Фотометрия что это такое

Фотометрия в лабораторной диагностике

В дальнейшем, для простоты в статье будет рассматриваться только горизонтальная фотометрия в проходящем свете (то есть измерение оптической плотности растворов).

Итак, все начинается с простейшей схемы прибора, который используется для фотометрической детекции.

Фотометрия что это такое. Смотреть фото Фотометрия что это такое. Смотреть картинку Фотометрия что это такое. Картинка про Фотометрия что это такое. Фото Фотометрия что это такое Схема простейшего фотометра

В простейшем случае световой поток от источника света налетает на исследуемый раствор. После прохождения через раствор ослабленный световой поток попадает на фотодетектор. Поскольку условия, при которых проводится измерение подбираются так, что вся оптическая плотность раствора обусловлена присутствием одного вещества, то измеряя оптическую плотность мы можем, в конечном итоге, определять концентрацию этого вещества.

Физические основы фотометрии

Физический принцип, лежащий в основе данного процесса, называется законом Бугера-Ламберта-Берра.

Таким образом, если принять, что в условиях измерения которые мы можем стандартизировать величина eλ известна, толщина поглощающего слоя известна и вообще то определяется нами, величины I и I0 выясняются в процессе измерения, следовательно зная все эти показатели в конечном счете можно вычислить концентрацию исследуемого вещества.

Прологарифмировав нашу исходную формулу по основанию 10, получим:

Далее путем нехитрых преобразований получаем:

Величина lg I0/I называется оптической плотностью и как правило обозначается буквами A или D или OD. Поскольку величины eλ и l являются постоянными при каждом измерении, то оптическая плотность линейно зависит только от концентрации измеряемого вещества в растворе, следовательно измеряя оптическую плотность мы можем определить концентрацию.

Проведение калибровки

Как уже было сказано выше оптическая плотность и концентрация определяемого вещества связаны линейной зависимостью.

Отсюда следует, что, зная уравнение прямой для данной зависимости мы можем по любой известной оптической плотности узнать концентрацию интересующего нас вещества.

Для того, чтобы узнать это уравнения проводится процедура калибровки.

На практике если калибровка делается вручную процедура заключается в построении так называемой калибровочной кривой (которая в случае фотометрического измерения чаще всего является прямой линией :).

Для построения линейной зависимости требуется как минимум две точки.

Для начала берется раствор с известной концентрацией вещества (калибратор), которое мы собираемся измерять. После проведения соответствующей химической реакции измеряется оптическая плотность получившейся реакционной смеси, при этом на графике по оси абсцисс откладывается концентрация вещества в растворе, а по оси ординат получившаяся оптическая плотность. Таким образом мы получаем первую точку на графике. Для получения второй точки можно использовать раствор с другой концентрацией, но на практике исходят из предположения, что раствор с нулевой концентрацией обладает нулевой оптической плотностью и в качестве второй точки просто берется начало координат (на самом деле это не так, но это преодолевается при помощи специальных процедур настройки прибора), что позволяет проводить калибровку большинства показателей биохимии по калибратору только с одним уровнем концентрации.

Таким образом получается график, используя который, можно по известной оптической плотности определить концентрацию вещества в растворе.

Фотометрия что это такое. Смотреть фото Фотометрия что это такое. Смотреть картинку Фотометрия что это такое. Картинка про Фотометрия что это такое. Фото Фотометрия что это такое Калибровочный график

В современный лабораториях калибровку как правило вручную не проводят, это делается автоматически биохимическими анализаторами или другими приборами с фотометрической детекцией на борту.

Суть остается той же за исключением того, что прибор делает расчет для нахождения функции, описывающей калибровочный график, и далее использует ее для расчета концентраций. Калибровочный график при этом строится исключительно для удобства пользователя.

В общем виде функция, описывающая прямую линию, выглядит следующим образом:

Поскольку значение b при помощи настроек прибора приводится к значению ноль, то вся процедура калибровки сводится к нахождению фактора калибровки, при умножении на него оптической плотности анализатор в дальнейшем вычисляет все концентрации интересующего нас вещества.

