Функция open c что возвращает
Функция open c что возвращает
Некоторые из вышеописанных флагов могут быть изменены с помощью fctnl после открытия файла. Аргумент mode задает права доступа, которые используются в случае создания нового файла. Они модифицируются обычным способом, с помощью umask процесса; права доступа созданного файла равны (mode &
Следующие символьные константы можно использовать в mode : S_IRWXU (00700 пользователь (владелец файла) имеет права на чтение, запись и выполнение
файла); S_IRUSR (S_IREAD) (00400 пользователь имеет права на чтение файла); S_IWUSR (S_IWRITE) (00200 пользователь имеет права на запись информации в файл); S_IXUSR (S_IEXEC) (00100 пользователь имеет права на выполнение файла); S_IRWXG (00070 группа имеет права на чтение, выполнение файла и запись в него информации); S_IRGRP (00040 группа имеет права на чтение файла); S_IWGRP (00020 группа имеет права на запись информации в файл); S_IXGRP (00010 группа имеет права на выполнение
файла); S_IRWXO (00007 все остальные имеют права на чтение, выполнение файла и запись в него информации); S_IROTH (00004 все остальные имеют права на чтение файла); S_IWOTH (00002 все остальные имеют права на запись информации в файл); S_IXOTH (00001 все остальные имеют права на выполнение
файла).
ВОЗВРАЩАЕМЫЕ ЗНАЧЕНИЯ
Если создается файл, то его время последнего доступа, создания и модификации устанавливаются в значение текущего времени, а также устанавливаются поля времени модификации и создания родительского каталога. Иначе, если файл изменяется с флагом O_TRUNC, то его время создания и время изменения устанавливаются в значение текущего времени.
НАЙДЕННЫЕ ОШИБКИ
СООТВЕТСТВИЕ СТАНДАРТАМ
Эффект (неопределенный изначально) от O_RDONLY | O_TRUNC отличается в разных реализациях. Во многих системах файл в действительности обрезается.
Флаг O_DIRECT был представлен в SGI IRIX, где он имеет похожие ограничения по принаджености, как и в Linux. IRIX также имеет вызов fcntl(2) для очередей с выравниванием и размерами. FreeBSD 4.x имеет флаг с таким же именем, но без ограничений на выравнивание. В Linux была добавлена поддержка с ядра версии 2.4.10. Старые ядра Linux просто игнорируют этот флаг.
Функция open c что возвращает
Требования макроса тестирования свойств для glibc (см. feature_test_macros(7)):
Начиная с glibc 2.10: _XOPEN_SOURCE >= 700 || _POSIX_C_SOURCE >= 200809L До glibc 2.10: _ATFILE_SOURCE
ОПИСАНИЕ
По умолчанию, новый файловый дескриптор остаётся открытым при вызове execve(2) (т. е., флаг FD_CLOEXEC файлового дескриптора, описанный в fcntl(2), изначально сброшен; для изменения поведения по умолчанию можно использовать флаг O_CLOEXEC, он описан далее). Файловое смещение устанавливается на начало файла (см. lseek(2)).
Вызов open() создаёт новое открытое файловое описание — запись в системной таблице открытых файлов. В этой записи хранится смещение и флаги состояния файла (смотрите ниже). Файловый дескриптор — это ссылка на открытое файловое описание; с этой ссылкой ничего не происходит при последующем удалении pathname или переуказании имени на другой файл. Дополнительную информацию об открытых файловых описаниях смотрите в разделе ЗАМЕЧАНИЯ.
Параметр flags должен содержать один из следующих режимов доступа: O_RDONLY (только для чтения), O_WRONLY (только для записи) или O_RDWR (для чтения и записи).
Также в flags можно указывать флаги создания и состояния файла, объединяя их битовой операцией ИЛИ. Флаги создания файла: O_CLOEXEC, O_CREAT, O_DIRECTORY, O_EXCL, O_NOCTTY, O_NOFOLLOW, O_TMPFILE и O_TRUNC. Флаги состояния файла — все оставшиеся, перечислены ниже. Различие между двумя этими группами в том, что флаги состояния можно запросить и (в некоторых случаях) изменить; смотрите fcntl(2).
Полный список флагов создания и флагов состояния файла:
O_APPEND Файл открывается в режиме добавления. Перед каждым вызовом write(2) файловое смещение устанавливается в конец файла, как если бы это делалось с помощью lseek(2). Флаг O_APPEND может приводить к повреждению файлов в файловых системах NFS, если одновременно добавляют данные в файл несколько процессов. Это происходит из-за того, что NFS не поддерживает добавление в файл, поэтому клиентское ядро имитирует такое поведение, но при этом нельзя избежать состязательности процессов. O_ASYNC Включает ввод-вывод, управляемый сигналом: генерирует сигнал (по умолчанию SIGIO, но можно изменить с помощью fcntl(2)), когда становится возможным ввод или вывод для этого файлового дескриптора. Эта возможность доступна только для терминалов, псевдо-терминалов, сокетов, каналов (начиная с Linux 2.6) и FIFO. Подробней смотрите fcntl(2). Также смотрите ДЕФЕКТЫ далее. O_CLOEXEC (начиная с Linux 2.6.23) Устанавливает флаг close-on-exec на новом файловом дескрипторе. Указание данного флага позволяет программе избежать дополнительной операции fcntl(2) F_SETFD для установки флага FD_CLOEXEC.
Заметим, что использование этого флага обязательно для некоторых многонитиевых программ, так как использование отдельной операции fcntl(2) F_SETFD для установки флага FD_CLOEXEC недостаточно для избежания состязательности, когда одна нить открывает файловый дескриптор, а в тоже время другая нить может выполнять fork(2) и execve(2). В зависимости от порядка выполнения, состязательность может привести к тому, что файловый дескриптор, возвращённый open(), будет ненамеренно передан программе, выполняющейся в созданном с помощью fork(2) потомке (такого рода состязательность, в принципе, возможна для любых системных вызовов, создающих файловый дескриптор, у которого должен быть установлен флаг close-on-exec, и различные другие системные вызовы Linux предоставляют эквивалент флагу O_CLOEXEC, чтобы избежать этой проблемы).
O_CREAT Если файл не существует, то он будет создан. Владелец (идентификатор пользователя) файла устанавливается в значение эффективного идентификатора пользователя процесса. Группа (идентификатор группы) устанавливается либо в значение эффективного идентификатора группы процесса, либо в значение идентификатора группы родительского каталога (зависит от типа файловой системы, параметров монтирования и режима родительского каталога; смотрите параметры монтирования bsdgroups и sysvgroups, описанные в mount(8)).
В аргументе mode указывается режим использования, который используется при создании нового файла. Этот параметр должен указываться, если в flags устанавливается O_CREAT или O_TMPFILE; если O_CREAT или O_TMPFILE не указаны, то mode игнорируется. Эффективный режим изменяется согласно umask процесса как обычно: в случае отсутствия списков доступа по умолчанию режим созданного файла будет установлен согласно (mode &
umask). Заметим, что этот режим будет учтён только при последующих обращениях к созданному файлу; вызов open(), создающий файл только для чтения, может вернуть файловый дескриптор доступный на чтение и запись.
Символьные константы, используемые в mode:
S_IRWXU 00700 пользователь (владелец файла) имеет права на чтение, запись и выполнение файла S_IRUSR 00400 пользователь имеет права на чтение файла S_IWUSR 00200 пользователь имеет права на запись в файл S_IXUSR 00100 пользователь имеет права на выполнение файла S_IRWXG 00070 группа имеет права на чтение, запись и выполнение файла S_IRGRP 00040 группа имеет права на чтение файла S_IWGRP 00020 группа имеет права на запись в файл S_IXGRP 00010 группа имеет права на выполнение файла S_IRWXO 00007 все остальные имеют права на чтение, запись и выполнение файла S_IROTH 00004 все остальные имеют права на чтение файла S_IWOTH 00002 все остальные имеют права на запись в файл S_IXOTH 00001 все остальные имеют права на выполнение файла Согласно POSIX, в случае, если в mode указаны другие биты, их воздействие не определено. В Linux для mode также доступны следующие биты: S_ISUID 0004000 бит set-user-ID S_ISGID 0002000 бит set-group-ID bit (см. stat(2)) S_ISVTX 0001000 закрепляющий бит (см. stat(2)) O_DIRECT (начиная с Linux 2.4.10) Попытаться минимизировать влияние кэширования ввода-вывода при чтении и записи в файл. Обычно, это ухудшает производительность, но полезно для особых случаев, например, когда приложение выполняет кэширование самостоятельно. Файловый ввод-вывод выполняется непосредственно в/из буферов пространства пользователя. При флаге O_DIRECT предпринимаются все усилия для синхронной передачи данных, но это не гарантирует, как с флагом O_SYNC, передачу данных и необходимых метаданных. Чтобы гарантировать синхронный ввод-вывод вместе с O_DIRECT нужно использовать O_SYNC. Дальнейшее описание смотрите далее в разделе ЗАМЕЧАНИЯ.
Семантически похожий интерфейс (но устаревший) для блочных устройств описан в raw(8).
O_DIRECTORY Если pathname не является каталогом, то завершить вызов с ошибкой. Этот флаг был добавлен в ядро версии 2.1.126, чтобы избежать проблем с «отказом в обслуживании», если opendir(3) был вызван для канала FIFO или ленточного устройства. O_DSYNC Операции записи файла будут выполнены согласно требованиям целостности синхронизации ввода-вывода data.
К времени возврата из write(2) (и подобных) выходные данные уже переданы в задействованное аппаратное обеспечение вместе со всеми метаданными файла, которые бы потребовались для получения данных (т. е., как если бы за каждым write(2) был выполнен вызов fdatasync(2)). Смотрите ЗАМЕЧАНИЯ далее.
O_EXCL Гарантирует, что вызов создаст файл: если этот флаг указан вместе с O_CREAT и pathname уже существует, то open() завершится с ошибкой.
При использовании обоих флагов символьные ссылки не поддерживаются: если pathname является символьной ссылкой, то open() завершается с ошибкой независимо от того, куда указывает ссылка.
Вообще говоря, поведение с O_EXCL не определено, если этот флаг используется без O_CREAT. Есть одно исключение: в Linux 2.6 и более новых O_EXCL можно использовать без O_CREAT, если pathname указывает на блочное устройство. Если блочное устройство используется в системе (например, смонтировано), то open() завершится с ошибкой EBUSY.
Флаг O_EXCL поддерживается для NFS только, если используется NFSv3 или новее с ядром 2.6 или новее. В средах, где в NFS нет поддержки O_EXCL, программы, которые полагаются на это для выполнения задач блокировок, будут создавать состязательность процессов. Переносимым программам, которым нужно произвести атомарную блокировку файла с помощь файла блокировки, необходимо избегать зависимости от поддержки в NFS флага O_EXCL. В качестве решения можно создать уникальный файл в той же файловой системе (например, добавив имя узла и PID в название), чтобы создать ссылку на файл блокировки с помощью link(2). Если link(2) возвращает 0, то блокировка выполнена. В противном случае используйте stat(2), чтобы убедиться, что количество ссылок на уникальный файл возросло до двух. Это также означает, что блокировка была успешной.
O_LARGEFILE (LFS) Позволяет открывать файлы, чей размер нельзя представить типом off_t (но можно представить типом off64_t). Для получения этого определения должен быть указан макрос _LARGEFILE64_SOURCE (до включения какого-либо заголовочного файла). Установка макроса тестирования возможностей _FILE_OFFSET_BITS в значение 64 (вместо использования O_LARGEFILE) является предпочтительным методом доступа к большим файлам на 32-битных системах (см. feature_test_macros(7)). O_NOATIME (начиная с Linux 2.6.8) Не обновлять время последнего доступа к файлу (st_atime в inode) при его чтении read(2). Этот флаг предназначен для использования в программах индексирования и резервного копирования; он позволяет значительно сократить количество обращений к диску. Флаг может быть не эффективен на некоторых файловых системах. Например, на NFS, где запись времени доступа выполняется сервером. O_NOCTTY Если pathname указывает на терминальное устройство (см. tty(4)), то оно не станет управляющим терминалом процесса, даже если процесс такового не имеет. O_NOFOLLOW Если pathname является символьной ссылкой, то открытие завершится неудачно. Это расширение FreeBSD, которое было добавлено в Linux версии 2.1.126. Все прочие символьные ссылки в имени будут обработаны как обычно. Также смотрите описание O_PATH далее. O_NONBLOCK или O_NDELAY Если возможно, файл открывается в неблокирующем режиме. Ни open(), ни другие последующие операции над возвращаемым дескриптором файла не заставят вызывающий процесс ждать.
Обратите внимание, что этот флаг не оказывает влияния на обычные файлы и блочные устройства, то есть операции ввода-вывода будут блокироваться на короткое время, если будет запрошено активность устройства, вне зависимости от установки флага O_NONBLOCK. Семантика O_NONBLOCK может быть когда-нибудь реализована, поэтому приложения не должны зависеть от блокировок при указании данного флага для обычных файлов и блочных устройств.
Для работы с каналами FIFO также смотрите fifo(7). Обсуждение влияния O_NONBLOCK в сочетании с обязательной файловой блокировкой или арендой (lease) смотрите в fcntl(2).
O_PATH (начиная с Linux 2.6.39) Получить файловый дескриптор, который можно использовать для двух целей: для указания положения в дереве файловой системы и для выполнения операций, работающих исключительно на уровне файловых дескрипторов. Сам файл не открывается и другие файловые операции (например, read(2), write(2), fchmod(2), fchown(2), fgetxattr(2), mmap(2)) завершатся с ошибкой EBADF.
Следующие операции могут выполняться над полученным файловым дескриптором:
* close(2); fchdir(2) (начиная с Linux 3.5); fstat(2) (начиная с Linux 3.6). * Создание дубликата файлового дескриптора (dup(2), fcntl(2) F_DUPFD и т.д.). * Получение и установка флагов файловых дескрипторов (fcntl(2) F_GETFD и F_SETFD). * Получение флагов состояния открытого файла с помощью операции fcntl(2) F_GETFL: в возвращаемые флаги будет включён бит O_PATH. * Передача файлового дескриптора в аргументе dirfd для openat(2) и других системных вызовов «*at()». К ним относится linkat(2) с флагом AT_EMPTY_PATH (или через procfs с помощью AT_SYMLINK_FOLLOW) даже, если файл не является каталогом. * Передача файлового дескриптора в другой процесс через доменный сокет UNIX (смотрите SCM_RIGHTS в unix(7)). Если O_PATH указан в flags, то биты флагов, отличные от O_CLOEXEC, O_DIRECTORYи O_NOFOLLOW, игнорируются.
Если pathname является символьной ссылкой и также указан флаг O_NOFOLLOW, то вызов возвращает файловый дескриптор, указывающий на символьную ссылку. Этот файловый дескриптор можно использовать в аргументе dirfd для вызовов fchownat(2), fstatat(2), linkat(2) и readlinkat(2) с пустым именем пути, чтобы выполнить операцию над символьной ссылкой.
O_SYNC Операции записи файла будут выполнены согласно требованиям целостности синхронизации ввода-вывода file (по сравнению с целостностью синхронизации ввода-вывода data, предоставляемой O_DSYNC).
К времени возврата из write(2) (и подобных) выходные данные и все метаданные файла уже переданы в задействованное аппаратное обеспечение (т. е., как если бы за каждым write(2) был выполнен вызов fsync(2)). Смотрите ЗАМЕЧАНИЯ далее.
O_TMPFILE (начиная с Linux 3.11) Создание безымянного временного файла. В аргументе pathname указывается каталог; безымянная inode будет создана в файловой системе этого каталога. Всё записанное в полученный файл будет потеряно при закрытии последнего файлового дескриптора, если файлу не будет назначено имя.
Флаг O_TMPFILE должен быть указан вместе с O_RDWR или O_WRONLY и, необязательно, O_EXCL. Если O_EXCL не указан, то можно использовать linkat(2) для ссылки на временный файл в файловой системе, сделав его постоянным с помощью кода:
В этом случае аргументом mode у open() определяется режим доступа к файлу как с O_CREAT.
Указание O_EXCL вместе с O_TMPFILE отключает возможность создания символьной ссылки в файловой системе указанным ранее способом (заметим, что назначение O_EXCL в этом случае отличается от обычного O_EXCL).
Есть два основных случая использования O_TMPFILE:
* Дополнительное свойство tmpfile(3): свободное от состязательности создание временных файлов, которые: автоматически удаляются при закрытии; недоступны по имени; не подвержены атаке через символьные ссылки; не требуют от вызывающего подбирать уникальное имя. * Создание файла, который изначально не видим, и который затем заполняется данными и позволяет изменять атрибуты в файловой системе (chown(2), chmod(2), fsetxattr(2) и т. д.) до автоматического встраивания в файловую систему в полностью законченном виде (с помощью linkat(2) как описано ранее). Для O_TMPFILE требуется поддержка в файловой системе; она есть только в нескольких файловых системах Linux. В первой реализации поддержка предоставлялась в файловых системах ext2, ext3, ext4, UDF, Minix и shmem. Поддержка в XFS добавлена в Linux 3.15. O_TRUNC Если файл уже существует и является обычным файлом и режим доступа позволяет писать в этот файл (т.е. установлен флаг O_RDWR или O_WRONLY), то его длина будет урезана до нуля. Если файл является FIFO или терминальным устройством, то этот флаг игнорируется. В других случаях действие флага O_TRUNC не определено.
creat()
openat()
Если в pathname задан относительный путь, то он считается относительно каталога, на который ссылается файловый дескриптор dirfd (а не относительно текущего рабочего каталога вызывающего процесса, как это делается в open()).
Если в pathname задан относительный путь и dirfd равно специальному значению AT_FDCWD, то pathname рассматривается относительно текущего рабочего каталога вызывающего процесса (как open()).
Если в pathname задан абсолютный путь, то dirfd игнорируется.
ВОЗВРАЩАЕМОЕ ЗНАЧЕНИЕ
ОШИБКИ
В openat() дополнительно могут возникнуть следующие ошибки:
EBADF dirfd не является правильным файловым дескриптором. ENOTDIR Значение pathname содержит относительный путь и dirfd содержит файловый дескриптор, указывающий на файл, а не на каталог.
ВЕРСИИ
СООТВЕТСТВИЕ СТАНДАРТАМ
Флаги O_DIRECT, O_NOATIME, O_PATH и O_TMPFILE есть только в Linux. Для их определения может потребоваться задать _GNU_SOURCE.
Флаги O_CLOEXEC, O_DIRECTORY и O_NOFOLLOW не указаны в POSIX.1-2001, но есть в POSIX.1-2008. Начиная с glibc 2.12, их определения можно получить определив или _POSIX_C_SOURCE со значением большим и равным 200809L, или _XOPEN_SOURCE со значением большим и равным 700. В glibc 2.11 и старее их определения можно получить определив _GNU_SOURCE.
Как было отмечено в feature_test_macros(7), такие макросы тестирования свойств как _POSIX_C_SOURCE, _XOPEN_SOURCE и _GNU_SOURCE, должны быть определены до включения любых заголовочных файлов.
ЗАМЕЧАНИЯ
Результат работы комбинации флагов O_RDONLY | O_TRUNC в разных реализациях разный (нигде не определён). Во многих системах файл усекается.
Заметим, что open() может открывать специальные файлы устройств, но creat() не может их создавать; вместо этого используйте mknod(2).
Если файл только что был создан, его поля st_atime, st_ctime, st_mtime (время последнего доступа, последней смены состояния и последнего изменения, соответственно; см. stat(2)) устанавливаются в значение текущего времени, и оно совпадает с полями st_ctime и st_mtime родительского каталога. Или же, если файл изменяется из-за установленного флага O_TRUNC, то его поля st_ctime и st_mtime устанавливаются в значение текущего времени.
Открытые файловые описания
При создании копии файлового дескриптора (с помощью dup(2) или подобного вызова), копия ссылается на то же открытое файловое описание что и изначальный файловый дескриптор, и, следовательно, два файловых дескриптора имеют общее файловое смещение и флаги состояния файла. Такая общность может также быть у двух процессов: процесс-потомок, создаваемый fork(2), наследует копии файловых дескрипторов своего родителя и эти копии ссылаются на те же открытые файловые описания.
При каждом open(2) файла создаётся новое файловое описание; таким образом, может быть несколько открытых файловых описаний, соответствующих inode файла.
Синхронизированный ввод-вывод
В Linux реализованы O_SYNC и O_DSYNC, но не O_RSYNC (немного некорректно, в glibc определён O_RSYNC со значением как у O_SYNC).
Флаг O_SYNC предоставляет выполнение целостного синхронизованного ввод-вывода file, то есть операции записи передают данные и все связанные метаданные в задействованное аппаратное обеспечение. Флаг O_DSYNC предоставляет выполнение целостного синхронизованного ввод-вывода data, то есть операции записи передают данные в задействованное аппаратное обеспечение, но обновляются только те метаданные, которые требуются для выполнения последующего чтения. Полнота целостности данных может сократить количество дисковых операций, которые требуются приложениям, не требующим гарантий целостности файлов.
Чтобы понять разницу между двумя типами обеспечения целостности рассмотрим две части метаданных файла: метка времени последнего изменения файла (st_mtime) и длину файла. Все операции записи обновляют метку времени последнего изменения файла, но только при записи, которая добавляет данные в конец файла, будет изменена длина файла. Метка времени последнего изменения файла не требуется для корректного чтения файла, чего не скажешь о длине. Таким образом, O_DSYNC гарантирует только запись обновлений о метаданных длины файла (в то время как O_SYNC также всегда записывает метаданные о метки времени последнего изменения файла).
До Linux версии 2.6.33 в Linux реализован только флаг O_SYNC для open(). Однако, когда этот флаг указан, большинство файловых систем в действительности предоставляют эквивалент выполнения целостности синхронизированного ввода-вывода data (т. е., на самом деле O_SYNC был реализован как эквивалент O_DSYNC).
Начиная с Linux 2.6.33, предоставляет корректная поддержка O_SYNC. Однако для обеспечения обратной двоичной совместимости, O_DSYNC был определён с тем же значением что и старый O_SYNC, а O_SYNC был определён как новое значение флага (два бита), которое включает значение флага O_DSYNC. Это позволяет приложениям, скомпилированным с новыми заголовочными файлами получать, по крайней мере, семантику O_DSYNC ядер pre-2.6.33.
В файловых системах NFS с включённым проецированием UID, open() может вернуть файловый дескриптор, но, например, запросы read(2) будут отклонены с ошибкой EACCES. Это происходит из-за того, что клиент выполняет open() проверяя одни права, но сервер выполняет проецирование UID только при запросах чтения и записи.
Режим доступа к файлу
В Linux зарезервирован специальный нестандартный режим доступа 3 (11 двоичное) в flags, при котором: проверяются права на чтение и запись к файлу и возвращается файловый дескриптор, который не может использоваться для чтения или записи. Данный нестандартный режим доступа используется некоторыми драйверами Linux для получения файлового дескриптора, который будет использоваться в ioctl(2) только для специальных операций с устройством.
Обоснование openat() и остального программного интерфейса файлового дескриптора каталога
Во-первых, openat() позволяет приложению избежать условий состязательности, которые могут возникнуть, когда open() открывает файлы в каталогах, отличных от текущего рабочего каталога. Состязательность возникает из-за того, что один из компонентов префикса каталога, указанного open(), может измениться одновременно с вызовом open(). Например, предположим, что мы хотим создать файл path/to/xxx.dep и существует файл path/to/xxx. Проблема находится между шагами проверки существования и созданием файла, указываемые path или to (которые могут быть символическими ссылками) места могут измениться. Этой состязательности можно избежать открыв файловый дескриптор каталога назначения, и затем указав этот файловый дескриптор в аргументе dirfd вызова (скажем) fstatat(2) и openat().
Во-вторых, openat() позволяет реализовать отдельный «текущий рабочий каталог» для каждой нити посредством файлового дескриптора, сопровождаемого приложением. Эта возможность также может быть получена с использованием /proc/self/fd/dirfd, но менее эффективно.
O_DIRECT
Флаг O_DIRECT может накладывать ограничения по выравниванию на длину и адрес буфера пользовательского пространства и смещения файла при вводе-выводе. В Linux ограничения по выравниванию различны у разных файловых систем и версий ядра, и даже могут отсутствовать. Однако сейчас не существует независимого от файловой системы интерфейса приложения для выявления этих ограничений на определённый файл или файловую систему. Некоторые файловые системы предоставляют свои собственные интерфейсы для этого, например, операция XFS_IOC_DIOINFO в xfsctl(3).
В Linux 2.4 размеры передачи, выравнивание пользовательского буфера и файлового смещения должны быть кратны размеру логического блока файловой системы. Начиная с Linux 2.6 достаточно выравнивания по 512-байтовой границе. Размер логического блока можно определить с помощью ioctl(2) и операции BLKSSZGET или с помощью команды:
Ввод-вывод с O_DIRECT никогда не должен запускаться одновременно с системным вызовом fork(2), если буфер памяти является закрытым отображением (т. е., любым отображениям, созданным с помощью mmap(2) с флагом MAP_PRIVATE; к ним относится память, выделенная под кучу и статически выделенные буферы). Любой подобный ввод-вывод, предоставленный через асинхронный интерфейс или из другой нити процесса, должен выполниться полностью до вызова fork(2). В противном случае, может произойти повреждение данных и непредсказуемое поведение в процессе родителя и потомка.Данное ограничение не действует, если буфер памяти для ввода-вывода с O_DIRECT был создан с помощью shmat(2) или mmap(2) с флагом MAP_SHARED. И при этом это ограничение не действует, когда буфер памяти был помечен (advised) как MADV_DONTFORK с помощью madvise(2), если точно известно, что он не будет доступен потомку после fork(2).
Флаг O_DIRECT появился в SGI IRIX, где ограничения на выравнивание подобны Linux 2.4. В IRIX также есть вызов fcntl(2) для запроса значений соответствующего выравнивания и размеров. В FreeBSD 4.x появился флаг с таким же именем, но без ограничений на выравнивание.
Поддержка O_DIRECT добавлена в ядро Linux версии 2.4.10. Более старые ядра Linux просто игнорируют этот флаг. В некоторых файловых системах этот флаг может быть не реализован и open() завершится с ошибкой EINVAL при его использовании.
Приложения должны избегать смешивания O_DIRECT и обычных операций ввода-вывода в один файл и особенно перекрывать байтовые области. Даже когда файловая система правильно обрабатывает проблемы с когерентностью в такой ситуации, общая пропускная способность ввода-вывода, вероятно, будет медленнее чем при использовании какого-то одного из этих режимов отдельно. Аналогично приложения должны избегать смешивания mmap(2) и прямого ввода-вывода для одинаковых файлов.
Поведение O_DIRECT на NFS отличается от локальных файловых систем. Старые ядра и ядра, настроенные определёнными способами, могут не поддерживать такую комбинацию. Протокол NFS не поддерживает передачу флага на сервер, поэтому ввод-вывод с O_DIRECT будет пропускать кэширование страниц только на клиенте; сервер всё равно может выполнить кэширование ввода-вывода. Клиент просит сервер выполнять операции ввода-вывода синхронно для сохранения синхронной семантики O_DIRECT. Некоторые серверы будут выполнять это плохо при определённых условиях, особенно если размер данных ввода-вывод невелик. Некоторые серверы также могут быть настроены на отправку ложного ответа клиентам о том, что ввод-вывод произведён на носитель; это позволяет избежать потери производительности, но есть риск потери целостности данных в случае проблем с электропитанием сервера. В Linux клиент NFS не устанавливает ограничений по выравниванию при вводе-выводе с O_DIRECT.
Флаг O_DIRECT является потенциально мощным инструментом, который нужно использовать с осторожностью. Рекомендуется, чтобы приложения считали использование O_DIRECT как параметр производительности, который по умолчанию выключен.
«The thing that has always disturbed me about O_DIRECT is that the whole interface is just stupid, and was probably designed by a deranged monkey on some serious mind-controlling substances.» — Linus (Меня всегда беспокоило кое-что относительно O_DIRECT — то, что вообще в целом этот интерфейс просто идиотичен. Создаётся впечатление, что он как-бы был создан сумасшедшей обезьяной под веществами.)
ДЕФЕКТЫ
Для определения поддержки ядром O_TMPFILE нужно проверять два различных кода ошибок — EISDIR и ENOENT.
При указании флагов O_CREAT и O_DIRECTORY в flags, и при этом указанный в pathname файл не существует, open() создаст обычный файл (то есть флаг O_DIRECTORY будет проигнорирован).