Функциональная лабильность нейронов головного мозга что это

Ритмы при ЭЭГ — обозначение и расшифровка

Ритмы ЭЭГ – это диагностируемые электрические колебания головного мозга. Различные степени бодрствования сопровождаются изменениями частотного спектра сигналов ЭЭГ.

В зависимости от амплитуды, формы волн, топографии, частотного диапазона и типа реакции различают ритмы электроэнцефалографии.

Функциональная лабильность нейронов головного мозга что это. Смотреть фото Функциональная лабильность нейронов головного мозга что это. Смотреть картинку Функциональная лабильность нейронов головного мозга что это. Картинка про Функциональная лабильность нейронов головного мозга что это. Фото Функциональная лабильность нейронов головного мозга что это

Основные ритмы ЭЭГ обозначают греческими буквами:

Как работает электроэнцефалография?

Передача сигналов в нервной системе человека осуществляется как химическим (с помощью нейротрансмиттеров), так и электрическим (потенциалы действия) путем. Одиночный потенциал действия или мембранное напряжение одного нейрона являются слишком слабыми, чтобы их было возможно уловить не инвазивными методами диагностики. Однако электроды могут улавливать суммирование синхронно действующих потенциалов действия и сделать колебания электрической активности видимыми.

Существует определенная связь между психическим состоянием человека и волнами ЭЭГ. Отклонения или необычные мозговые волны могут указывать на патологию. Анализом и описанием таких волн занимается невролог.

Электроды измеряют активность тех частей коры головного мозга, которые имеют высокую плотность нервных клеток. Однако ЭЭГ измеряет не только электрический потенциал нервных клеток в головном мозге, но также мышцы головы и кожи. Соответственно, основные ритмы ЭЭГ не отражают точную активность нейронов. Ритмы ЭЭГ и их связь с функциональным состоянием мозга является предметом споров в научной среде.

Дельта-ритмы

Дельта-ритмы ЭЭГ имеют низкую частоту от 0,1 до

Источник

ЛАБИЛЬНОСТЬ функциональная

Лабильность функциональная (лат. labilis подвижный, нестойкий) — функциональная подвижность; скорость протекания элементарных физиологических реакций, определяющая функциональное состояние живого субстрата. Понятие «лабильность» ввел в физиологию H. Е. Введенский (1892), который под Лабильностью понимал «большую или меньшую скорость элементарных реакций, которыми сопровождается физиологическая деятельность данного субстрата». А. А. Ухтомский определял Лабильность как скорость, с к-рой данный субстрат успевает переходить от состояния покоя к состоянию возбуждения и обратно до полной готовности к новому действию. Иногда Лабильность рассматривают как скорость трансмембранных ионных потоков, определяющих степень поляризации мембран, уровень функционального состояния клеток и их систем (Н. В. Голиков). В практической медицине и в химии термином «лабильность» обозначается неустойчивость, легкая изменчивость функциональных свойств субстрата. В физиологии, напротив, величина Лабильности обычно пропорциональна устойчивости, резистентности. А. А. Ухтомский подчеркивал, что высокая физиологическая Л. может служить выражением сопротивления возбудимой системы альтерирующим (изменяющим) факторам. Открыв закон возрастания Л. в процессе онто- и филогенетического развития, А. А. Ухтомский (1937) отмечал, что в связи с возрастанием Л. индифферентная возбудимость с низкими порогами, так напоминающая собой раздражительную слабость, или истериозис (т. е. патол, повышение возбудимости нейронов при сниженной их Л.), в процессе развития сменяется специальной отзывчивостью к кратким стимулам среды. В качестве наилучшей меры лабильности H. Е. Введенский (1892, 1901) предложил «наибольшую частоту электрических осцилляций (потенциалов действия), которую данный субстрат может развить в единицу времени, оставаясь в точном соответствии с частотой максимального раздражения». Предел синхронизации ритма потенциалов действия с ритмом раздражения, предложенный H. Е. Введенским в качестве меры Л., соответствует пропускной способности канала связи в совр, теории связи. Мерой могут служить также максимальный ритм локальных электрических ответов (вызванных потенциалов), синхронных с ритмом стимуляции, длительность отдельного потенциала действия, величины абсолютной рефрактерной фазы, полезного времени, хронаксии. Измеряется Л. и скоростью восходящей и нисходящей фаз потенциала действия.