Выбор длинны волны

При проведении фотометрического измерения источник света как правило генерирует световой поток по всему видимому (и не только) спектру длин волн. Источники света современных биохимических анализаторов как правило охватывают диапазон от ближнего ультрафиолета и до всего видимого красного диапазона.

Как уже говорилось ранее молярный коэффициент поглощения является функцией от длинны волны и следовательно исследуемый раствор будет обладать разными коэффициентами поглощения на разных длинах волн. При этом на практике, в основном для того, чтобы избежать влияния неспецифических факторов, измерения проводится на какой-то одной определенной длине волны.

Для выбора длины волны на заре лабораторной диагностики существовало такое наивное эмпирическое правило: если мы видим, что раствор окрашен в какой-либо цвет, то нужно выбрать для измерения длину волны по цвету, отличающуюся от цвета раствора.

Помимо того, что данный подход слишком упрощен, он еще и не применим к ультрафиолетовой части спектра.

Более научный подход заключается в построении графика зависимости оптической плотности раствора от длинны волны.

Поскольку измеряемые биохимическими методами биологические вещества, как правило не обладают достаточной собственной оптической плотностью, для их детекции используются различные специфические химические реакции, которые в итоге и генерируют вещества обладающие достаточной оптической плотностью, в этом случае говорят, что реакция идет с увеличением оптической плотности. Либо в процессе реакции такие вещества расходуются, тогда реакция идет с уменьшением оптической плотности.

Для выбора длинны волны для конкретного метода проводится построение двух графиков зависимости оптической плотности раствора от длинны волны:

После построения графика берется длинна волны, на которой разность оптической плотности у субстратов и продуктов реакции максимальна.

Для примера можно взять так называемый оптический тест Варбурга.

Данная реакция широко используется как индикаторная многими производителями для определения ЛДГ, АЛТ, АСТ, КФК, КФК-МБ, мочевины и глюкозы (гексокиназным методом).

Данная реакция заключается в обратимом окислении никотинамидадениндинуклеотида (НАД) под действием какого-нибудь фермента из класса оксидоредуктаз.

В результате мы имеем два графика для окисленной и восстановленной формы НАД одна из которых играет роль субстрата, а другая продукта реакции в конкретных биохимических наборах.

Фотометрия что это такое. Смотреть фото Фотометрия что это такое. Смотреть картинку Фотометрия что это такое. Картинка про Фотометрия что это такое. Фото Фотометрия что это такоеОптический тест Варбурга

В результате анализа данного графика видим, что наибольшая разница оптической плотности между этими двумя формами находится в районе 340 нм. Именно эта длинна волны и используется для определения перечисленных выше биохимических показателей.

Устройство, которое преобразует свет от источника в световой поток с какой-то одной определенной длинной волны называется монохроматор.

Основные типы монохроматоров:

Таким образом, если включить в нашу схему простейшего фотометра монохроматор (например призму), то она будет выглядеть следующим образом.

Фотометрия что это такое. Смотреть фото Фотометрия что это такое. Смотреть картинку Фотометрия что это такое. Картинка про Фотометрия что это такое. Фото Фотометрия что это такоеФотометрия на определенной длинне волны

Бихроматическое измерение

В лабораторной диагностике зачастую возникают ситуации, когда нужно провести измерение оптической плотности на двух длинах волн. Такие измерения называются бихроматическими.

Теоретическое обоснование проведения такого измерения следующее: в биологических жидкостях присутствует огромное количество различных веществ, некоторые из которых могут обладать собственной оптической плотностью или вступать в неспецифические реакции с компонентами диагностический наборов, при этом зачастую биологические жидкости могут проявлять свойства коллоидных растворов и не только поглощать, но и рассеивать свет. Поэтому для того, чтобы учесть влияние этих интерферирующих факторов оптическая плотность рассчитывается как разность между оптической плотностью на основной длине волны (о ней уже шла речь выше) и другой длине волны, которая обычно называется опорной или отсекающей, оптическая плотность на которой, как считается, обусловлена неспецифическими факторами.

Приведенная в предыдущем разделе конструктивная схема фотометра называется монохроматической. Исторически она возникла первой, но в современных машинах практически не используется.

Монохроматической она называется потому, что в каждый конкретный момент времени считывание оптической плотности проводится только на одной длине волны и для того, чтобы провести бихроматическое измерение нужно, например, физически поменять светофильтр или изменить угол поворота призмы или дифракционной решетки. В некоторых вариантах проведения фотометрии это неприемлемо (например, кинетические измерения). Поэтому в дальнейшем была разработана полихроматическая схема детекции, которая позволяет считывать оптическую плотность раствора на нескольких длинах волн. Этого было достигнуто разложением полихроматического света в спектр уже после прохождения через поглощающий раствор (то есть перенесением монохроматора за кювету с образцом) и установкой сразу нескольких фотодетекторов для разных длин волн.

Фотометрия что это такое. Смотреть фото Фотометрия что это такое. Смотреть картинку Фотометрия что это такое. Картинка про Фотометрия что это такое. Фото Фотометрия что это такоеПолихроматическая схема детекции

Такая схема позволяет проводить измерение на нескольких длинах волн одновременно.

Методы расчета концентрации

Существует несколько способов расчета концентрации раствора по полученной оптической плотности.

Наиболее простым является метод расчета по конечной точке.

При таком методе график зависимости оптической плотности от концентрации измеряемого вещества выглядит следующим образом:

Фотометрия что это такое. Смотреть фото Фотометрия что это такое. Смотреть картинку Фотометрия что это такое. Картинка про Фотометрия что это такое. Фото Фотометрия что это такоеКонечная точка

При этом после небольшого времени задержки (lag-time), связанного с перемешиванием биоматериала с компонентами диагностического набора и их термостатированием происходит резкое возрастание оптической плотности до определенного уровня, пропорционального концентрации определяемого вещества, после выхода оптической плотности на «плато» дальше она уже практически не изменяется (достигает конечной точки).

Данный метод не пригоден для измерения активности ферментов, а биохимическими методами измеряется именно активность ферментов, а не их концентрация.

Для измерения активности ферментов используется кинетический метод расчета концентрации график которого выглядит примерно так:

Фотометрия что это такое. Смотреть фото Фотометрия что это такое. Смотреть картинку Фотометрия что это такое. Картинка про Фотометрия что это такое. Фото Фотометрия что это такоеКинетика

После некоторого времени задержки, обусловленного теми же факторами, происходит непрерывное изменение оптической плотности (на графике нарастание) с постоянной скоростью, которая и определяет активность фермента. При этом скорость реакции определяется как тангенс угла наклона графика изменения оптической плотности. Чем круче изменяется оптическая плотность, тем больше активность фермента.

Данные два метода являются основными.

Помимо них так же еще существует турбидиметрический метод измерения, при помощи которого измеряются высокомолекулярные вещества, обладающие антигенной природой, но данный метод уже основан на других физических принципах и к фотометрии не относится.

Источник

ФОТОМЕТРИЯ

ФОТОМЕТРИЯ, раздел прикладной физики, занимающийся измерениями света. С точки зрения фотометрии, свет – это излучение, способное вызывать ощущение яркости при воздействии на человеческий глаз. Такое ощущение вызывает излучение с длинами волн от

0,78 мкм, причем самым ярким представляется излучение с длиной волны ок. 0,555 мкм (желто-зеленого цвета). Поскольку чувствительность глаза к разным длинам волн у людей неодинакова, в фотометрии принят ряд условностей. В 1931 Международная комиссия по освещению (МКО) ввела понятие «стандартного наблюдателя» как некоего среднего для людей с нормальным восприятием. Этот эталон МКО – не что иное, как таблица значений относительной световой эффективности излучения с длинами волн в диапазоне от 0,380 до 0,780 мкм через каждые 0,001 мкм. На рис. 1 представлен график, построенный по данным этой таблицы, причем на нем указаны интервалы длин волн, соответствующие цветам солнечного спектра. Яркость, измеренная в соответствии с эталоном МКО, называется фотометрической яркостью или просто яркостью.

Фотометрия что это такое. Смотреть фото Фотометрия что это такое. Смотреть картинку Фотометрия что это такое. Картинка про Фотометрия что это такое. Фото Фотометрия что это такое

Фотометрия что это такое. Смотреть фото Фотометрия что это такое. Смотреть картинку Фотометрия что это такое. Картинка про Фотометрия что это такое. Фото Фотометрия что это такое

Фотометрические величины.

Поток световой энергии измеряется в люменах. Определить световой поток в 1 лм невозможно, не обращаясь к светящимся телам, и основной мерой света долгое время была «свеча», которая считалась единицей силы света. Настоящие свечи уже более века не используются в качестве меры света, так как с 1862 стала применяться специальная масляная лампа, а с 1877 – лампа, в которой сжигался пентан. В 1899 в качестве единицы силы ответа была принята «международная свеча», которая воспроизводилась с помощью поверяемых электрических ламп накаливания. В 1979 была принята несколько отличающаяся от нее международная единица, названная канделой (кд). Кандела равна силе света в данном направлении источника, испускающего монохроматическое излучение частоты 540 Ч 10 12 Гц ( l = 555 нм), энергетическая сила светового излучения которого в этом направлении составляет 1/683 Вт/ср.

Виды фотометрических измерений.

Основные виды фотометрических измерений таковы: 1) сравнение силы света источников; 2) измерение полного потока от источника света; 3) измерение освещенности в заданной плоскости; 4) измерение яркости в заданном направлении; 5) измерение доли света, пропускаемой частично прозрачными объектами; 6) измерение доли света, отражаемой объектами.

ОБЩИЕ МЕТОДЫ ФОТОМЕТРИИ

Существуют два общих метода фотометрии: 1) визуальная фотометрия, в которой при выравнивании механическими или оптическими средствами яркости двух полей сравнения используется способность человеческого глаза ощущать различия в яркости; 2) физическая фотометрия, в которой для сравнения двух источников света используются различные приемники света иного рода – вакуумные фотоэлементы, полупроводниковые фотодиоды и т.д. При обоих методах для того, чтобы результаты имели универсальную значимость, условия наблюдения (или работы приборов) должны быть такими, чтобы фотометр реагировал на разные длины волн в точном соответствии со «стандартным наблюдателем» МКО. Важно также, чтобы световой выход лампы не изменялся в ходе измерений. Для стабилизации и измерения тока и напряжения в таких условиях обычно требуется довольно сложная электрическая аппаратура. В самых точных фотометрических измерениях приходится стабилизировать ток через лампу с точностью до (2 – 3) Ч 10 –3 %.

Визуальная фотометрия.

История визуальной фотометрии начинается с П.Бугера (1698–1758), замечательного ученого, который в 1729 изобрел способ сравнения двух потоков света и сформулировал почти все основные принципы фотометрии. И.Ламберт (1728–1777) далее систематизировал теорию фотометрии, и дальнейшее ее развитие шло в основном по линии совершенствования методов. В настоящее время визуальная фотометрия применяется ограниченно – при измерении весьма слабых световых потоков, когда трудно однозначно интерпретировать результаты физической фотометрии. Дело в том, что при уровнях яркости в диапазоне 0,01–1 кд/мФотометрия что это такое. Смотреть фото Фотометрия что это такое. Смотреть картинку Фотометрия что это такое. Картинка про Фотометрия что это такое. Фото Фотометрия что это такое спектральная чувствительность глаза плавно изменяется от соответствующей адаптации к свету (дневной, или фотопической) до соответствующей адаптации к темноте (суперечной, или скотопической), а потому здесь невозможно предсказать, какой должна быть спектральная чувствительность физического (электрического) фотометра, чтобы обеспечивалось согласие с возможными результатами визуальной фотометрии. Правильная методика для этого диапазона яркостей состоит в визуальном сравнении с источником света, энергетическое распределение которого соответствует высокотемпературному полому телу, фигурирующему в определении канделы. (Таким источником света может служить электрическая лампа накаливания при некотором значении силы тока.) При очень низких уровнях световых потоков используется второй (сумеречный) эталон, принятый международным соглашением в 1959, что позволяет проводить фотоэлектрические измерения без каких-либо неоднозначностей.

Визуально невозможно определить, насколько яркость одной поверхности больше, чем яркость другой. Но если две поверхности непосредственно примыкают друг к другу, то по исчезновению разграничивающей линии между ними равенство их яркостей можно установить визуально с точностью до 1% и даже еще точнее. Было разработано много различных устройств для образования таких полей сравнения; одно из них, т.н. кубик Люммера – Бродхуна, показано на рис. 2,а. Это две сложенные вместе трехгранные призмы из оптического стекла, причем контактная грань одной призмы слегка закруглена. Вследствие этой закругленности призмы имеют лишь частичный оптический контакт, через который свет может проходить прямо. Но в тех местах, где грани призм не соприкасаются, свет полностью отражается. Часто бывает желательно, чтобы свет от двух источников падал с противоположных сторон, и поэтому применяются схемы типа показанной на рис. 2,б. Наблюдатель, глядя в микроскоп с небольшим увеличением, видит поля сравнения, показанные на рис. 2,в.

Фотометрия что это такое. Смотреть фото Фотометрия что это такое. Смотреть картинку Фотометрия что это такое. Картинка про Фотометрия что это такое. Фото Фотометрия что это такое

Фотометрия что это такое. Смотреть фото Фотометрия что это такое. Смотреть картинку Фотометрия что это такое. Картинка про Фотометрия что это такое. Фото Фотометрия что это такое

Это равенство выражает т.н. закон обратных квадратов расстояний И.Кеплера (1604), который является основным законом фотометрии. Согласно этому закону, если яркость двух полей сравнения одинакова, то силы света двух ламп обратно пропорциональны квадратам расстояний от соответствующих ламп до экрана фотометра. В справедливости этого соотношения легко убедиться, рассмотрев световую пирамиду с лампой в вершине (рис. 4). Свет, проходящий через сечение A пирамиды на единичном расстоянии от лампы, будет распределен по площади 4А на удвоенном расстоянии, по площади 9А – на утроенном расстоянии и т.д. Единственное условие применимости этого закона требует, чтобы размеры источника были малы по сравнению с расстоянием.

Фотометрия что это такое. Смотреть фото Фотометрия что это такое. Смотреть картинку Фотометрия что это такое. Картинка про Фотометрия что это такое. Фото Фотометрия что это такое

В некоторых специальных измерениях применяются другие средства изменения яркости поля сравнения, например, поляризатор с анализатором, которые поляризуют и ослабляют проходящий световой поток соответственно своей взаимной ориентации, клинья из серого стекла и быстро вращающиеся диски с секторными вырезами («вращающиеся секторы»). Диски имеют форму плоской крыльчатки вентилятора. Если диск вращается достаточно быстро, так что не заметно никакого мерцания, то свет ослабляется пропорционально доле полного круга, приходящейся на секторные вырезы. Каков бы ни был выбранный способ регулировки яркости, важно, чтобы изменялась только яркость, но не цвет поля.

Относительно световых источников разного цвета установлено, что если цвета различаются более или менее заметно, то результаты сравнения приобретают субъективный характер и даже у одного и того же наблюдателя могут меняться. При этом точность визуальной фотометрии сильно снижается.

Физическая фотометрия.

Начало физической фотометрии положили Ю.Эльстер и Г.Гейтель, открывшие в 1889 фотоэффект. В 1908 Ш.Фери разработал электрический фотометр, чувствительность которого к разным длинам волн была близка к чувствительности человеческого глаза. Но лишь в 1930-х годах, после усовершенствования вакуумных фотоэлементов и изобретения селенового фотодиода, физическая (электрическая) фотометрия стала широко применяемым методом, особенно в промышленных лабораториях.

Электрические фотоприемники, используемые в физической фотометрии, реагируют на свет с разными длинами волн не в точном соответствии с эталоном МКО. Поэтому для них требуется светофильтр – тщательно изготовленная пластинка из цветного стекла или окрашенного желатина, которая пропускала бы свет разных длин волн так, чтобы фотоприемник со светофильтром по возможности точно соответствовал «стандартному наблюдателю». Следует учитывать, что если световые потоки, различающиеся цветом, сравниваются с применением такого устройства, то результаты сравнения верны лишь условно. На самом деле невозможно гарантировать, что источники, яркость которых одинакова по оценке, основанной на эталоне МКО, покажутся одинаково яркими любому человеку. Выделение признака яркости из общего внешнего вида по-разному окрашенных источников света есть акт мысленного абстрагирования, который даже у одного и того же индивидуума протекает по-разному в разное время, а потому в тех случаях, когда требуются численные оценки, необходима стандартизованная методика измерений.

Фотодиод (иногда называемый вентильным фотоэлементом) представляет собой металлическую пластинку, на которую нанесен тонкий слой полупроводникового материала (например, селена с напыленной поверх него тонкой пленкой золота или другого неокисляющегося металла) (рис. 5). Толщина пленки подобрана так, что она проводит электричество, но прозрачна и пропускает свет. Свет, падающий на селен, вызывает дрейф свободных электронов, которые заряжают металлическую пленку отрицательно относительно селена.

Фотометрия что это такое. Смотреть фото Фотометрия что это такое. Смотреть картинку Фотометрия что это такое. Картинка про Фотометрия что это такое. Фото Фотометрия что это такое

Если к такому фотодиоду присоединить микроамперметр с малым сопротивлением, то показываемый им ток будет почти строго пропорционален освещенности фотодиода. Если же сопротивление цепи велико, то это соотношение прямой пропорциональности нарушается, и в лабораторных условиях применяют специальные схемы, имитирующие нулевое внешнее сопротивление. Простая комбинация фотодиода с микроамперметром используется в фотографических экспонометрах.

На фотометрической скамье рис. 3 вместо визуального фотометра можно установить фотодиод. Более того, можно установить рядом два фотодиода, обращенных в противоположные стороны, и измерять разность их токов. В таком варианте лампа 1 служит лампой сравнения и остается на своем месте в ходе эксперимента, а лампа, которую требуется сравнить, устанавливается в положение 2, после чего ее перемещают так, чтобы разность токов была равна нулю.

Существуют люксметры, состоящие из фотодиода, корректирующего светофильтра и микроамперметра, широко применяемые инженерами по освещению и другими специалистами. В частности, фотодиод с корректирующим светофильтром используется для повседневных фотометрических измерений всех видов в заводских лабораториях. Если точность 1–2% приемлема, а сила света достаточно велика, то с такими устройствами можно работать без каких-либо затруднений.

В случае слабых источников света, а также в тех случаях, когда требуются повышенная точность и более надежная калибровка, фотометристы обращаются к вакуумным фотоэлементам. Такой фотоэлемент имеет фотокатод в виде металлической пластинки, обычно покрываемой одним или несколькими тонкими слоями металлов и их оксидов, и второй электрод – анод, причем оба они находятся в стеклянном высоковакуумном баллоне. Когда на фотокатод падает свет с длиной волны, превышающей некоторое «пороговое» значение (зависящее от материала фотокатода), из него выбиваются электроны. Если фотоэлемент включить последовательно с батареей и чувствительным измерительным прибором, как показано на рис. 6, то электроны, высвобождающиеся с катода, будут притягиваться анодом. Поток таких электронов, а следовательно, и ток в цепи пропорциональны освещенности.

Фотометрия что это такое. Смотреть фото Фотометрия что это такое. Смотреть картинку Фотометрия что это такое. Картинка про Фотометрия что это такое. Фото Фотометрия что это такое

Вместо измерительного прибора можно использовать электронный усилитель, и тогда слабые токи будут усиливаться. Можно также добавить дополнительные усилительные каскады; тщательно спроектированная аппаратура такого рода позволяет измерять свет звезд, слишком слабый, чтобы его можно было видеть простым глазом. Для повышения чувствительности и стабильности измерений перед фотоэлементом можно установить вращающийся прерыватель света и усиливать полученный переменный ток. Такой метод особенно эффективен, если усиливаемый ток выпрямляется в точном синхронизме с прерывателем. Это позволяет подавить шумы электронной схемы и прочие помехи.

Для усиления тока можно обойтись без внешнего усилителя, если использовать явление вторичной электронной эмиссии. Соответствующие устройства называются фотоэлектронными умножителями (ФЭУ); некоторые типы ФЭУ схематически изображены на рис. 7. Электроны, высвобождающиеся с фотокатода, притягиваются к первому из ряда электродов, называемых динодами. Каждый из них находится под более высоким напряжением, чем предыдущий. Электрон, падающий на динод, высвобождает несколько вторичных электронов; вторичные электроны идут к следующему диноду, и каждый высвобождает еще несколько электронов и т.д. Среднее отношение числа испущенных электронов к числу падающих (коэффициент усиления) можно легко регулировать, изменяя напряжение между соседними динодами. Коэффициент усиления может достигать миллиона и более, причем предел обусловлен только тем обстоятельством, что некоторое количество электронов высвобождается с фотокатода даже в темноте и они умножаются так же, как и другие.

Фотометрия что это такое. Смотреть фото Фотометрия что это такое. Смотреть картинку Фотометрия что это такое. Картинка про Фотометрия что это такое. Фото Фотометрия что это такое

Ни у одного фотоэлемента или фотоэлектронного умножителя кривая спектральной чувствительности не соответствует в точности кривой чувствительности для глаза. Спектральная чувствительность зависит от материала фотокатода. Поэтому в тех случаях, когда приходится сравнивать световые потоки разного цвета, необходим светофильтр, а расчет и градуировка светофильтра для точной фотометрии могут составить основную часть затрат на аппаратуру.

Измерение светового потока.

Одна из характеристик лампы или осветительной арматуры, необходимая инженеру по освещению, – это испускаемое ею полное количество света. Только измерив эту величину, можно определить относительную эффективность осветительных устройств. Имеются два существенно различающихся способа измерения полного светового потока: гониометрический метод и метод «интегрирующей сферы» («сферы Ульбрихта»).

Гониометр – это приспособление, позволяющее измерять освещенность, создаваемую лампой, в любом желаемом направлении. Лампа либо неподвижна, либо вращается вокруг вертикальной оси так, чтобы распределение света лампы не изменялось. Поэтому фотометр (обычно фотоэлектрический) закрепляют на конце длинного качающегося держателя, или используют подвижные зеркала. Во избежание больших поправок расстояние от лампы до фотометра выбирают на порядок больше максимального размера лампы; поэтому гониометр для больших люминесцентных ламп занимает много места. После того как измерена освещенность во многих направлениях, вычисляют полный световой поток.

Интегрирующая сфера (рис. 8) представляет собой полый шар, выкрашенный изнутри матовой белой краской. Внутри сферы подвешивается лампа или арматура с экраном, закрывающим ее со стороны небольшого окошка из опалового стекла (освещенность которого измеряется). Внутри подвешивается также эталонная лампа (световой поток которой точно измерен при помощи гониофотометра), закрытая экранами со стороны первой лампы и окошка. Освещенность окошка при включенной той или другой лампе пропорциональна ее полному световому потоку (если не считать поправок, которые существенны, когда лампы имеют разные размеры или форму либо заметно различаются цветом испускаемого света).

Фотометрия что это такое. Смотреть фото Фотометрия что это такое. Смотреть картинку Фотометрия что это такое. Картинка про Фотометрия что это такое. Фото Фотометрия что это такое

Специальные фотометры.

Кроме рассмотренных приборов, существуют специальные фотометры для измерения яркости поверхностей, коэффициентов пропускания и отражения разных образцов, характеристик световозвращающих отражателей (дорожно-маркировочной краски, дорожных знаков), освещенности улиц и пр.

Сапожников Р.А. Теоретическая фотометрия. Л., 1977
Гуревич М.М. Фотометрия: Теория, методы и приборы. Л., 1983
Кулагин С.В., Гоменюк А.С. и др. Оптико-механические приборы. М., 1984

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *