обновляется до TLSv1.3, однако все еще большинство сайтов работают по протоколу TLSv1.2. Поэтому информация в этой статье остается актуальной.
Выпускаем собственные сертификаты
Теперь, когда мы разобрали теорию, самое время приступить к практике! Нам понадобятся OpenSSL и keytool (входит в поставку JDK). Для начала создадим сертификат корневого CA, которым будем подписывать запросы на подпись сертификата клиента и сервера. Сгенерируем приватный ключ RSA зашифрованный AES 256 с паролем «password» длиной 4096 бит (меньше 1024 считается ненадежным) в файл CA-private-key.key:
Нет какого-то принятого стандарта расширений для файлов, связанных с сертификатами. Мы будем использовать:
Так как подписать сертификат другим сертификатом пока нельзя, подпишем запрос его же приватным ключом. Получившейся сертификат CA-self-signed-certificate.pem будет самоподписанным со сроком действия 1 день.
Теперь у нас есть сертификат, которому в будущем будут доверять наши клиент и сервер. Похожим образом сделаем приватные ключи и запросы на подпись сертификата для них:
После этого необходимо создать хранилище ключей с сертификатами (keystore) Server-keystore.p12 для использования в нашем приложении. Положим туда сертификат сервера, приватный ключ сервера и защитим хранилище паролем «password»:
Осталось только создать хранилище доверенных сертификатов (truststore): сервер будет доверять всем клиентам, в цепочке подписания которых есть сертификат из truststore. К сожалению, для Java сертификаты в truststore должны содержать специальный object identifier, а OpenSSL пока не поддерживает их добавление. Поэтому здесь мы прибегнем к поставляемому вместе с JDK keytool:
Для удобства, все описанные выше действия упакованы в bash script.
Настройка TLS в Spring Boot приложении
Основой для нашего проекта послужит шаблон с https://start.spring.io/ с одной лишь зависимостью Spring Web. Для включения TLS указываем в application.properties:
После этого указываем Spring тип keystore, путь к нему и пароль:
Для проверки доступа создадим минимальный контроллер:
Запускаем проект. Попробуем сделать запрос с помощью curl:
На этот раз все сработало, TLS в Spring Boot работает! Мы на этом не остановимся, добавим в приложение аутентификацию клиента (указываем truststore):
Запускаем и снова пытаемся выполнить запрос:
Очевидно, что сервер закрыл соединение, так как curl не предоставил никакого сертификата. Дополним запрос клиентским сертификатом и его закрытым ключом:
Итоги
В данной статье мы разобрались как работает протокол TLS и для чего он нужен. На практике научились создавать собственные сертификаты и использовать их в Java приложении на Spring Boot. Надеюсь, представленная информация оказалась Вам полезной. Спасибо за внимание!
Что такое TLS
Данный текст является вольным переводом вот этой главы замечательной книги «High Performance Browser Networking» авторства Ильи Григорика. Перевод выполнялся в рамках написания курсовой работы, потому очень вольный, но тем не менее будет полезен тем, кто слабо представляет что такое TLS, и с чем его едят.
Общие сведения о TLS
Протокол TLS (transport layer security) основан на протоколе SSL (Secure Sockets Layer), изначально разработанном в Netscape для повышения безопасности электронной коммерции в Интернете. Протокол SSL был реализован на application-уровне, непосредственно над TCP (Transmission Control Protocol), что позволяет более высокоуровневым протоколам (таким как HTTP или протоколу электронной почты) работать без изменений. Если SSL сконфигурирован корректно, то сторонний наблюдатель может узнать лишь параметры соединения (например, тип используемого шифрования), а также частоту пересылки и примерное количество данных, но не может читать и изменять их.
Конкретное место TLS (SSL) в стеке протоколов Интернета показано на схеме:
После того, как протокол SSL был стандартизирован IETF (Internet Engineering Task Force), он был переименован в TLS. Поэтому хотя имена SSL и TLS взаимозаменяемы, они всё-таки отличаются, так как каждое описывает другую версию протокола.
Первая выпущенная версия протокола имела название SSL 2.0, но была довольно быстра заменена на SSL 3.0 из-за обнаруженных уязвимостей. Как уже упоминалось, SSL был разработан компанией Netscape, так что в январе 1999 года IETF открыто стандартизирует его под именем TLS 1.0. Затем в апреле 2006 года была опубликована версия TLS 1.1, которая расширяла первоначальные возможности протокола и закрывала известные уязвимости. Актуальная версия протокола на данный момент – TLS 1.2, выпущенная в августе 2008 года.
Как уже говорилось, TLS был разработан для работы над TCP, однако для работы с протоколами дейтаграмм, такими как UDP (User Datagram Protocol), была разработана специальная версия TLS, получившая название DTLS (Datagram Transport Layer Security).
Шифрование, аутентификация и целостность
Также в рамках процедуры TLS Handshake имеется возможность установить подлинность личности и клиента, и сервера. Например, клиент может быть уверен, что сервер, которые предоставляет ему информацию о банковском счёте, действительно банковский сервер. И наоборот: сервер компании может быть уверен, что клиент, подключившийся к нему – именно сотрудник компании, а не стороннее лицо (данный механизм называется Chain of Trust и будет рассмотрен в соответствующем разделе).
Наконец, TLS обеспечивает отправку каждого сообщения с кодом MAC (Message Authentication Code), алгоритм создания которого – односторонняя криптографическая функция хеширования (фактически – контрольная сумма), ключи которой известны обоим участникам связи. Всякий раз при отправке сообщения, генерируется его MAC-значение, которое может сгенерировать и приёмник, это обеспечивает целостность информации и защиту от её подмены.
Таким образом, кратко рассмотрены все три механизма, лежащие в основе криптобезопасности протокола TLS.
TLS Handshake
Перед тем, как начать обмен данными через TLS, клиент и сервер должны согласовать параметры соединения, а именно: версия используемого протокола, способ шифрования данных, а также проверить сертификаты, если это необходимо. Схема начала соединения называется TLS Handshake и показана на рисунке:
Также имеется дополнительное расширение процедуры Handshake, которое имеет название TLS False Start. Это расширение позволяет клиенту и серверу начать обмен зашифрованными данными сразу после установления метода шифрования, что сокращает установление соединения на одну итерацию сообщений. Об этом подробнее рассказано в пункте “TLS False Start”.
Обмен ключами в протоколе TLS
По различным историческим и коммерческим причинам чаще всего в TLS используется обмен ключами по алгоритму RSA: клиент генерирует симметричный ключ, подписывает его с помощью открытого ключа сервера и отправляет его на сервер. В свою очередь, на сервере ключ клиента расшифровывается с помощью закрытого ключа. После этого обмен ключами объявляется завершённым. Данный алгоритм имеет один недостаток: эта же пара отрытого и закрытого ключей используется и для аутентификации сервера. Соответственно, если злоумышленник получает доступ к закрытому ключу сервера, он может расшифровать весь сеанс связи. Более того, злоумышленник может попросту записать весь сеанс связи в зашифрованном варианте и занять расшифровкой потом, когда удастся получить закрытый ключ сервера. В то же время, обмен ключами Диффи-Хеллмана представляется более защищённым, так как установленный симметричный ключ никогда не покидает клиента или сервера и, соответственно, не может быть перехвачен злоумышленником, даже если тот знает закрытый ключ сервера. На этом основана служба снижения риска компрометации прошлых сеансов связи: для каждого нового сеанса связи создаётся новый, так называемый «временный» симметричный ключ. Соответственно, даже в худшем случае (если злоумышленнику известен закрытый ключ сервера), злоумышленник может лишь получить ключи от будущих сессий, но не расшифровать ранее записанные.
На текущий момент, все браузеры при установке соединения TLS отдают предпочтение именно сочетанию алгоритма Диффи-Хеллмана и использованию временных ключей для повышения безопасности соединения.
Следует ещё раз отметить, что шифрование с открытым ключом используется только в процедуре TLS Handshake во время первоначальной настройки соединения. После настройки туннеля в дело вступает симметричная криптография, и общение в пределах текущей сессии зашифровано именно установленными симметричными ключами. Это необходимо для увеличения быстродействия, так как криптография с открытым ключом требует значительно больше вычислительной мощности.
Возобновление сессии TLS
Как уже отмечалось ранее, полная процедура TLS Handshake является довольно длительной и дорогой с точки зрения вычислительных затрат. Поэтому была разработана процедура, которая позволяет возобновить ранее прерванное соединение на основе уже сконфигурированных данных.
Начиная с первой публичной версии протокола (SSL 2.0) сервер в рамках TLS Handshake (а именно первоначального сообщения ServerHello) может сгенерировать и отправить 32-байтный идентификатор сессии. Естественно, в таком случае у сервера хранится кэш сгенерированных идентификаторов и параметров сеанса для каждого клиента. В свою очередь клиент хранит у себя присланный идентификатор и включает его (конечно, если он есть) в первоначальное сообщение ClientHello. Если и клиент, и сервер имеют идентичные идентификаторы сессии, то установка общего соединения происходит по упрощённому алгоритму, показанному на рисунке. Если нет, то требуется полная версия TLS Handshake.
Процедура возобновления сессии позволяет пропустить этап генерации симметричного ключа, что существенно повышает время установки соединения, но не влияет на его безопасность, так как используются ранее нескомпрометированные данные предыдущей сессии.
Однако здесь имеется практическое ограничение: так как сервер должен хранить данные обо всех открытых сессиях, это приводит к проблеме с популярными ресурсами, которые одновременно запрашиваются тысячами и миллионами клиентов.
Для обхода данной проблемы был разработан механизм «Session Ticket», который устраняет необходимость сохранять данные каждого клиента на сервере. Если клиент при первоначальной установке соединения указал, что он поддерживает эту технологию, то в сервер в ходе TLS Handshake отправляет клиенту так называемый Session Ticket – параметры сессии, зашифрованные закрытым ключом сервера. При следующем возобновлении сессии, клиент вместе с ClientHello отправляет имеющийся у него Session Ticket. Таким образом, сервер избавлен от необходимости хранить данные о каждом соединении, но соединение по-прежнему безопасно, так как Session Ticket зашифрован ключом, известным только на сервере.
TLS False Start
Технология возобновления сессии бесспорно повышает производительность протокола и снижает вычислительные затраты, однако она не применима в первоначальном соединении с сервером, или в случае, когда предыдущая сессия уже истекла.
Для получения ещё большего быстродействия была разработана технология TLS False Start, являющаяся опциональным расширением протокола и позволяющая отправлять данные, когда TLS Handshake завершён лишь частично. Подробная схема TLS False Start представлена на рисунке:
Важно отметить, что TLS False Start никак не изменяет процедуру TLS Handshake. Он основан на предположении, что в тот момент, когда клиент и сервер уже знают о параметрах соединения и симметричных ключах, данные приложений уже могут быть отправлены, а все необходимые проверки можно провести параллельно. В результате соединение готово к использованию на одну итерацию обмена сообщениями раньше.
TLS Chain of trust
Пусть теперь Алиса получает сообщение от Чарли, с которым она не знакома, но который утверждает, что дружит с Бобом. Чтобы это доказать, Чарли заранее попросил подписать собственный открытый ключ закрытым ключом Боба, и прикрепляет эту подпись к сообщению Алисе. Алиса же сначала проверяет подпись Боба на ключе Чарли (это она в состоянии сделать, ведь открытый ключ Боба ей уже известен), убеждается, что Чарли действительно друг Боба, принимает его сообщение и выполняет уже известную проверку целостности, убеждаясь, что сообщение действительно от Чарли:
Описанное в предыдущем абзаце и есть создание «цепочки доверия» (или «Chain of trust», если по-английски).
В протоколе TLS данные цепи доверия основаны на сертификатах подлинности, предоставляемых специальными органами, называемыми центрами сертификации (CA – certificate authorities). Центры сертификации производят проверки и, если выданный сертификат скомпрометирован, то данный сертификат отзывается.
Из выданных сертификатов складывается уже рассмотренная цепочка доверия. Корнем её является так называемый “Root CA certificate” – сертификат, подписанный крупным центром, доверие к которому неоспоримо. В общем виде цепочка доверия выглядит примерно таким образом:
Естественно, возникают случаи, когда уже выданный сертификат необходимо отозвать или аннулировать (например, был скомпрометирован закрытый ключ сертификата, или была скомпрометирована вся процедура сертификации). Для этого сертификаты подлинности содержат специальные инструкции о проверке их актуальности. Следовательно, при построении цепочки доверия, необходимо проверять актуальность каждого доверительного узла.
Механизм этой проверки прост и в его основе лежит т.н. «Список отозванных сертификатов» (CRL – «Certificate Revocation List»). У каждого из центров сертификации имеется данный список, представляющий простой перечень серийных номеров отозванных сертификатов. Соответственно любой, кто хочет проверить подлинность сертификата, попросту загружает данный список и ищет в нём номер проверяемого сертификата. Если номер обнаружится – это значит, что сертификат отозван.
Таким образом, в данной статье рассмотрены все ключевые средства, предоставляемые протоколом TLS для защиты информации. За некоторую отсебятину в статье прошу прощения, это издержки изначальной цели выполнения перевода.
Введение в TLS для п̶р̶а̶к̶т̶и̶к̶о̶в̶ Патриков (часть 1)
Как вы, возможно, уже знаете, это Патрик. Он морская звезда, а значит, можно, не оскорбляя его, сказать, что руки у него растут из одного места. Еще Патрик очень практичный и сразу забывает всё, что ему не нужно – но если что-то ему нужно, он хочет это знать (потому что ему это нужно!). Спойлер: здесь Патрик пытается сделать TLS Handshake.
Эта статья написана для Патрика и таких, как он. Она родилась из презентации, впервые показанной на нашем внутреннем образовательном Plesk TechTalk, где сотрудники в доступной форме делятся друг с другом информацией об интересных технологиях, процессах и решениях. Поэтому картинки в этой статье будут похожи на слайды 🙂 Автор оригинального текста доклада — program manager Plesk Руслан Косолапов.
Обычно все материалы по TLS охватывают какой-то маленький аспект, но не общую картину. Это не очень практично и у Патрика от такого болит голова. Здесь всё будет по-другому: коротко, применимо «в быту» и по возможности исчерпывающе.
Что такое TLS и зачем он Патрику
TLS (Transport Layer Security) – это протокол защиты транспортного уровня. Он нужен для того, чтобы никто не мог вас «прослушать» и узнать какую-то важную информацию (чаще всего пароли, если говорить о работе в сети). А еще для того, чтобы защититься от подделывания и модификации трафика в процессе передачи. Именно в этих двух вещах состоит назначение TLS.
Для наглядности давайте рассматривать TLS handshake как звонок Патрика Губке Бобу. Во время звонка кто-то может подслушать разговор (стоя рядом с Патриком либо включившись в середине линии), и вообще на другом конце может быть не Губка Боб – все эти проблемы актуальны. И чтобы их порешать, Патрик хочет использовать TLS.
Вкратце, верхнеуровневый handshake выглядит так:
Патрик: Хочу использововать TLS, шифры-версии такие-то.
Губка Боб: Ок, давай использовать шифры-версии такие-то.
После этого Губка Боб отсылает сертификат, Патрик его проверяет, говорит что все отлично, делается сессионный ключ (на самом деле их два, но это неважно). Почему используется сессионный ключ, а не ассиметричное шифрование — потому что это быстрее. После этого они начинают говорить на непонятном для расшифровки языке. Таким образом, всё защищено.
Кажется, что всё просто. Как работает на железе – нам не так важно. Но если начать задумываться – а Патрик начинает задумываться! – то возникает вопрос, как вообще договориться, что мы будем использовать TLS? Ведь когда-то TLS не было, а были только обычные протоколы – SMTP, HTTP. Как сказать, что надо по TLS? И здесь у нас в индустрии всё как обычно – есть много путей!
Сначала хотели использовать определенный порт, который будет подразумевать использование на нем TLS. Какие у этого минусы? И почему потом появился эксплицитный (явный) метод начала TLS-сессии? Причин несколько:
Остановимся немного подробнее на разных видах соединений и на том, как для них обстоят дела с TLS.
Connect: HTTP
Всё было бы легко, если бы, как всегда, не было нюансов. В случае с HTTP растущие требования к безопасности обеспечивают постоянную эволюцию процесса работы с TLS. Сначала был редирект на HTTPS, и это делалось просто в заголовке. Это оставляло лазейку для уязвимостей, поэтому товарищи из Google придумали HSTS (HTTP Strict Transport Security). Это такой заголовок в HTTP-ответе, который говорит браузеру: «запомни, пожалуйста, что когда ты приходишь на этот домен, иди сразу на HTTPS, даже если человек сказал идти на HTTP». Таким образом, нет никакого редиректа и всё происходит гораздо безопаснее. Кроме этого, у Google есть еще одна инициатива – можно оставить заявку, чтобы твой сайт добавили в список для Google Chrome «всегда ходить по HTTPS», вне зависимости от всяких заголовков.
Кратко: HSTS решает проблему уязвимостей при редиректе с HTTP на HTTPS, поэтому почти все браузеры поддерживают HSTS, что хорошо.
Connect: экзотика (новые версии HTTP и не только)
В HTTP/2 дела с TLS обстоят хорошо: он используется всегда (так сейчас сделаны браузеры). Кроме того, TLS в HTTP/2 должен быть свежим — то есть иметь версию 1.2+.
Скорее всего, уже очень скоро Google продавит повсеместное использование HTTP/3, уже сейчас он принят стандартом IANA. История его появления и развития довольно запутанная; главное, что стоит запомнить Патрику:
Кратко: года через 2 везде будет использоваться QUIC (то есть HTTP/3), а сейчас везде уже должен быть HTTP/2, но в действительности он еще не везде.
Connect: Mail
Многие клиенты считают, что на 587-м порту должен быть TLS, но здесь тоже есть нюансы: кто-то ожидает TLS по умолчанию, а кто-то ждет явного запроса STARTTLS от клиента. Из-за этого в разных сочетаниях mail-сервера и mail-клиента иногда возникают нежелательные эффекты. Например, клиент заходит на 587 порт, ожидая, что там будет TLS, в то же время сервер ждет, что клиент сам явно запросит STARTTLS. Ничего не получив, клиент откатывается на 25-й порт. В итоге – молчаливое переключение на небезопасное соединение по SMTP. При тестировании и разработке стоит помнить о таких эффектах сочетаний клиента и сервера. В Autodiscover есть разные возможности указать про TLS: как оно должно быть, что ожидается и что делать. Многие mail-клиенты понимают эти вещи.
Кратко: с поддержкой TLS в mail-серверах и mail-клиентах все в общем и целом нормально, но в частных случаях могут быть проблемы и расширения TLS поддерживаются не очень хорошо.
Connect: FTP
Здесь мало что можно сказать. Основная проблема – SNI (это когда на одном IP разные домены). На уровне FTP имя домена не передается. В эксплицитном варианте работать не может, потому что некуда его писать. Существует несколько вариантов решения — одни предлагают так, другие так, общее решение пока не принято, стандарта нет.
Кратко: поддержка TLS для FTP в каком-то виде есть (FTPS, SFTP — аналог FTP, реализованный через SSH), но некоторые аспекты не охвачены в силу технических ограничений самого FTP.
TLS Handshake
Итак, теперь мы знаем, как инициировать общение с использованием TLS в разных соединениях и Патрик смог сообщить о своем желании Губке Бобу. Как только они договорились, что будут использовать TLS, производится TLS Handshake. Его результатом должна стать договорённость клиента и сервера о том, как они всё это шифруют. Кроме этого, клиент должен убедиться, что сервер именно тот, какой надо. Иногда сервер также проверяет клиента (но значительно реже).
Шифры и версии
Как уже говорилось, на первом этапе выбирается, какая версия TLS и какие шифры будут использоваться для шифрования. Обычно шифр выглядит так:
Набор шифров есть в реестре IANA, а в протоколе TLS в бинарном виде лежит только его ID. Как видно на рисунке, здесь не просто (и не только) шифр, а еще режим его работы и другие детали, необходимые для TLS-handshake. Углубляться в подробности Патрику не нужно. Всё, что важно на данном этапе, это запомнить, что эти буквочки — это хорошо (а остальные — нехорошо):
Если запоминать тяжело, есть хорошие сервисы, которые могут вам про это рассказать, например, сервис от Mozilla ssl-config.mozilla.org.
Тут же можно посмотреть, что где и как поддерживается – за этим ребята из Mozilla пытаются следить.
Интересная деталь: клиент передает шифры в порядке приоритета согласно своим предпочтениям, но решение остается за сервером – он выбирает шифр, который ему кажется наилучшим из списка поддерживаемых клиентом.
Также обе стороны указывают максимальную поддерживаемую версию протокола – в данном случае Патрик более продвинутый, чем Губка Боб.
Собственно сертификат
Вместе с ответом «Давай делать вот так» сервер посылает свой сертификат или сертификаты – их может быть много.
Что представляет собой сертификат? Это связь информации (subject) – чаще всего это имя домена или организации, — и публичного ключа (public key). То есть, сертификат говорит: «Чувак, мой public key вот такой. Сейчас мы с его помощью договоримся о сессионных ключах». Также с его помощью можно проверять подписи сертификатов или еще чего-либо. То есть в принципе можно было бы использовать не сертификаты, а реестры, где эта связь указана. И на самом деле шаги в этом направлении продолжаются, потому что механизм Certificate Authority считается не очень хорошим, просто ничего другого нет.
Таким образом, сертификат – это структура ‘Subject: Public key’ плюс подпись того ишьюера (issuer в транслитерации на русский выглядит ужасно, но самый близкий синоним здесь — не очень близкий по контексту «эмитент»), который этот сертификат выписал. У ишьюера тоже есть сертификат и связь кого-то с чем-то. Проверить сертификат на правильность можно, взяв публичный ключ ишьюера и проверив подпись. Подделать в итоге здесь ничего нельзя.
Давайте пробежимся по сертификату и посмотрим, какие с ним могут быть проблемы.
Во-первых, serial Number подразумевает уникальность только в пределах ишьюера, хотя некоторый софт считает, что он уникален во всей вселенной. К счастью, чаще всего он действительно полностью уникален.
Также в сертификате указывается, какие алгоритмы используются для шифрования и подписи: RSA или ECDSA — то есть, какую криптографию использовать для работы с этим публичным ключом. Основная разница между RSA и ECDSA в том, что математический принцип работы ECDSA основан на эллиптических кривых, а RSA — просто на натуральных числах, поэтому он медленнее и для того, чтобы его нельзя было взломать, используются огромные биты ключей (3-4 тысячи). А для ECDSA достаточно ключа длиной в 300 бит и работает он быстрее. Поэтому многие переходят на ECDSA – handshake сам по себе тяжелый и хочется его сократить. ECDSA можно попросить при выписке сертификата, и если ишьюер его поддерживает, он вам сделает. А вот подпись сертификата зависит от того, какой приватный ключ есть в данный момент у ишьюера, а не от того, попросили вы ECDSA или RSA. Поэтому браузеры могут показывать, что в подписи одно, а в публичном ключе другое и не надо бояться, если в подписи не ECDSA.
Как же получить сертификат?
Вкратце – вот так:
Патрик говорит центру сертификации (Certificate Authority): мне нужен сертификат. Этот человек (или организация) проверяет, действительно ли это Патрик. Проверки могут быть самыми разными. Конечно, Патрик как клиент может и не иметь сертификата, а вот если сертификата нет у сервера, то никакого TLS не будет. Проверяется, всё ли правильно указано в заявке сертификата, действительно ли Патрик владеет этим субъектом (subject), на который просит сертификат. Этим занимаются вышестоящие удостоверяющие центры (Certificate Authority centres) – условные люди, которым все верят. Чтобы выписать сертификат, нужно составить CSR (Certificate signing request, запрос на выдачу сертификата).
Это тоже структура, работать с которой довольно сложно, потому что сервисов, позволяющих всё задать, указать, проверить и посмотреть, мало.
Итого, мы генерируем пару публичный ключ: приватный ключ, но отдаем только публичный, а приватный прячем. Затем формируем Certificate Signing Request и подписываем своим приватным ключом. Отправляем всё это центру сертификации, и тот начинает проверку. Она может быть разной, для особо крутых сертификатов есть специальные хитрые процедуры, но мы остановимся на общем случае.
CAA RR
Есть такая проблема, что люди, которым все верят, иногда не очень хорошие. Одна из причин того, что Symantec стал частью DigiCert, состоит в том, что он (Symantec) выписывал сертификаты без запроса от владельцев домена. Так делать нельзя, обидно было всем, но больше всех самому Symantec, потому что пришлось продать свой бизнес. Для того, чтобы сервер меньше зависел от таких недобросовестных товарищей, есть такая штука как CAA RR – запись в DNS, где написано, кому владелец разрешает выписывать сертификаты для своего домена. Эта функция есть и в Plesk, она пока используется мало, примерно как DNSSec, – но тем не менее. Все центры сертификации договорились проверять эту запись и если в ней указано, что этому центру сертификации выписывать сертификат нельзя, он скажет: «ты не прошел валидацию, у тебя в САА RR написано, что я тебе не могу сертификат выписывать» — и не выпишет. Если записи нет – то можно. Сейчас Google толкает инициативу, чтобы клиенты проверяли пришедший сертификат на соответствие CAA RR записям. Споры пока продолжаются.
Также CAA RR с того момента, как мы делали их поддержку в Plesk, расширились указанием методов валидации (то есть, можно также указать здесь, каким методом ты валидируешь, что этот домен твой) и Account URI (Uniform Resource Identifier). Популярный среди пользователей Plesk Let’s Encrypt уже всё это поддерживает (молодец!).
Всё это работает для любого типа сертификатов, а так как дальше речь пойдет про различия, пора рассказать про типы подробнее.
Типы сертификатов
Domain validation
Субъектом является домен, то есть здесь мы проверяем только его. Раньше, когда не было автоматических валидаторов, валидация происходила в основном по e-mail через сервис Whois. Это считалось достаточным основанием для того, чтобы считать, что ты владелец этого домена. Потом придумали проверять через DNS – на e-mail тебе писали: «а добавь-ка в DNS такую-то запись». Еще попозже появились автоматические методы (про ACME поговорим чуть дальше).
Organization validation
В поле «subject», кроме доменного имени, указывается еще и имя организации. Проверка состоит в валидации, принадлежит ли домен данной организации и работает ли там тот, кто пришел за сертификатом. Как это делается: по реестрам организации ищут, звонят, просят что-то сделать (телефон оказался верным, правильный человек ответил – значит, скорее всего всё хорошо).
Extended validation
То же, что и OV, только круче. Тут всё очень регламентированно – документ на 40 страниц в духе «в пункте 5.6.8 должно быть следующее: …» и т.д. Проверяется много всего – страна, департамент (если указан в заявке), а иногда даже выезжает специальный человек, чтобы посмотреть глазами. В чем практическая разница? Практически все браузеры перестали различать OV и DV, и это плохо, потому что в таком случае не показывается название организации. В результате никто не мешает создать домен aliepxress.ru, нарисовать такую же страницу и воровать кредитные карточки. И будет абсолютно легитимно создать любой подобный домен и получить на него DV сертификат.
Пример с EV – здесь видно название организации, так что если кто что и украдет, пользователь будет знать, что это была корпорация Valve Corp, а зарегистрировать корпорацию несколько сложнее, чем домен (больше проверок).
Однако всё идет к тому, что и EV перестанут отличаться, на мобильных устройствах уже не видно и надо нажимать отдельную кнопочку, и в Safari тоже. Google Chrome пока держится (UPD — уже нет! пришлось делать скрин из IE). Аргументация тех, кто не показывает: «если волнуетесь, нажмите и посмотрите», но никто, естественно, не нажимает.
Получение сертификата: автоматизация
Теперь поговорим об автоматизированном получении DV сертификатов. Для наглядности посмотрим, как это делает наш любимый Let’s Encrypt. У него вообще хорошая документация, если кому интересно, и даже на русском.
ACME (Automatic Certificate Management Environment) — это протокол, созданный для автоматизации и стандартизации процесса получения сертификата.
Как в случае с ACME доказывается, что ты владелец домена? Ты говоришь: хочу сертификат и указываешь вид автоматической валидации – например, ACME HTTP-01. Let’s Encrypt просит тебя положить данные в файл, и если ты смог положить файлы на свой домен (а Let’s Encrypt смог их оттуда забрать по HTTP), наверное, ты и правда его хозяин. Сейчас такой подход подвергается критике, в том числе от Google, за то, что не защищает от фишинга. То есть, при ручной валидации домен aliepxress.ru скорее всего вызовет подозрения, а вот Let’s Encrypt самостоятельно так пока не умеет (или умеет, но плохо).
DNS-challenge
Кроме ACME, есть еще DNS-challenge. Например, тебе говорят: заведи в своей DNS-зоне txt-запись, положи в нее данные. Есть и другие способы, но мало распространённые, а один вообще отменили, потому что он оказался уязвимым. Что у нас в Plesk: wildcard-сертификаты (которые могут быть выписаны только по DNS-challenge) у многих людей не работают, потому что очень часто Plesk не управляет DNS-зонами домена и экстеншн Let’s Encrypt не может автоматизировать создание записи в DNS-зоне.
Еще два слова о Let’s Encrypt
Важный аспект в работе с сертификатами Let’s Encrypt – лимиты. В случае сомнений (или подозрений, что они достигнуты) лучше всего пройти по ссылочке: letsencrypt.org/docs/rate-limits
Иногда их обновляют. Есть неочевидные лимиты, про которые люди забывают: чаще всего, судя по обращениям в поддержку, они сталкиваются с лимитом в 100 доменных имен в сертификате. Еще у Let’s Encrypt есть staging-сервер и там лимиты больше, но такие сертификаты считаются не доверенными (non-trusted) и для браузера они аналогичны самоподписанным. На практике с лимитом в 100 имен к нам приходят редко (при том, что у сайтов на Plesk в общей сложности 1 300 000 Let’s Encrypt сертификатов). Медиана, согласно нашей статистике, – 20 имен на сертификат. Так что, если что-то не работает, посмотрите – возможно, достигнут лимит. У Let’s Encrypt хороший error reporting, и обычно можно понять, что произошло.
Что дальше?
Итак, после того, как сертификат получен, сервер передает данные сеансового ключа – это то, с помощью чего дальше будет осуществляться шифрование. Если сервер считает, что нужно аутентифицировать клиента (например, доступ открыт только определенному кругу лиц), он может спросить: клиент, кто ты? И тогда клиенту надо будет послать свой сертификат. После получения сообщения ServerHelloDone клиент понимает, что пора проверять сертификаты и работать с ключами.
Всё, о чем мы говорили, до TLS 1.3 идет по открытому каналу, и все эти штуки может видеть кто угодно. С этим связаны несколько интересных атак, о которых вы можете почитать сами.
Во второй серии части статьи мы узнаем, как клиент проверяет сертификат.