Уровень Л. характеризует скорость возникновения и компенсации возбуждения в любых клетках и уровень их функц, состояния. Можно измерять Л. мембран, клеток, органов, причем в системе Л. определяется через Л. ее наименее лабильного звена. Так, если Л. моторного аксона лягушки ок. 500 сокращений в 1 сек., Л. мышечного волокна ок. 200, а Л. синапса ок. 100, то Л. нервно-мышечной системы будет ок. 100 сокращений в 1 сек. Вследствие различной Л. различных участков мембраны нейрона его Л., измеряемая с различных синаптических входов, будет различной. Л. различных рефлекторных дуг неодинакова и в процессе деятельности может изменяться по ходу реакции как в сторону повышения, так и в сторону снижения. При усилении активного ионного транспорта и при гиперполяризации мембран Л. возрастает, при деполяризации мембран Л. снижается с возникновением сначала возбуждения, а затем пессимального (запредельного) торможения. Возбуждение и ритмическая активность возникают при среднем, оптимальном уровне Л. и поляризации нейронов. Л. измеряется при регистрации вызванной биоэлектрической активности клеток, тканей и органов в условиях макроэлектродного (суммарного) и микроэлектродного (вне- и внутриклеточного) отведения в лаб. и клин, практике для оценки функц. состояния различных органов (см. Биоэлектрические потенциалы, Электрокардиография, Электромиография, Электроэнцефалография). С помощью различных функц, проб, в частности ритмической адекватной стимуляции органов чувств, определяется Л. соответствующих корковых полей и даже отдельных нейронов (реакция следования ритму).

В 1928 г. А. А. Ухтомским описаны явления усвоения ритма раздражений нервными центрами, позже обозначенные термином «синхронизация активности нейронов». В ряде нейронов процесс усвоения ритма сопровождается перестройкой конформационных особенностей рецептивных структур с формированием длительно сохраняющейся избирательно высокой отзывчивости к импульсации определенного ритма и определенной пространственно-временной характеристике (долговременная память). Изменения Л., обусловливающие усвоение ритма, обеспечивают формирование системных реакций мозга и феномены рекрутирования и выключения отдельных нейронных групп в констелляциях доминирующих центров.

Нарушение лабильности

Снижение Лабильности, проявляющееся в виде уменьшения или исчезновения ответов на второй и последующие стимулы при ритмическом раздражении (максимальной адекватной частоты), свидетельствует о нарушении способности структуры восстанавливать свои энергетические и пластические запасы, необходимые для осуществления полноценной реакции. Однако и увеличение способности структуры реагировать на высокочастотную стимуляцию далеко не всегда свидетельствует о ее оптимальном состоянии; чаще такое явление наблюдается при экзальтации и может говорить о так наз. раздражительной слабости, или истериозисе. В таких случаях быстро наступает утомление или истощение резервов реагирующей структуры.

При значительных нагрузках или в неблагоприятных условиях часть возбудимых систем обычно обратимо повреждается и Л. этих структур, естественно, снижается. В условиях обратимого нарушения проведения в нервно-мышечных синапсах (частичное блокирование секреции медиатора) мышца способна отвечать на стимуляцию нерва с большей частотой, чем в норме. Одновременно может возрастать амплитуда ответов мышцы. Это объясняется тем, что синхронная волна возбуждения, достигая нервно-мышечных синапсов, застает их в различном функц, состоянии — часть синапсов передает возбуждение на мышцу, другая часть (обратимо поврежденные синапсы) еще не восстановила свой исходный функц, уровень. Импульс возбуждения может пройти, следовательно. лишь через синапсы первой группы. Следующий импульс застает их уже в состоянии невозбудимости (рефрактерности). Обратимо же поврежденные синапсы к моменту прихода второго импульса могут восстановить свою возбудимость благодаря влиянию первого импульса, который хотя и не вызывает передачу возбуждения, но повышает Л. этих синапсов. Именно в этом лежит причина того, что при обратимом повреждении части синапсов повышается способность нервно-мышечного аппарата давать реакцию за счет несинхронного включения в реакцию различных групп мышечных волокон. В условиях же нормы в реакцию уже на первый стимул вступают почти все мышечные волокна, поскольку они и их синаптический аппарат находятся практически в одинаковом функциональном состоянии. Отсюда следует, что так наз. пессимальная реакция мышцы (в норме) в виде крутого падения амплитуды ответов на первые стимулы при высокочастотном сверхпороговом раздражении нерва не является показателем патологии. Напротив, такая реакция говорит о том, что все группы мышечных волокон обладают высокой и одинаковой реактивностью.

Т. о., обычные критерии Лабильности не всегда адекватно отражают функц, состояние ткани, особенно состояние сложных образований, напр, нервных центров, обладающих специальными механизмами регулирования функц, состояния составляющих их элементов (см. Нервная система). Используемый для изучения Л. тест усвоения ритма должен применяться с известной осторожностью, т. к. нельзя отождествлять механизмы усвоения ритма в элементарной физиол. структуре и в сложной системе, обладающей специальным механизмом регулирования активности и находящейся под интегративным контролем со стороны других систем. Применяемые критерии Лабильности пригодны лишь для характеристики рабочих возможностей и скорости восстановления реактивности элементарных физиологических структур.

Библиография: Введенский Н. Е. Соотношения между ритмическими процессами и функциональной активностью возбужденного нервно-мышечного аппарата, Полн. собр. соч., т. 3, с. 84, Л., 1952; он же, Возбуждение, торможение и наркоз, там же, т. 4, с. 9, Л., 1953; Голиков Н. В. Физиологическая лабильность и ее изменения при основных нервных процессах, Л., 1950, библиогр.; Крыжановский Г. Н., Поздняков О. М. и Полгар А. А. Патология синаптического аппарата мышцы, М., 1974, библиогр.; Ухтомский А. А. Собрание сочинений, т. 2, с. 33 и др., Л., 1951, т. 6, с. 168, Л., 1962.

Н. В. Голиков; Г. Н. Крыжановский (пат. физ.).

Источник

Мозг, общение нейронов и энергетическая эффективность

По всей видимости, в эволюции сформировались энергетически эффективные механизмы кодирования и передачи информации в мозге. Подпись: «Усердно пытаюсь минимизировать энергозатраты».

Автор
Редакторы

Статья на конкурс «био/мол/текст»: Клеточные процессы, обеспечивающие обмен информацией между нейронами, требуют много энергии. Высокое энергопотребление способствовало в ходе эволюции отбору наиболее эффективных механизмов кодирования и передачи информации. В этой статье вы узнаете о теоретическом подходе к изучению энергетики мозга, о его роли в исследованиях патологий, о том, какие нейроны более продвинуты, почему синапсам иногда выгодно не «срабатывать», а также, как они отбирают только нужную нейрону информацию.

Функциональная лабильность нейронов головного мозга что это. Смотреть фото Функциональная лабильность нейронов головного мозга что это. Смотреть картинку Функциональная лабильность нейронов головного мозга что это. Картинка про Функциональная лабильность нейронов головного мозга что это. Фото Функциональная лабильность нейронов головного мозга что это

Конкурс «био/мол/текст»-2017

Эта работа опубликована в номинации «Свободная тема» конкурса «био/мол/текст»-2017.

Функциональная лабильность нейронов головного мозга что это. Смотреть фото Функциональная лабильность нейронов головного мозга что это. Смотреть картинку Функциональная лабильность нейронов головного мозга что это. Картинка про Функциональная лабильность нейронов головного мозга что это. Фото Функциональная лабильность нейронов головного мозга что это

Генеральный спонсор конкурса — компания «Диаэм»: крупнейший поставщик оборудования, реагентов и расходных материалов для биологических исследований и производств.

Функциональная лабильность нейронов головного мозга что это. Смотреть фото Функциональная лабильность нейронов головного мозга что это. Смотреть картинку Функциональная лабильность нейронов головного мозга что это. Картинка про Функциональная лабильность нейронов головного мозга что это. Фото Функциональная лабильность нейронов головного мозга что это

Спонсором приза зрительских симпатий и партнером номинации «Биомедицина сегодня и завтра» выступила фирма «Инвитро».

Функциональная лабильность нейронов головного мозга что это. Смотреть фото Функциональная лабильность нейронов головного мозга что это. Смотреть картинку Функциональная лабильность нейронов головного мозга что это. Картинка про Функциональная лабильность нейронов головного мозга что это. Фото Функциональная лабильность нейронов головного мозга что это

Происхождение подхода

С середины ХХ века известно, что головной мозг потребляет значительную часть энергоресурсов всего организма: четверть всей глюкозы и ⅕ всего кислорода в случае высшего примата [1–5]. Это вдохновило Уильяма Леви и Роберта Бакстера из Массачусетского технологического института (США) на проведение теоретического анализа энергетической эффективности кодирования информации в биологических нейронных сетях (рис. 1) [6]. В основе исследования лежит следующая гипотеза. Поскольку энергопотребление мозга велико, ему выгодно иметь такие нейроны, которые работают наиболее эффективно — передают только полезную информацию и затрачивают при этом минимум энергии.

Это предположение оказалось справедливым: на простой модели нейронной сети авторы воспроизвели экспериментально измеренные значения некоторых параметров [6]. В частности, рассчитанная ими оптимальная частота генерации импульсов варьирует от 6 до 43 имп./с — почти так же, как и у нейронов основания гиппокампа. Их можно подразделить на две группы по частоте импульсации: медленные (

40 имп./с). При этом первая группа значительно превосходит по численности вторую [7]. Аналогичная картина наблюдается и в коре больших полушарий: медленных пирамидальных нейронов (

4—9 имп./с) в несколько раз больше, чем быстрых ингибиторных интернейронов (>100 имп./с) [8], [9]. Так, видимо, мозг «предпочитает» использовать поменьше быстрых и энергозатратных нейронов, чтобы те не израсходовали все ресурсы [6], [9–11].

Функциональная лабильность нейронов головного мозга что это. Смотреть фото Функциональная лабильность нейронов головного мозга что это. Смотреть картинку Функциональная лабильность нейронов головного мозга что это. Картинка про Функциональная лабильность нейронов головного мозга что это. Фото Функциональная лабильность нейронов головного мозга что это

Рисунок 1. Представлены два нейрона. В одном из них фиолетовым цветом окрашен пресинаптический белок синаптофизин. Другой нейрон полностью окрашен зеленым флуоресцентным белком. Мелкие светлые крапинки — синаптические контакты между нейронами [12]. Во вставке одна «крапинка» представлена ближе.
Группы нейронов, связанных между собой синапсами, называются нейронными сетями [13], [14]. Например, в коре больших полушарий пирамидальные нейроны и интернейроны образуют обширные сети. Слаженная «концертная» работа этих клеток обусловливает наши высшие когнитивные и другие способности. Аналогичные сети, только из других типов нейронов, распределены по всему мозгу, определенным образом связаны между собой и организуют работу всего органа.

Что такое интернейроны?

Нейроны центральной нервной системы разделяются на активирующие (образуют активирующие синапсы) и тормозящие (образуют тормозящие синапсы). Последние в значительной степени представлены интернейронами, или промежуточными нейронами. В коре больших полушарий и гиппокампе они ответственны за формирование гамма-ритмов мозга [15], которые обеспечивают слаженную, синхронную работу других нейронов. Это крайне важно для моторных функций, восприятия сенсорной информации, формирования памяти [9], [11].

Интернейроны отличаются способностью генерировать значительно более высокочастотные сигналы, чем другие нейроны. Они также содержат больше митохондрий, главных органелл энергетического метаболизма, «фабрик» по производству АТФ. Последние к тому же содержат большое количество белков цитохром-с оксидазы и цитохрома-с, являющихся ключевыми для метаболизма. Так, интернейроны являются крайне важными и, в то же время, энергозатратными клетками [8], [9], [11], [16].

Работа Леви и Бакстера [6] развивает концепцию «экономии импульсов» Горация Барлоу из Университета Калифорнии (США), который, кстати, является потомком Чарльза Дарвина [17]. Согласно ей, при развитии организма нейроны стремятся работать только с наиболее полезной информацией, фильтруя «лишние» импульсы, ненужную и избыточную информацию. Однако эта концепция не дает удовлетворительных результатов, так как не учитывает метаболические затраты, связанные с нейрональной активностью [6]. Расширенный подход Леви и Бакстера, в котором внимание уделено обоим факторам, оказался более плодотворным [6], [18–20]. И энергозатраты нейронов, и потребность в кодировании только полезной информации являются важными факторами, направляющими эволюцию мозга [6], [21–24]. Поэтому, чтобы лучше разобраться в том, как устроен мозг, стоит рассматривать обе эти характеристики: сколько нейрон передает полезной информации и сколько энергии при этом тратит.

За последнее время этот подход нашел множество подтверждений [10], [22], [24–26]. Он позволил по-новому взглянуть на устройство мозга на самых разных уровнях организации — от молекулярно-биофизического [20], [26] до органного [23]. Он помогает понять, каковы компромиссы между выполняемой функцией нейрона и ее энергетической ценой и в какой степени они выражены.

Как же работает этот подход?

Положим, у нас есть модель нейрона, описывающая его электрофизиологические свойства: потенциал действия (ПД) и постсинаптические потенциалы (ПСП) (об этих терминах — ниже). Мы хотим понять, эффективно ли он работает, не тратит ли неоправданно много энергии. Для этого нужно вычислить значения параметров модели (например, плотность каналов в мембране, скорость их открывания и закрывания), при которых: (а) достигается максимум отношения полезной информации к энергозатратам и в то же время (б) сохраняются реалистичные характеристики передаваемых сигналов [6], [19].

Поиск оптимума

Эти «оптимальные» значения параметров затем нужно сравнить с измеренными экспериментально и определить, насколько они отличаются. Общая картина отличий укажет на степень оптимизации данного нейрона в целом: насколько реальные, измеренные экспериментально, значения параметров совпадают с рассчитанными. Чем слабее выражены отличия, тем нейрон более близок к оптимуму и работает энергетически более эффективно, оптимально. С другой стороны, сопоставление конкретных параметров покажет, в каком конкретно качестве этот нейрон близок к «идеалу».

Далее, в контексте энергетической эффективности нейронов рассмотрены два процесса, на которых основано кодирование и передача информации в мозге. Это нервный импульс, или потенциал действия, благодаря которому информация может быть отправлена «адресату» на определенное расстояние (от микрометров до полутора метров) и синаптическая передача, лежащая в основе собственно передачи сигнала от одного нейрона на другой.

Потенциал действия

Потенциал действия (ПД) — сигнал, которые отправляют друг другу нейроны. ПД бывают разные: быстрые и медленные, малые и большие [28]. Зачастую они организованы в длинные последовательности (как буквы в слова), либо в короткие высокочастотные «пачки» (рис. 2).

Функциональная лабильность нейронов головного мозга что это. Смотреть фото Функциональная лабильность нейронов головного мозга что это. Смотреть картинку Функциональная лабильность нейронов головного мозга что это. Картинка про Функциональная лабильность нейронов головного мозга что это. Фото Функциональная лабильность нейронов головного мозга что это

Большое разнообразие сигналов обусловлено огромным количеством комбинаций разных типов ионных каналов, синаптических контактов, а также морфологией нейронов [28], [29]. Поскольку в основе сигнальных процессов нейрона лежат ионные токи, стоит ожидать, что разные ПД требуют различных энергозатрат [20], [27], [30].

Что такое потенциал действия?

Функциональная лабильность нейронов головного мозга что это. Смотреть фото Функциональная лабильность нейронов головного мозга что это. Смотреть картинку Функциональная лабильность нейронов головного мозга что это. Картинка про Функциональная лабильность нейронов головного мозга что это. Фото Функциональная лабильность нейронов головного мозга что это

ПД — это относительно сильное по амплитуде скачкообразное изменение мембранного потенциала.

Анализ разных типов нейронов (рис. 4) показал, что нейроны беспозвоночных не очень энергоэффективны, а некоторые нейроны позвоночных почти совершенны [20]. По результатам этого исследования, наиболее энергоэффективными оказались интернейроны гиппокампа, участвующего в формировании памяти и эмоций, а также таламокортикальные релейные нейроны, несущие основной поток сенсорной информации от таламуса к коре больших полушарий.

Функциональная лабильность нейронов головного мозга что это. Смотреть фото Функциональная лабильность нейронов головного мозга что это. Смотреть картинку Функциональная лабильность нейронов головного мозга что это. Картинка про Функциональная лабильность нейронов головного мозга что это. Фото Функциональная лабильность нейронов головного мозга что это

Рисунок 4. Разные нейроны эффективны по-разному. На рисунке представлено сравнение энергозатрат разных типов нейронов. Энергозатраты рассчитаны в моделях как с исходными (реальными) значениями параметров (черные столбцы), так и с оптимальными, при которых с одной стороны нейрон выполняет положенную ему функцию, с другой — затрачивает при этом минимум энергии (серые столбцы). Самыми эффективными из представленных оказались два типа нейронов позвоночных: интернейроны гиппокампа (rat hippocampal interneuron, RHI) и таламокортикальные нейроны (mouse thalamocortical relay cell, MTCR), так как для них энергозатраты в исходной модели наиболее близки к энергозатратам оптимизированной. Напротив, нейроны беспозвоночных менее эффективны. Условные обозначения: SA (squid axon) — гигантский аксон кальмара; CA (crab axon) — аксон краба; MFS (mouse fast spiking cortical interneuron) — быстрый кортикальный интернейрон мыши; BK (honeybee mushroom body Kenyon cell) — грибовидная клетка Кеньона пчелы.

Почему они более эффективны? Потому что у них малó перекрывание Na- и К-токов. Во время генерации ПД всегда есть промежуток времени, когда эти токи присутствуют одновременно (рис. 3в). При этом переноса заряда практически не происходит, и изменение мембранного потенциала минимально. Но «платить» за эти токи в любом случае приходится, несмотря на их «бесполезность» в этот период. Поэтому его продолжительность определяет, сколько энергетических ресурсов растрачивается впустую. Чем он короче, тем более эффективно использование энергии [20], [26], [30], [43]. Чем длиннее — тем менее эффективно. Как раз в двух вышеупомянутых типах нейронов, благодаря быстрым ионным каналам, этот период очень короткий, а ПД — самые эффективные [20].

Кстати, интернейроны гораздо более активны, чем большинство других нейронов мозга. В то же время они крайне важны для слаженной, синхронной работы нейронов, с которыми образуют небольшие локальные сети [9], [16]. Вероятно, высокая энергетическая эффективность ПД интернейронов является некой адаптацией к их высокой активности и роли в координации работы других нейронов [20].

Синапс

Передача сигнала от одного нейрона к другому происходит в специальном контакте между нейронами, в синапсе [12]. Мы рассмотрим только химические синапсы (есть еще электрические), поскольку они весьма распространены в нервной системе и важны для регуляции клеточного метаболизма, доставки питательных веществ [5].

Чаще всего, химический синапс образован между окончанием аксона одного нейрона и дендритом другого. Его работа напоминает. «переброс» эстафетной палочки, роль которой и играет нейромедиатор — химический посредник передачи сигнала [12], [42], [44–48].

На пресинаптическом окончании аксона ПД вызывает выброс нейромедиатора во внеклеточную среду — к принимающему нейрону. Последний только этого и ждет с нетерпением: в мембране дендритов рецепторы — ионные каналы определенного типа — связывают нейромедиатор, открываются и пропускают через себя разные ионы. Это приводит к генерации маленького постсинаптического потенциала (ПСП) на мембране дендрита. Он напоминает ПД, но значительно меньше по амплитуде и происходит за счет открывания других каналов. Множество этих маленьких ПСП, каждый от своего синапса, «сбегаются» по мембране дендритов к телу нейрона (зеленые стрелки на рис. 3а) и достигают начального сегмента аксона, где вызывают открывание Na-каналов и «провоцируют» его на генерацию ПД.

Такие синапсы называются возбуждающими: они способствуют активации нейрона и генерации ПД. Существуют также и тормозящие синапсы. Они, наоборот, способствуют торможению и препятствуют генерации ПД. Часто на одном нейроне есть и те, и другие синапсы. Определенное соотношение между торможением и возбуждением важно для нормальной работы мозга, формирования мозговых ритмов, сопровождающих высшие когнитивные функции [49].

Как это ни странно, выброс нейромедиатора в синапсе может и не произойти вовсе — это процесс вероятностный [18], [19]. Нейроны так экономят энергию: синаптическая передача и так обусловливает около половины всех энергозатрат нейронов [25]. Если бы синапсы всегда срабатывали, вся энергия пошла бы на обеспечение их работы, и не осталось бы ресурсов для других процессов. Более того, именно низкая вероятность (20–40%) выброса нейромедиатора соответствует наибольшей энергетической эффективности синапсов. Отношение количества полезной информации к затрачиваемой энергии в этом случае максимально [18], [19]. Так, выходит, что «неудачи» играют важную роль в работе синапсов и, соответственно, всего мозга. А за передачу сигнала при иногда «не срабатывающих» синапсах можно не беспокоиться, так как между нейронами обычно много синапсов, и хоть один из них да сработает.

Еще одна особенность синаптической передачи состоит в разделении общего потока информации на отдельные компоненты по частоте модуляции приходящего сигнала (грубо говоря, частоте приходящих ПД) [50]. Это происходит благодаря комбинированию разных рецепторов на постсинаптической мембране [38], [50]. Некоторые рецепторы активируются очень быстро: например, AMPA-рецепторы (AMPA происходит от α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid). Если на постсинаптическом нейроне представлены только такие рецепторы, он может четко воспринимать высокочастотный сигнал (такой, как, например, на рис. 2в). Ярчайший пример — нейроны слуховой системы, участвующие в определении местоположения источника звука и точном распознавании коротких звуков типа щелчка, широко представленных в речи [12], [38], [51]. NMDA-рецепторы (NMDA — от Nmethyl-Daspartate) более медлительны. Они позволяют нейронам отбирать сигналы более низкой частоты (рис. 2г), а также воспринимать высокочастотную серию ПД как нечто единое — так называемое интегрирование синаптических сигналов [14]. Есть еще более медленные метаботропные рецепторы, которые при связывании нейромедиатора, передают сигнал на цепочку внутриклеточных «вторичных посредников» для подстройки самых разных клеточных процессов. К примеру, широко распространены рецепторы, ассоциированные с G-белками. В зависимости от типа они, например, регулируют количество каналов в мембране или напрямую модулируют их работу [14].

Различные комбинации быстрых AMPA-, более медленных NMDA- и метаботропных рецепторов позволяют нейронам отбирать и использовать наиболее полезную для них информацию, важную для их функционирования [50]. А «бесполезная» информация отсеивается, она не «воспринимается» нейроном. В таком случае не приходится тратить энергию на обработку ненужной информации. В этом и состоит еще одна сторона оптимизации синаптической передачи между нейронами.

Что еще?

Энергетическая эффективность клеток мозга исследуется также и в отношении их морфологии [35], [52–54]. Исследования показывают, что ветвление дендритов и аксона не хаотично и тоже экономит энергию [52], [54]. Например, аксон ветвится так, чтобы суммарная длина пути, который проходит ПД, была наименьшей. В таком случае энергозатраты на проведение ПД вдоль аксона минимальны.

Снижение энергозатрат нейрона достигается также при определенном соотношении тормозящих и возбуждающих синапсов [55]. Это имеет прямое отношение, например, к ишемии (патологическому состоянию, вызванному нарушением кровотока в сосудах) головного мозга. При этой патологии, вероятнее всего, первыми выходят из строя наиболее метаболически активные нейроны [9], [16]. В коре они представлены ингибиторными интернейронами, образующими тормозящие синапсы на множестве других пирамидальных нейронов [9], [16], [49]. В результате гибели интернейронов, снижается торможение пирамидальных. Как следствие, возрастает общий уровень активности последних (чаще срабатывают активирующие синапсы, чаще генерируются ПД). За этим немедленно следует рост их энергопотребления, что в условиях ишемии может привести к гибели нейронов.

При изучении патологий внимание уделяют и синаптической передаче как наиболее энергозатратному процессу [19]. Например, при болезнях Паркинсона [56], Хантингтона [57], Альцгеймера [58–61] происходит нарушение работы или транспорта к синапсам митохондрий, играющих основную роль в синтезе АТФ [62], [63]. В случае болезни Паркинсона, это может быть связано с нарушением работы и гибелью высоко энергозатратных нейронов черной субстанции, важной для регуляции моторных функций, тонуса мышц. При болезни Хантингтона, мутантный белок хангтингтин нарушает механизмы доставки новых митохондрий к синапсам, что приводит к «энергетическому голоданию» последних, повышенной уязвимости нейронов и избыточной активации. Все это может вызвать дальнейшие нарушения работы нейронов с последующей атрофией полосатого тела и коры головного мозга. При болезни Альцгеймера нарушение работы митохондрий (параллельно со снижением количества синапсов) происходит из-за отложения амилоидных бляшек. Действие последних на митохондрии приводит к окислительному стрессу, а также к апоптозу — клеточной гибели нейронов.

Еще раз обо всем

В конце ХХ века зародился подход к изучению мозга, в котором одновременно рассматривают две важные характеристики: сколько нейрон (или нейронная сеть, или синапс) кодирует и передает полезной информации и сколько энергии при этом тратит [6], [18], [19]. Их соотношение является своего рода критерием энергетической эффективности нейронов, нейронных сетей и синапсов.

Использование этого критерия в вычислительной нейробиологии дало существенный прирост к знаниям относительно роли некоторых явлений, процессов [6], [18–20], [26], [30], [43], [55]. В частности, малая вероятность выброса нейромедиатора в синапсе [18], [19], определенный баланс между торможением и возбуждением нейрона [55], выделение только определенного рода приходящей информации благодаря определенной комбинации рецепторов [50] — все это способствует экономии ценных энергетических ресурсов.

Более того, само по себе определение энергозатрат сигнальных процессов (например, генерация, проведение ПД, синаптическая передача) позволяет выяснить, какой из них пострадает в первую очередь при патологическом нарушении доставки питательных веществ [10], [25], [56]. Так как больше всего энергии требуется для работы синапсов, именно они первыми выйдут из строя при таких патологиях, как ишемия, болезни Альцгеймера и Хантингтона [19], [25]. Схожим образом определение энергозатрат разных типов нейронов помогает выяснить, какой из них погибнет раньше других в случае патологии. Например, при той же ишемии, в первую очередь выйдут из строя интернейроны коры [9], [16]. Эти же нейроны из-за интенсивного метаболизма — наиболее уязвимые клетки и при старении, болезни Альцгеймера и шизофрении [16].

В общем, подход к определению энергетически эффективных механизмов работы мозга является мощным направлением для развития и фундаментальной нейронауки, и ее медицинских аспектов [5], [14], [16], [20], [26], [55], [64].

Благодарности

Искренне благодарен моим родителям Ольге Наталевич и Александру Жукову, сестрам Любе и Алене, моему научному руководителю Алексею Браже и замечательным друзьям по лаборатории Эвелине Никельшпарг и Ольге Слатинской за поддержку и вдохновение, ценные замечания, сделанные при прочтении статьи. Я также очень благодарен редактору статьи Анне Петренко и главреду «Биомолекулы» Антону Чугунову за пометки, предложения и замечания.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *