Хеш алгоритм sha 2 что это

Алгоритм хеширования SHA-2 (SHA-256) — разбираем на примере

Хеш алгоритм sha 2 что это. Смотреть фото Хеш алгоритм sha 2 что это. Смотреть картинку Хеш алгоритм sha 2 что это. Картинка про Хеш алгоритм sha 2 что это. Фото Хеш алгоритм sha 2 что это

SHA-2 (Secure Hash Algorithm 2) — одно из самых популярных семейств алгоритмов хеширования. В статье «How SHA-2 Works Step-By-Step (SHA-256)» разобран каждый шаг алгоритма SHA-256, принадлежащего к SHA-2, и показано, как он работает на реальном примере. Перевод статьи опубликовал сайт tproger.ru.

Что такое хеш-функция?

Если вы хотите узнать больше о хеш-функциях, можете почитать Википедию. Но чтобы понять, о чём пойдёт речь, давайте вспомним три основные цели хеш-функции:

SHA-2 и SHA-256

SHA-2 — это семейство алгоритмов с общей идеей хеширования данных. SHA-256 устанавливает дополнительные константы, которые определяют поведение алгоритма SHA-2. Одной из таких констант является размер вывода. «256» и «512» относятся к соответствующим размерам выходных данных в битах.

Мы рассмотрим пример работы SHA-256.

SHA-256 «hello world». Шаг 1. Предварительная обработка

1. Преобразуем «hello world» в двоичный вид:

2. Добавим одну единицу:

3. Заполняем нулями до тех пор, пока данные не станут кратны 512 без последних 64 бит (в нашем случае 448 бит):

4. Добавим 64 бита в конец, где 64 бита — целое число с порядком байтов big-endian, обозначающее длину входных данных в двоичном виде. В нашем случае 88, в двоичном виде — «1011000».

Теперь у нас есть ввод, который всегда будет без остатка делиться на 512.

Шаг 2. Инициализация значений хеша (h)

Создадим 8 значений хеша. Это константы, представляющие первые 32 бита дробных частей квадратных корней первых 8 простых чисел: 2, 3, 5, 7, 11, 13, 17, 19.

Шаг 3. Инициализация округлённых констант (k)

Создадим ещё немного констант, на этот раз их 64. Каждое значение — это первые 32 бита дробных частей кубических корней первых 64 простых чисел (2–311).

Шаг 4. Основной цикл

Шаг 5. Создаём очередь сообщений (w)

1. Копируем входные данные из шага 1 в новый массив, где каждая запись является 32-битным словом:

2. Добавляем ещё 48 слов, инициализированных нулями, чтобы получить массив w[0…63] :

3. Изменяем нулевые индексы в конце массива, используя следующий алгоритм:

Давайте посмотрим, как это работает для w[16] :

Это оставляет нам 64 слова в нашей очереди сообщений ( w ):

Шаг 6. Цикл сжатия

Давайте пройдём первую итерацию. Сложение рассчитывается по модулю 2^32:

Шаг 7. Изменяем окончательные значения

Шаг 8. Получаем финальный хеш

И последний важный шаг — собираем всё вместе.

Готово! Мы выполнили каждый шаг SHA-2 (SHA-256) (без некоторых итераций).

Алгоритм SHA-2 в виде псевдокода

Если вы хотите посмотреть на все шаги, которые мы только что сделали, в виде псевдокода, то вот пример:

Источник

«Привет, мир»: разбираем каждый шаг хэш-алгоритма SHA-256

Хеш алгоритм sha 2 что это. Смотреть фото Хеш алгоритм sha 2 что это. Смотреть картинку Хеш алгоритм sha 2 что это. Картинка про Хеш алгоритм sha 2 что это. Фото Хеш алгоритм sha 2 что это

Что такое хэш-функция?

Три основных цели хэш-функций:

SHA-256 «Привет, мир»

Шаг 1 — Предварительная работа

Преобразуем «Привет, мир» в двоичный код:

Дополните код нулями, пока данные не станут равны 512 бит, минус 64 бита (в результате 448 бит):

Добавьте 64 бита в конец в виде целого числа с порядком байтов от старшего к младшему (big-endian), представляющего длину входного сообщения в двоичном формате. В нашем случае это 88, или «1011000».

Теперь у нас есть ввод, который будет делиться на 512 без остатка.

Шаг 2 — Инициализируйте значения хэша (h)

Теперь мы создаем 8 хэш-значений. Это жестко запрограммированные константы, которые представляют собой первые 32 бита дробных частей квадратных корней из первых восьми простых чисел: 2, 3, 5, 7, 11, 13, 17, 19.

Шаг 3 — Инициализация округленных констант (k)

Как и в предыдущем шаге, мы создадим еще несколько констант. На этот раз их будет 64. Каждое значение (0—63) представляет собой первые 32 бита дробных частей кубических корней первых 64 простых чисел (2—311).

Шаг 4 — Цикл фрагментов

Следующие шаги будут выполняться для каждого 512-битного «фрагмента» из наших входных данных. Поскольку фаза «Привет, мир» короткая, у нас есть только один фрагмент. В каждой итерации цикла мы будем изменять хэш-значения h0-h7, что приведет нас к конечному результату.

Шаг 5 — Созданием расписание сообщений (w)

Скопируйте входные данные из шага 1 в новый массив, где каждая запись представляет собой 32-битное слово:

Добавьте еще 48 слов, инициализированных нулем, чтобы у нас получился массив w [0… 63]

Измените обнуленные индексы в конце массива, используя следующий алгоритм:
Для i из w[16…63]:

В расписании сообщений осталось 64 слова (w):

Шаг 6 — Сжатие

Инициализируйте переменные a, b, c, d, e, f, g, h и установите их равными текущим значениям хэш-функции соответственно h0, h1, h2, h3, h4, h5, h6, h7.

Запустите цикл сжатия, который изменит значения a… h. Выглядит он следующим образом:

Все вычисления выполняются еще 63 раза, меняя переменные a-h. К счастью, мы не делаем это вручную. В итоге мы получили:

Шаг 7 — Измените окончательные значения

После цикла сжатия, во время цикла фрагментов, мы изменяем хеш-значения, добавляя к ним соответствующие переменные a-h. Как и ранее, все сложение производится по модулю 2 ^ 32:

Шаг 8 — Финальный хэш

Наконец, соединяем все вместе.

Мы прошли каждый шаг (за исключением нескольких итераций) SHA-256 в подробностях. Если хотите увидеть весь путь, что мы совершили, в форме псевдокода, заходите на WikiPedia.

Источник

Национальная библиотека им. Н. Э. Баумана
Bauman National Library

Персональные инструменты

SHA-2 (Secure Hash Algorithm 2)

SHA-2

A 2011 attack breaks preimage resistance for 57 out of 80 rounds of SHA-512, and 52 out of 64 rounds for SHA-256. [1]

Pseudo-collision attack against up to 46 rounds of SHA-256. [2]

General
DesignersNational Security Agency
First published2001
Series(SHA-0), SHA-1, SHA-2, SHA-3
CertificationFIPS PUB 180-4, CRYPTREC, NESSIE
Detail
Digest sizes224, 256, 384, or 512 bits
StructureMerkle–Damgård construction with Davies–Meyer compression function
Rounds64 or 80
Best public cryptanalysis

SHA-2 (англ.) Secure Hash Algorithm Version 2 — безопасный алгоритм хеширования, версия 2) — собирательное название однонаправленных хеш-функций SHA-224, SHA-256, SHA-384 и SHA-512. Хеш-функции предназначены для создания «отпечатков» или «дайджестов» сообщений произвольной битовой длины. Применяются в различных приложениях или компонентах, связанных с защитой информации.

Содержание

История

Хеш-функции SHA-2 разработаны Агентством национальной безопасности США и опубликованы Национальным институтом стандартов и технологий в федеральном стандарте обработки информации FIPS PUB 180-2 в августе 2002 года.

В июле 2006 года появился стандарт RFC 4634 «Безопасные хеш-алгоритмы США (SHA и HMAC-SHA)», описывающий SHA-1 и семейство SHA-2.

Агентство национальной безопасности от лица США выпустило патент на SHA-2 под лицензией Royalty Free.

Алгоритм

Общее описание

Исходное сообщение после дополнения разбивается на блоки, каждый блок — на 8 слов. Алгоритм пропускает каждый блок сообщения через цикл с 64-мя или 80-ю итерациями (раундами). На каждой итерации 2 слова из восьми преобразуются, функцию преобразования задают остальные слова. Результаты обработки каждого блока складываются, сумма является значением хеш-функции.

Алгоритм использует следующие битовые операции:

В следующей таблице показаны некоторые технические характеристики различных вариантов SHA-2. «Внутреннее состояние» обозначает промежуточную хеш-сумму после обработки очередного блока данных:

Хеш-функцияДлина дайджеста сообщения (бит)Длина внутреннего состояния (бит)Длина блока (бит)Максимальная
длина сообщения (бит)
Длина слова (бит)Количество итераций в цикле
SHA-256/224256/2242565122 64 − 13264
SHA-512/384512/38451210242 128 − 16480

Псевдокод SHA-256

SHA-224 идентичен SHA-256, за исключением:

SHA-512 имеет идентичную структуру, но:

SHA-384 идентичен SHA-512, за исключением:

Криптоанализ

На 2008 год хеш-функции SHA-2, в отличие от SHA-1, недостаточно изучены. В 2003 году Гилберт и Хандшух провели исследование SHA-2, но не нашли каких-либо уязвимостей.

Криптоанализ хеш-функции подразумевает исследование устойчивости алгоритма по отношению, по меньшей мере, к следующим видам атак:

От устойчивости хеш-функции к нахождению коллизий зависит безопасность электронной цифровой подписи с использованием данного хеш-алгоритма. От устойчивости к нахождению прообраза зависит безопасность хранения хешей паролей для целей аутентификации.

В марте 2008 года индийские исследователи Сомитра Кумар Санадия и Палаш Саркар опубликовали найденные ими коллизии для 22 итераций SHA-256 и SHA-512.

Ввиду алгоритмической схожести SHA-2 с SHA-1 и наличия у последней потенциальных уязвимостей ведутся поиски улучшенных альтернатив.

Применение

SHA-224, SHA-256, SHA-384 и SHA-512 законом США допускаются к использованию в некоторых правительственных приложениях, включая использование в рамках других криптографических алгоритмов и протоколов, для защиты информации, не имеющей грифа секретности. Стандарт также допускает использование SHA-2 частными и коммерческими организациями.

Хеш-функции SHA-2 используются для проверки целостности данных и в различных криптографических схемах. На 2008 год семейство хеш-функций SHA-2 не имеет такого широкого распространения, как MD5 и SHA-1, несмотря на обнаруженные у последних недостатки.

Некоторые примеры применения SHA-2 указаны в таблице:

Источник

Пошагово объясняем, как работает алгоритм хеширования SHA-2 (SHA-256)

Авторизуйтесь

Пошагово объясняем, как работает алгоритм хеширования SHA-2 (SHA-256)

Автор Мария Багулина

SHA-2 (Secure Hash Algorithm 2) — одно из самых популярных семейств алгоритмов хеширования. В этой статье мы разберём каждый шаг алгоритма SHA-256, принадлежащего к SHA-2, и покажем, как он работает на реальном примере.

Что такое хеш-функция?

Если вы хотите узнать больше о хеш-функциях, можете почитать Википедию. Но чтобы понять, о чём пойдёт речь, давайте вспомним три основные цели хеш-функции:

SHA-2 и SHA-256

SHA-2 — это семейство алгоритмов с общей идеей хеширования данных. SHA-256 устанавливает дополнительные константы, которые определяют поведение алгоритма SHA-2. Одной из таких констант является размер вывода. «256» и «512» относятся к соответствующим размерам выходных данных в битах.

Мы рассмотрим пример работы SHA-256.

SHA-256 «hello world». Шаг 1. Предварительная обработка

1. Преобразуем «hello world» в двоичный вид:

2. Добавим одну единицу:

3. Заполняем нулями до тех пор, пока данные не станут кратны 512 без последних 64 бит (в нашем случае 448 бит):

4. Добавим 64 бита в конец, где 64 бита — целое число с порядком байтов big-endian, обозначающее длину входных данных в двоичном виде. В нашем случае 88, в двоичном виде — «1011000».

Теперь у нас есть ввод, который всегда будет без остатка делиться на 512.

Шаг 2. Инициализация значений хеша (h)

Создадим 8 значений хеша. Это константы, представляющие первые 32 бита дробных частей квадратных корней первых 8 простых чисел: 2, 3, 5, 7, 11, 13, 17, 19.

Шаг 3. Инициализация округлённых констант (k)

Создадим ещё немного констант, на этот раз их 64. Каждое значение — это первые 32 бита дробных частей кубических корней первых 64 простых чисел (2–311).

Шаг 4. Основной цикл

Шаг 5. Создаём очередь сообщений (w)

1. Копируем входные данные из шага 1 в новый массив, где каждая запись является 32-битным словом:

2. Добавляем ещё 48 слов, инициализированных нулями, чтобы получить массив w[0…63] :

3. Изменяем нулевые индексы в конце массива, используя следующий алгоритм:

Давайте посмотрим, как это работает для w[16] :

Это оставляет нам 64 слова в нашей очереди сообщений ( w ):

Шаг 6. Цикл сжатия

Давайте пройдём первую итерацию. Сложение рассчитывается по модулю 2^32:

Шаг 7. Изменяем окончательные значения

Шаг 8. Получаем финальный хеш

И последний важный шаг — собираем всё вместе.

Готово! Мы выполнили каждый шаг SHA-2 (SHA-256) (без некоторых итераций).

Алгоритм SHA-2 в виде псевдокода

Если вы хотите посмотреть на все шаги, которые мы только что сделали, в виде псевдокода, то вот пример:

Источник

Как и зачем переходить с SHA-1 на SHA-2 и почему это важно

Авторизуйтесь

Как и зачем переходить с SHA-1 на SHA-2 и почему это важно

Хеш алгоритм sha 2 что это. Смотреть фото Хеш алгоритм sha 2 что это. Смотреть картинку Хеш алгоритм sha 2 что это. Картинка про Хеш алгоритм sha 2 что это. Фото Хеш алгоритм sha 2 что это

Индустрия инфраструктуры открытых ключей (ИОК, англ. PKI — Public Key Infrastructure) рекомендует, чтобы любой объект инфраструктуры, использующий SHA-1, был переведён на более безопасный SHA-2. В этой статье описано, почему и как стоит это сделать.

В 2016 году миграция на SHA-2 была хорошей подготовкой к всеобщему дедлайну, сейчас же этот переход обязателен для обеспечения безопасности. Многие устройства и приложения, использующие электронные сертификаты, уже сейчас выводят предупреждения или ошибки или отказываются работать, если сертификат использует алгоритмы хеширования SHA-1 или старше. Зачем эти принудительные изменения? Потому что в хеше SHA-1 обнаружены серьёзные криптографические уязвимости, и дни, когда его защита ещё надёжна, уже сочтены.

Вплоть до 2017 года SHA-1 был самым популярным хешем, используемым для криптографической подписи, и некоторые, в особенности старые, приложения и устройства не принимали или не понимали хеши или сертификаты, основанные на алгоритме SHA-2. Это было основной проблемой перехода на новый стандарт.

Что такое хеш?

Криптографическая хеш-функция — это математический алгоритм, преобразующий любое уникальное сообщение (текст, видео, аудио, изображение и т. д.) в уникальную комбинацию, которую чаще всего называют «хешем» или «хеш-кодом». Два разных сообщения ни в коем случае не должны преобразовываться в одинаковый хеш, а два идентичных сообщения всегда должны возвращать один и тот же хеш. Благодаря этим свойствам хеш-код может использоваться для сравнения двух различных сообщений на идентичность. Криптографические хеши являются основой для практически любой цифровой аутентификации и проверки целостности файла.

Службы центра сертификации (ЦС) ИОК используют криптографические хеш-функции для подтверждения идентификационных данных и запросов цифровых сертификатов. Кроме этого, хеши используются для подтверждения цифровых сертификатов (например, цифровой подписью) и списка аннулированных сертификатов (CRL, certificate revocation list), которые выдают другие доверенные стороны. Доверенные стороны не смогут полагаться на достоверность цифровых сертификатов и другого контента, подписанного ЦС, если службы ИОК используют ненадёжный криптографический хеш. Стойкость криптографического хеша создаёт доверие ко всей системе ИОК.

Примечание: контрольные суммы — это хеш-подобные верификаторы, но без криптографических доказательств, подтверждающих, что они обеспечивают статистически уникальные результаты для уникальных входных сообщений.

В общем, криптографические хеши считаются более безопасными, чем контрольные суммы, хотя последние часто используются для некритических проверок целостности и подлинности.

Атаки на хеши

Стойкость криптографической хеш-функции в том числе обеспечивается тем, что для любого уникального сообщения формируется уникальный хеш. В то же время необходимо, чтобы по одному только хешу нельзя было воспроизвести исходное сообщение. На попытке обойти это свойство строится атака нахождения прообраза. Кроме того, два разных сообщения ни в коем случае не должны преобразовываться в одинаковые хеши, иначе возникнет явление, которое называется коллизией. На этом явлении основывается атака «дней рождения».

Общепринятые криптографические хеш-функции изначально считаются криптографически стойкими, но со временем злоумышленники находят математические уловки, ослабляющие их защиту.

Вычислительная сложность криптостойкого хеша равна заявленной эффективной длине последовательности бит минус 1. Таким образом, когда неизвестны его недостатки, 128-битный хеш будет иметь сложность вычисления 2^127. Как только кто-то найдёт математический алгоритм, который позволит взломать хеш за время меньшее, чем эффективная длина бит минус 1, такой хеш будет считаться ослабленным. Как правило, все общепринятые хеши становятся слабее со временем. Когда эффективная длина бит сокращается, хеш становится менее защищённым и менее ценным. Когда считается, что хеш может быть взломан за разумный период времени и с не столь значительными вычислительными ресурсами (стоимостью от сотен тысяч до миллионов долларов), то хеш считается «взломанным» и не должен больше использоваться. Взломанные хеши используются вредоносными программами и злоумышленниками для создания якобы законного программного обеспечения с цифровой подписью. Хороший пример такого ПО — Flame malware program. В общем, слабые хеши могут сыграть свою роль и не должны использоваться.

Введение в семейство SHA

Алгоритм SHA-1 был разработан Агентством национальной безопасности США (АНБ) и опубликован Национальным институтом стандартов и технологий США (NIST) в качестве федерального стандарта в 1995 году. Выпущенные NIST криптографические стандарты пользуются доверием по всему миру и как правило требуются на всех компьютерах, используемых правительством или вооружёнными силами Соединённых Штатов. SHA-1 заменил предыдущие ослабевшие хеш-функции, например, MD5.

Со временем несколько непрерывных криптографических атак на SHA-1 уменьшили эффективность длины ключа. Из-за этого в 2002 году АНБ и NIST выбрали SHA-2 новым рекомендуемым стандартом хеширования. Это случилось задолго до того, как SHA-1 начали считать взломанным. В феврале 2017 года обнаружили успешную атаку на хеш с помощью коллизий, которая сделала SHA-1 бесполезным для защиты электронной подписи.

Отличное обсуждение взлома SHA-1 и пример документации можно найти здесь.

Семейство SHA-2

SHA-2 — стандарт криптографического хеширования, который программное и аппаратное обеспечение должны использовать по крайней мере ближайшие пару лет. SHA-2 очень часто называется семейством хеш-функций SHA-2, поскольку содержит много хешей разных размеров, включая 224-, 256-, 384- и 512-битные последовательности. Когда кто-то говорит, что использует SHA-2, длина его хеша неизвестна, но сейчас самый популярный — 256-битный. Хотя некоторые математические характеристики SHA-2 совпадают с SHA-1, и в нём обнаружены незначительные недостатки, в криптомире он по-прежнему считается «стойким». Без сомнения, он лучше, чем SHA-1 и чем любой критический сертификат, приложение или аппаратное устройство, использующие SHA-1. Всё, что использует SHA-1, лучше перевести на SHA-2.

Обработка устаревших хэшей SHA-1

Все крупные поставщики веб-браузеров (например, Microsoft, Google, Mozilla, Apple) и другие доверенные стороны рекомендовали всем клиентам, сервисам и продуктам, в настоящее время использующим SHA-1, перейти на SHA-2, хотя что и когда должно перейти зависит от поставщика. Например, многие поставщики заботятся только о сертификатах TLS (т. е. веб-серверах), и только компания Microsoft озабочена использованием SHA-1 в цифровом сертификате от «публичного» центра сертификации. Но можно ожидать, что все поставщики потребуют перевести на SHA-2 все приложения и устройства, даже если они не готовы к этому. Сейчас большинство браузеров покажет сообщение об ошибке, если на веб-сайте используется публичный цифровой сертификат, подписанный SHA-1, но некоторые из них позволят вам обойти всплывающее окно и перейти на такой сайт. Возможно, в скором времени, все главные поставщики браузеров запретят обход сообщений об ошибке и переходы на сайты, использующие цифровые сертификаты SHA-1.

К сожалению, переход с SHA-1 на SHA-2 является односторонней операцией в большинстве сценариев сервера. Например, как только вы начнёте использовать цифровой сертификат SHA-2 вместо SHA-1, пользователи, не понимающие сертификаты SHA-2, начнут получать предупреждения и уведомления об ошибках, или даже отказы. Для пользователей приложений и устройств, не поддерживающих SHA-2, переход будет опасным скачком.

План перехода ИОК с SHA-1 на SHA-2

Каждая компания с внутренним ИОК, не использующая SHA-2, должна будет создать ИОК SHA-2 или перевести существующую ИОК с SHA-1 на SHA-2. Для перехода нужно:

Самая сложная часть перехода — определение того, какие устройства и приложения работают с SHA-2. Если используемые устройства не понимают SHA-2, вас ждёт неудача или сообщение об ошибке, которое вряд ли будет звучать как «SHA-2 не принят». Вместо этого готовьтесь к: «Сертификат не распознан», «Соединение нестабильно», «Соединение не может быть установлено», «Повреждённый сертификат» или «Непроверенный сертификат».

Подумайте о своей миссии, чтобы определить, какие важные части вашей инфраструктуры будут или не будут работать. Начните с попытки инвентаризации каждого уникального устройства, ОС и приложения, которые должны понимать SHA-2. Затем соберите команду людей, которые протестируют, работает ли SHA-2. Можно предварительно полагаться на информацию от поставщиков, но вы не будете знать наверняка пока не проверите самостоятельно.

Обновление приложений и устройств — задача не из лёгких, и потребует больше времени, чем кажется. Даже сейчас существует множество устройств и приложений, использующих старые версии OpenSSL, которые следовало бы обновить после атаки Heartbleed, но администраторы серверов этого так и не сделали.

Если у вас есть внутренняя ИОК, вам понадобится подготовить её к переходу на SHA-2. Иногда это означает обновление ваших центров сертификации, получение новых сертификатов или установку полностью новых ИОК. Последнее рекомендуется по множеству причин, в основном потому, что новая ИОК даст вам шанс начать сначала без груза старых ошибок.

Модели перехода ИОК

Ниже перечислены сценарии для внедрения SHA-2 в компоненты ИОК (для этих примеров используется двухуровневая ИОК — автономная корневая система, онлайн центры сертификации), каждый из которых может быть либо новым компонентом, либо перенесённым:

Остальные сценарии предполагают одно дерево ИОК:

Также возможно существование выдающего центра сертификации, который переключается между SHA-1 и SHA-2 по необходимости, но это с большой вероятностью вызовет путаницу в службах ИОК (и не особо рекомендуется). Если возможно, для облегчения перехода можно запустить параллельные ИОК, один — с SHA-1, другой — с SHA-2, а потом переводить используемые устройства после того, как позволит тестирование.

Примечание: собственный сертификат ЦС корневого ЦС не нужно переносить на SHA-2, даже если он всё ещё использует SHA-1. Все программы проверки устаревших SHA-1 заботятся обо всём после собственного сертификата корневого ЦС (и будут заботиться, по крайней мере, в обозримом будущем). Тем не менее, имеет смысл переместить всё, включая собственный сертификат ЦС корневого ЦС на SHA-2, чтобы можно было сказать, что вся ИОК — SHA-2, и избежать дальнейших изменений, связанных с SHA-1, в обозримом будущем.

Публичные ЦС уже перешли с SHA-1 на SHA-2 для любых сертификатов со сроком жизни, заканчивающимся после 1 января 2017, поэтому вы должны сосредоточить свои усилия на серверах и приложениях с ещё не перешедшими на SHA-2 публичными цифровыми сертификатами. После решения этой проблемы можно начать смотреть на внутренние ИОК и доверенные стороны. Переход с SHA-1 на SHA-2 технически не сложен, но это массовое логистическое изменение с множеством последствий, которое требует продолжительного тестирования.

Вряд ли большинство поставщиков знают точную дату смерти SHA-1 (т. е. дату, когда его использование в приложении или устройстве будет приводить к «фатальным» ошибкам), но скорее всего это произойдёт раньше, чем вы ожидаете, так как всё больше пользователей переходит на SHA-2. Поэтому вам действительно стоит совершить переход уже сейчас.

SHA-3 уже здесь, но стоит ли его использовать?

Хотя в SHA-2 не обнаружено существенных криптографических слабостей, он считается алгоритмически схожим с SHA-1. Большинство экспертов думают, что его время жизни будет схожим с SHA-1. В августе 2015 NIST утвердило новый алгоритм криптографического хеширования SHA-3. Он не обладает теми же математическими свойствами, что SHA-1 и SHA-2 и должен быть более устойчив к криптографическим атакам, чем его предшественники.

К сожалению, люди, откладывающие свой переход на SHA-2 в надежде сразу перейти на SHA-3, будут очень расстроены. Общемировое принятие стандарта SHA-3 может затянуться на долгие годы, а переход на SHA-2 следует сделать уже сейчас. Если вы перейдёте на SHA-3 сейчас, то большинство, если не все, ваших криптографически-зависимых приложений или устройств, скорее всего, сообщат об ошибке (не смогут распознать цифровой сертификат).

Итак, если вы ещё не перешли на SHA-2, то переходите сейчас. И когда SHA-2 начнёт ослабевать, мы все вместе перейдём на SHA-3.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *