Функции f x число t 0 такое что для любого
Периодическая функция
Периодическая функция — это функция, значения которой не изменяются при добавлении к значениям её аргумента некоторого числа T (отличного от нуля).
Функция y=f(x) называется периодической, если существует такое число T≠0, что для любого x из области определения этой функции выполняются равенства:
Число T называют периодом функции y=f(x).
Из определения следует, что значения x-T и x+T также входят в область определения функции y=f(x).
Свойства периодических функций
1) По определению периодической функции для любого x из области определения y=f(x) если T — период функции, то f(x-T)= f(x)=f(x+T).
2) Для любого x из области определения y=f(x) если T1 — период функции, то
Так как T2 также является периодом функции y=f(x), то для аргумента x-T1
Следовательно, число T1+T2 является периодом функции y=f(x).
3) Это свойство непосредственно вытекает из свойства 2, если T взять в качестве слагаемого n раз.
4) Если T — период функции f(x), то для аргумента kx+b
Значит число T/k — период функции f(kx+b).
5) Эти свойства следуют непосредственно из определения.
Например, для суммы f(x) и g(x):
Из свойства 3 следует, что каждая периодическая функция имеет бесконечно много периодов.
Если среди всех периодов функции y=f(x) существует наименьший положительный период, то его называют главным (или основным) периодом функции.
Примеры периодических функций
1) Поскольку для любого x выполняются равенства
то функции y=sin x и y=cos x являются периодическими с периодом T=2π.
2) Так как для любого x из области определения функции y=tg x выполняется равенство
tg (x-π)=tg x =tg (x-π), то y=tg x — периодическая функция с периодом T=π.
Аналогично, y=ctg x — периодическая функция с периодом T=π.
3) Так как для любого действительного числа x и любого рационального числа k выполняется равенство D(x+k)=D(x), то функция Дирихле D(x) — периодическая с периодом T=k, где k∈Q, k≠0.
Поскольку k — любое рациональное число, невозможно его указать наименьшее положительное значение. Следовательно, функция Дирихле не имеет главного периода.
4) Рассмотрим частный случай линейной функции y=b, b — действительное число (b∈R). Эта функция определена на множестве действительных чисел и при любых значениях аргумента принимает единственное значение y=b, то есть для любого действительного числа m (m∈R), y(x)=y(x+m)=b.
Значит y=b — периодическая функция с периодом T=m, где m∈R, m≠0.
Так как m — любое действительное число, оно не имеет наименьшего положительного значения. Поэтому функция y=b не имеет главного периода.
5) Так как для любого действительного x и любого целого k выполняется равенство
Наименьшим положительным целым числом является единица. Следовательно, T=1 — главный период функции y=
Главный период функций y=sin x и y=cos x T=2π.
Главный период функций y=tg x и y=ctg x T=π.
Если T — период функции y=sin x, то sin (x-2π)=sin x = sin (x-2π) для любого x.
То есть любой период функции y=sin x имеет вид 2πn, n∈Z.
Наименьшее положительное значение это выражение принимает при n=1 и оно равно T=2π.
Таким образом, 2π — главный период функции y=sin x.
Аналогично доказываются утверждения о главном периоде функций y=cos x, y=tg x и y=ctg x.
Из 4-го свойства периодических функций непосредственно следует, что для функций y=sin (kx+b) и y=cos (kx+b) (k≠0) наименьший положительный период
а для функций y=tg (kx+b) и y=ctg (kx+b) (k≠0) наименьший положительный период
График периодической функции повторяется через промежутки длиной T (на оси Ox).
Дана часть графика
промежутке длиной T.
Чтобы построить график функции, выполняем параллельный перенос этой части графика вдоль оси Ox на ±T, ±2T,… :
Функции f x число t 0 такое что для любого
376. Транзитивному замыканию бинарного отношения R (a, b): (b — a = 4) удовлетворяет пара
• (12, 28)
377. Транзитивному замыканию бинарного отношения R (a, b): (b/a = 1/3) удовлетворяет пара
• (1, 27)
378. Условной вероятностью события B при условии, что событие A с ненулевой вероятностью произошло, называется:
• р (B/A) = р (AB) / р (A)
379. Формула второго замечательного предела
•
380. Формула первого замечательного предела
•
381. Формула простых процентов, где P — первоначальный вклад, i — процентная ставка, n — число периодов хранения денег, имеет вид
• S = P (1 + n × i)
382. Формула сложных процентов, где P — первоначальный вклад, i — процентная ставка, n — число периодов хранения денег, имеет вид
• S = P (1 + i) n
383. Функция является возрастающей на интервале, если на этом интервале
•
384. Функция является убывающей на интервале, если на этом интервале
•
386. Функция F (x) называется первообразной для функции f (x), если для всех х выполняется равенство
• F¢ (x) = f (x)
387. Функция f (x) называется четной, если для всех x из области определения:
• f (-x) = f (x)
388. Функция называется периодической, если существует такое постоянное число Т 1 0, что для любого x из области определения выполняется равенство
• f (x ± T) = f (x)
389. Функция, задаваемая формулой f (0, Y, Z)
X
f (1, Y, Z), равна:
• 1
390. Функция, задаваемая формулой &f (0, Y, Z) &X&f (1, Y, Z), равна:
• 0
Функция
1. Понятие функции
2. Cвойства функций
2.Монотонность. Функция называется возрастающей (убывающей) на промежутке Х, если большему значению аргумента из этого промежутка соответствует большее (меньшее) значение функции, т.е. при x1 ) x2, f(x1) ) f(x2).
область определения (-∞,∞)
область значений (0; ∞)
общего вида
возрастает на (-∞,∞), если a>1;
убывает на (-∞,∞), если 0 непериодическая
Логарифмическая функция
у = log ₐ x (a>0 a≠1)
область определения (0,∞)
область значений (-∞; ∞)
общего вида
возрастает на (0,∞), если a>1;
убывает на (0,∞), 0 непериодическая
Тригонометрические функции
y = sin x
область определения (-∞; ∞)
область значений [-1; 1]
нечетная
возрастает на [-π/2 + 2πn, π/2 + 2πn];
убывает на [π/2 + 2πn, 3π/2 + 2πn], nϵZ;
период Т=2π
y = cos x
область определения (-∞; ∞)
область значений [-1; 1]
четная
возрастает на [-π + 2πn, 2πn];
убывает на [2πn, π + 2πn], nϵZ;
период Т=2π
y = tg x
область определения
(-π/2 + πn, π/2 + πn) nϵZ;
область значений (-∞; ∞)
нечетная
возрастает на (-π/2 + πn, π/2 + πn) nϵZ;
период Т=π
y = ctg x
область определения
(πn, π + πn) nϵZ;
область значений (-∞; ∞)
нечетная
убывает на (πn, π + πn) nϵZ;
период Т=π
y = arcsin x
область определения [-1; 1]
область значений [-π/2; π/2]
нечетная
возрастает на [-1; 1]
y = arccos x
область определения [-1; 1]
область значений [0; π]
функция центрально-симметрична относительно точки (0; π/2)
убывает на [-1; 1]
y = arctg x
область определения (-∞; ∞)
область значений [-π/2; π/2]
нечетная
возрастает на (-∞; ∞)
y = arcctg x
область определения (-∞; ∞)
область значений [0; π]
ни четная, ни нечетная
убывает на (-∞; ∞)
Функции f x число t 0 такое что для любого
СВОЙСТВА ФУНКЦИЙ, НЕПРЕРЫВНЫХ НА ОТРЕЗКЕ
Рассмотрим некоторые свойства функций непрерывных на отрезке. Эти свойства приведём без доказательства.
Функцию y = f(x) называют непрерывной на отрезке [a, b], если она непрерывна во всех внутренних точках этого отрезка, а на его концах, т.е. в точках a и b, непрерывна соответственно справа и слева.
Теорема 1. Функция, непрерывная на отрезке [a, b], хотя бы в одной точке этого отрезка принимает наибольшее значение и хотя бы в одной – наименьшее.
Теорема утверждает, что если функция y = f(x) непрерывна на отрезке [a, b], то найдётся хотя бы одна точка x1 Î [a, b] такая, что значение функции f(x) в этой точке будет самым большим из всех ее значений на этом отрезке: f(x1) ≥ f(x). Аналогично найдётся такая точка x2, в которой значение функции будет самым маленьким из всех значений на отрезке: f(x1) ≤ f(x).
Ясно, что таких точек может быть и несколько, например, на рисунке показано, что функция f(x) принимает наименьшее значение в двух точках x2 и x2‘.
Замечание. Утверждение теоремы можно стать неверным, если рассмотреть значение функции на интервале (a, b). Действительно, если рассмотреть функцию y = x на (0, 2), то она непрерывна на этом интервале, но не достигает в нём ни наибольшего, ни наименьшего значений: она достигает этих значений на концах интервала, но концы не принадлежат нашей области.
Также теорема перестаёт быть верной для разрывных функций. Приведите пример.
Следствие. Если функция f(x) непрерывна на [a, b], то она ограничена на этом отрезке.
Теорема 2. Пусть функция y = f(x) непрерывна на отрезке [a, b] и на концах этого отрезка принимает значения разных знаков, тогда внутри отрезка [a, b] найдется, по крайней мере, одна точка x = C, в которой функция обращается в ноль: f(C) = 0, где a 2
а) в произвольной точке;
МЕХАНИЧЕСКИЙ СМЫСЛ ПРОИЗВОДНОЙ
Из физики известно, что закон равномерного движения имеет вид s = v·t, где s – путь, пройденный к моменту времени t, v– скорость равномерного движения.
Однако, т.к. большинство движений происходящих в природе, неравномерно, то в общем случае скорость, а, следовательно, и расстояние sбудет зависеть от времени t, т.е. будет функцией времени.
Итак, пусть материальная точка движется по прямой в одном направлении по закону s=s(t).
Отметим некоторый момент времени t0. К этому моменту точка прошла путь s=s(t0). Определим скорость vматериальной точки в момент времени t0.
Для этого рассмотрим какой-нибудь другой момент времени t0+Δt. Ему соответствует пройденный путь s=s(t0+Δt). Тогда за промежуток времени Δt точка прошла путь Δs=s(t0+Δt)–s(t).
Рассмотрим отношение . Оно называется средней скоростью в промежутке времени Δt. Средняя скорость не может точно охарактеризовать быстроту перемещения точки в момент t0 (т.к. движение неравномерно). Для того, чтобы точнее выразить эту истинную скорость с помощью средней скорости, нужно взять меньший промежуток времени Δt.
Итак, скоростью движения в данный момент времени t0 (мгновенной скоростью) называется предел средней скорости в промежутке от t0 до t0+Δt, когда Δt→0:
,
т.е. скорость неравномерного движения это производная от пройденного пути по времени.
ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ПРОИЗВОДНОЙ
Введем сначала определение касательной к кривой в данной точке.
Пусть имеем кривую и на ней фиксированную точку М0 (см. рисунок).Рассмотрим другую точку М этой кривой и проведем секущую M0M. Если точка М начинает перемещаться по кривой, а точка М0 остается неподвижной, то секущая меняет свое положение. Если при неограниченном приближении точки М по кривой к точке М0 с любой стороны секущая стремится занять положение определенной прямой М0Т, то прямая М0Т называется касательной к кривой в данной точке М0.
Т.о., касательной к кривой в данной точке М0 называется предельное положение секущей М0М, когда точка М стремится вдоль кривой к точке М0.
Рассмотрим теперь непрерывную функцию y=f(x) и соответствующую этой функции кривую. При некотором значении х0 функция принимает значение y0=f(x0). Этим значениям x0 и y0 на кривой соответствует точка М0(x0; y0). Дадим аргументу x0 приращение Δх. Новому значению аргумента соответствует наращенное значение функции y0+Δ y=f(x0–Δx). Получаем точку М(x0+Δx; y0+Δy). Проведем секущую М0М и обозначим через φ угол, образованный секущей с положительным направлением оси Ox. Составим отношение и заметим, что
.
Если теперь Δx→0, то в силу непрерывности функции Δу→0, и поэтому точка М, перемещаясь по кривой, неограниченно приближается к точке М0. Тогда секущая М0М будет стремиться занять положение касательной к кривой в точке М0, а угол φ→α при Δx→0, где через α обозначили угол между касательной и положительным направлением оси Ox. Поскольку функция tg φ непрерывно зависит от φ при φ≠π/2 то при φ→α tg φ → tg α и, следовательно, угловой коэффициент касательной будет:
Т.о., геометрически у ‘(x0) представляет угловой коэффициент касательной к графику этой функции в точке x0, т.е. при данном значении аргумента x, производная равна тангенсуугла, образованного касательной к графику функции f(x) в соответствующей точке М0 (x; y) с положительным направлением оси Ox.
Пример. Найти угловой коэффициент касательной к кривой у = х 2 в точке М(-1; 1).
Ранее мы уже видели, что (x 2 )’ = 2х. Но угловой коэффициент касательной к кривой есть tg α = y‘|x=-1 = – 2.
ДИФФЕРЕНЦИРУЕМОСТЬ ФУНКЦИЙ. НЕПРЕРЫВНОСТЬ ДИФФЕРЕНЦИРУЕМОЙ ФУНКЦИИ
Функция y=f(x) называется дифференцируемой в некоторой точке x0, если она имеет в этой точке определенную производную, т.е. если предел отношения существует и конечен.
Если функция дифференцируема в каждой точке некоторого отрезка [а; b] или интервала (а; b), то говорят, что она дифференцируема на отрезке [а; b] или соответственно в интервале (а; b).
Справедлива следующая теорема, устанавливающая связь между дифференцируемыми и непрерывными функциями.
Теорема. Если функция y=f(x) дифференцируема в некоторой точке x0, то она в этой точке непрерывна.
Таким образом,из дифференцируемости функции следует ее непрерывность.
Доказательство. Если , то
,
где α бесконечно малая величина, т.е. величина, стремящаяся к нулю при Δx→0. Но тогда
Таким образом, в точках разрыва функция не может иметь производной. Обратное утверждение неверно: существуют непрерывные функции, которые в некоторых точках не являются дифференцируемыми (т.е. не имеют в этих точках производной).
Рассмотрим на рисунке точки а, b, c.
В точке a при Δx→0 отношение не имеет предела (т.к. односторонние пределы различны при Δx→0–0 и Δx→0+0). В точке A графика нет определенной касательной, но есть две различные односторонние касательные с угловыми коэффициентами к1 и к2. Такой тип точек называют угловыми точками.
В точке b при Δx→0 отношение является знакопостоянной бесконечно большой величиной
. Функция имеет бесконечную производную. В этой точке график имеет вертикальную касательную. Тип точки – «точка перегиба» cвертикальной касательной.
В точке c односторонние производные являются бесконечно большими величинами разных знаков. В этой точке график имеет две слившиесявертикальные касательные. Тип – «точка возврата» с вертикальной касательной – частный случай угловой точки.
Покажем, что она не имеет производной в этой точке.
Т.о., отношение при Δx→ 0 справа и слева имеет различные пределы, а это значит, что отношение предела не имеет, т.е. производная функции y=|x| в точке x= 0 не существует. Геометрически это значит, что в точке x= 0 данная «кривая» не имеет определенной касательной (в этой точке их две).
Следовательно, рассматриваемая функция не дифференцируема в точке x= 0. Касательная к кривой в этой точке образует с осью абсцисс угол p/2, т.е. совпадает с осью Oy.
Что такое Функция?
7 класс, 11 класс, ЕГЭ/ОГЭ
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Понятие функции
Определение функции можно сформулировать по-разному. Рассмотрим несколько вариантов, чтобы усвоить наверняка.
1. Функция — это взаимосвязь между величинами, то есть зависимость одной переменной величины от другой.
Знакомое обозначение y = f (x) как раз и выражает идею такой зависимости одной величины от другой. Величина у зависит от величины х по определенному закону, или правилу, которое обозначается f.
Вывод: меняя х (независимую переменную, или аргумент) — меняем значение у.
2. Функция — это определенное действие над переменной.
Значит, можно взять величину х, как-то над ней поколдовать — и получить соответствующую величину у.
В технической литературе можно встретить такие определения функции для устройств, в которых на вход подается х — на выходе получается у. Схематично это выглядит так:
В этом значении слово «функция» используют и в далеких от математики областях. Например, так говорят о функциях ноутбука, костей в организме или даже о функциях менеджера в компании. В каждом перечисленном случае речь идет именно о неких действиях.
3. Функция — это соответствие между двумя множествами, причем каждому элементу первого множества соответствует один элемент второго множества. Это самое популярное определение в учебниках по математике.
Например, в функции у = 2х каждому действительному числу х ставит в соответствие число в два раза большее, чем х.
Область определения — множество х, то есть область допустимых значений выражения, которое записано в формуле.
Например, для функции вида
область определения выглядит так:
И записать это можно так: D (y): х ≠ 0.
Область значений — множество у, то есть это значения, которые может принимать функция.
Например, естественная область значений функции y = x2 — это все числа больше либо равные нулю. Можно записать вот так: Е (у): у ≥ 0.
Для примера рассмотрим соответствие между двумя множествами — человек-владелец странички в инстаграм и сама страничка, у которой есть владелец. Такое соответствие можно назвать взаимно-однозначным — у человека есть страничка, и это можно проверить. И наоборот — по аккаунту в инстаграм можно проверить, кто им владеет.
В математике тоже есть такие взаимно-однозначные функции. Например, линейная функция у = 3х +2. Каждому значению х соответствует одно и только одно значение у. И наоборот — зная у, можно сразу найти х.