Хеш функция что это простыми

Хэширование: Просто и наглядно

Хеш функция что это простыми. Смотреть фото Хеш функция что это простыми. Смотреть картинку Хеш функция что это простыми. Картинка про Хеш функция что это простыми. Фото Хеш функция что это простыми

Хэширование, или хэш-функция — одна из основных составляющих современной криптографии и протокола блокчейна.

Но, что это такое? Как наглядно представить сущность хэша?

Начнем с того, что хэширование — это особое преобразование любого массива информации, в результате которого получается некое отображение, образ или дайджест, называемый хэшем (hash) — уникальная короткая символьная строка, которая присуща только этому массиву входящей информации.

Из этого следует, что для любого объема информации, будь-то одна буква или роман Льва Толстого «Война и мир» (или даже всё Полное собрание сочинений этого атвора) существует уникальный и неповторимый хэш — короткая символьная строка. Причем, если в той же «Войне и мире» изменить хотя бы один символ, добавить один лишь знак, — хэш изменится кардинально.

Как такое может быть? Целый многотомный роман и коротокая строчка, которая отражает его!

В этом смысле хэш подобен отпечатку пальца человека.

Хеш функция что это простыми. Смотреть фото Хеш функция что это простыми. Смотреть картинку Хеш функция что это простыми. Картинка про Хеш функция что это простыми. Фото Хеш функция что это простыми

Как известно, отпечаток пальца уникален и в природе не существует людей с одинаковыми отпечатками. Даже у близнецов отпечатки пальцев разные.

То же касается и структуры ДНК человека. Она уникальна! Нет людей с одинаковым набором ДНК.

Но, ведь, ДНК, а тем более отпечаток пальцев — относительно короткие наборы информации. И, тем не менее, они являются неким кодом, присущим конкретному человеку. Можно считать, что это и есть «хэши» этого человека. С тем лишь отличием, что эти «хэши» не меняются с возрастом человека.

Итак, первое свойство хэша — его уникальность:

Тем не менее, иногда встречаются т.н. коллизии — случаи, когда хеш-функция для разных входных блоков информации вычисляет одинаковые хэш-коды.

Математики-криптографы стараются создать такие хэш-функции, вероятность коллизий в которых стремилась бы к нолю.

Следует отметить, что функций, которые вычисляют хэш, существует множество. Но, наиболее распространена (в частности, используется в протоколе блокчейна биткоина) хэш-функция под названием SHA-256 (от Secure Hash Algorithm — безопасный алгоритм хеширования). Эта хэш-функция формирует хэш в виде строки из 64 символов (длина — 256 бит или 32 байта).

Попробуем при помощи SHA-256 hash калькулятора получить хэш для заголовка этой статьи (« Хэширование: Просто и наглядно»).

Это будет: ef3c82303f3896044125616982c715e7757d4cd1f84c34c6b2e64167d2fde766

Как видите, изменение всего лишь на один знак исходного массива информации привело к кардинальному изменению его хэша!

И это второе важное свойство хэша:

Это свойство важно при использовании хэширования в цифровой подписи, т.к. позволяет удостовериться, что подписанная информация не была изменена во время её передачи по каналам связи. Но, подробнее об этом в следующей моей статье.

Третье важное свойство хэша, вытекает из того, что хэш-функция необратима. Другими словами:

Из этого следует, что восстановить по хэшу соответствующий ему массив информации возможно только перебором всех возможных вариантов. Что практически невозможно, поскольку количество информации бесконечно!

Это свойство важно, поскольку делает взлом хэша (восстановление исходной информации по её хэшу) или невозможным или весьма дорогостоящим занятием.

Еще одно важное свойство хэш-функций — это высокая скорость работы.

Этим хэширование существенно отличается от кодирования (шифрования) и декодирования (дешифрования).

Хэширование или хэш-функция используется во многих алгоритмах и протоколах. В частности, в электронной (цифровой) подписи и блокчейне.

Просто и наглядно, как это делается, я расскажу в следующих статьях.

А пока прочитайте мою предыдущую статью из цикла «Просто и наглядно» о Шифровании с открытым ключом.

Источник

Хэш-алгоритмы

О себе

Студент кафедры информационной безопасности.

О хэшировании

В настоящее время практически ни одно приложение криптографии не обходится без использования хэширования.
Хэш-функции – это функции, предназначенные для «сжатия» произвольного сообщения или набора данных, записанных, как правило, в двоичном алфавите, в некоторую битовую комбинацию фиксированной длины, называемую сверткой. Хэш-функции имеют разнообразные применения при проведении статистических экспериментов, при тестировании логических устройств, при построении алгоритмов быстрого поиска и проверки целостности записей в базах данных. Основным требованием к хэш-функциям является равномерность распределения их значений при случайном выборе значений аргумента.
Криптографической хеш-функцией называется всякая хеш-функция, являющаяся криптостойкой, то есть удовлетворяющая ряду требований специфичных для криптографических приложений. В криптографии хэш-функции применяются для решения следующих задач:
— построения систем контроля целостности данных при их передаче или хранении,
— аутентификация источника данных.

Как правило хэш-функции строят на основе так называемых одношаговых сжимающих функций y = f(x1, x2) двух переменных, где x1, x2 и y — двоичные векторы длины m, n и n соответственно, причем n — длина свертки, а m — длина блока сообщения.
Для получения значения h(M) сообщение сначала разбивается на блоки длины m (при этом, если длина сообщения не кратна m то последний блок неким специальным образом дополняется до полного), а затем к полученным блокам M1, M2. MN применяют следующую последовательную процедуру вычисления свертки:

Здесь v — некоторая константа, часто ее называют инициализирующим вектором. Она выбирается
из различных соображений и может представлять собой секретную константу или набор случайных данных (выборку даты и времени, например).
При таком подходе свойства хэш-функции полностью определяются свойствами одношаговой сжимающей функции.

Выделяют два важных вида криптографических хэш-функций — ключевые и бесключевые. Ключевые хэш-функции называют кодами аутентификации сообщений. Они дают возможность без дополнительных средств гарантировать как правильность источника данных, так и целостность данных в системах с доверяющими друг другу пользователями.
Бесключевые хэш-функции называются кодами обнаружения ошибок. Они дают возможность с помощью дополнительных средств (шифрования, например) гарантировать целостность данных. Эти хэш-функции могут применяться в системах как с доверяющими, так и не доверяющими друг другу пользователями.

О статистических свойствах и требованиях

Как я уже говорил основным требованием к хэш-функциям является равномерность распределения их значений при случайном выборе значений аргумента. Для криптографических хеш-функций также важно, чтобы при малейшем изменении аргумента значение функции сильно изменялось. Это называется лавинным эффектом.

К ключевым функциям хэширования предъявляются следующие требования:
— невозможность фабрикации,
— невозможность модификации.

Первое требование означает высокую сложность подбора сообщения с правильным значением свертки. Второе — высокую сложность подбора для заданного сообщения с известным значением свертки другого сообщения с правильным значением свертки.

К бесключевым функциям предъявляют требования:
— однонаправленность,
— устойчивость к коллизиям,
— устойчивость к нахождению второго прообраза.

Под однонаправленностью понимают высокую сложность нахождения сообщения по заданному значению свертки. Следует заметить что на данный момент нет используемых хэш-функций с доказанной однонаправленностью.
Под устойчивостью к коллизиям понимают сложность нахождения пары сообщений с одинаковыми значениями свертки. Обычно именно нахождение способа построения коллизий криптоаналитиками служит первым сигналом устаревания алгоритма и необходимости его скорой замены.
Под устойчивостью к нахождению второго прообраза понимают сложность нахождения второго сообщения с тем же значением свертки для заданного сообщения с известным значением свертки.

Это была теоретическая часть, которая пригодится нам в дальнейшем…

О популярных хэш-алгоритмах

Алгоритмы CRC16/32 — контрольная сумма (не криптографическое преобразование).

Алгоритмы MD2/4/5/6. Являются творением Рона Райвеста, одного из авторов алгоритма RSA.
Алгоритм MD5 имел некогда большую популярность, но первые предпосылки взлома появились еще в конце девяностых, и сейчас его популярность стремительно падает.
Алгоритм MD6 — очень интересный с конструктивной точки зрения алгоритм. Он выдвигался на конкурс SHA-3, но, к сожалению, авторы не успели довести его до кондиции, и в списке кандидатов, прошедших во второй раунд этот алгоритм отсутствует.

Алгоритмы линейки SHA Широко распространенные сейчас алгоритмы. Идет активный переход от SHA-1 к стандартам версии SHA-2. SHA-2 — собирательное название алгоритмов SHA224, SHA256, SHA384 и SHA512. SHA224 и SHA384 являются по сути аналогами SHA256 и SHA512 соответственно, только после расчета свертки часть информации в ней отбрасывается. Использовать их стоит лишь для обеспечения совместимости с оборудованием старых моделей.

Российский стандарт — ГОСТ 34.11-94.

Источник

Что такое хэш и хэш-функция: практическое применение, обзор популярных алгоритмов

Цифровые технологии широко применяют хеширование, несмотря на то, что изобретению более 50 лет: аутентификация, осуществление проверки целостности информации, защита файлов, включая, в некоторых случаях, определение вредоносного программного обеспечения и многие другие функции. Например, множество задач в области информационных технологий требовательны к объему поступающих данных. Согласитесь, проще и быстрее сравнить 2 файла весом 1 Кб, чем такое же количество документов, но, к примеру, по 10 Гб каждый. Именно по этой причине алгоритмы, способные оперировать лаконичными значениями, весьма востребованы в современном мире цифровых технологий. Хеширование – как раз решает эту проблему. Разберемся подробно, что такое хэш и хэш-функция.

Что за «зверь» такой это хеширование?

Хеш функция что это простыми. Смотреть фото Хеш функция что это простыми. Смотреть картинку Хеш функция что это простыми. Картинка про Хеш функция что это простыми. Фото Хеш функция что это простыми

Чтобы в головах читателей не образовался «винегрет», начнем со значения терминологий применительно к цифровым технологиям:

Исходя из пояснений, делаем вывод: хеширование – процесс сжатия входящего потока информации любого объема (хоть все труды Уильяма Шекспира) до короткой «аннотации» в виде набора случайных символов и цифр фиксированной длины.

Коллизии

Коллизии хэш-функций подразумевает появление общего хэш-кода на два различных массива информации. Неприятная ситуация возникает по причине сравнительно небольшого количества символов в хэш. Другими совами, чем меньше знаков использует конечная формула, тем больше вероятность итерации (повтора) одного и того же хэш-кода на разные наборы данных. Чтобы снизить риск появления коллизии, применяют двойное хеширование строк, образующее открытый и закрытый ключ – то есть, используется 2 протокола, как, например, в Bitcoin. Специалисты, вообще, рекомендуют обойтись без хеширования при осуществлении каких-либо ответственных проектов, если, конечно же, это возможно. Если без криптографической хэш-функции не обойтись, протокол обязательно нужно протестировать на совместимость с ключами.

Важно! Коллизии будут существовать всегда. Алгоритм хеширования, перерабатывающий различный по объему поток информации в фиксированный по количеству символов хэш-код, в любом случае будет выдавать дубли, так как множеству наборов данных противостоит одна и та же строчка заданной длины. Риск повторений можно только снизить.

Технические параметры

Основополагающие характеристики протоколов хеширования выглядят следующим образом:

Здесь стоит так же отметить важные свойства алгоритмов: способность «свертывать» любой массив данных, производить хэш конкретной длины, распределять равномерно на выходе значения функции. Необходимо заметить, любые изменения во входящем сообщении (другая буква, цифра, знак препинания, даже лишний пробел) внесут коррективы в итоговый хэш-код. Он просто будет другим – такой же длины, но с иными символами.

Требования

К эффективной во всех отношениях хэш-функции выдвигаются следующие требования:

Данные требования выполнимы исключительно тогда, когда протокол базируется на сложных математических уравнениях.

Практическое применение

Процедура хеширования относительно своего функционала может быть нескольких типов:

Разберемся детальней в сфере применения протоколов хеширования.

Скачивание файлов из Всемирной Паутины

Этим занимается фактически каждый активный пользователь Всемогущей Сети, сталкиваясь с хэш-функциями сам того не осознавая, так как мало кто обращает внимание при скачивании того или иного файла на череду непонятных цифр и латинских букв. Однако именно они и есть хэш или контрольные суммы – перед вереницей символов стоит название используемой категории протокола хеширования. В общем-то, для обывателей абсолютно ненужная «инфа», а продвинутый юзер может выяснить, скачал ли он точную копию файла или произошла ошибка. Для этой процедуры необходимо установить на собственный ПК специальную утилиту (программу), которая способна вычислить хэш по представленному протоколу.

Важно! Установив на ПК пакет утилит, прогоняем через него файлы. Затем сравниваем полученный результат. Совпадение символов говорит о правильной копии – соответствующей оригиналу. Обнаруженные различия подразумевают повторное скачивание файла.

Алгоритм и электронно-цифровая подпись (ЭЦП)

Цифровая резолюция (подпись) – кодирование документа с использованием ключей закрытого и открытого типа. Другими словами, первоначальный документ сопровождается сообщением, закодированным закрытым ключом. Проверка подлинности электронной подписи осуществляется с применением открытого ключа. При обстоятельствах, когда в ходе сравнения хэш двух информационных наборов идентичен, документ, который получил адресат, признается оригинальным, а подпись истинной. В сухом остатке получаем высокую скорость обработки потока наборов данных, эффективную защиту виртуального факсимиле, так как подпись обеспечивается криптографической стойкостью. В качестве бонуса – хэш подразумевает использование ЭЦП под разнообразными типами информации, а не только текстовыми файлами.

Ревизия паролей

Очередная область применения хэш-функции, с которой сталкивается практически каждый пользователь. Подавляющее большинство серверов хранит пользовательские пароли в значении хэш. Что вполне обоснованно, так как, сберегая пароли пользователей в обычной текстовой форме, можно забыть о безопасности конфиденциальных, секретных данных. Столкнувшись с хэш-кодом, хакер даже время терять не будет, потому что, обратить вспять произвольный набор символов практически невозможно. Конечно же, если это не пароль в виде «12345» или что-то на подобии него. Доступ осуществляется путем сравнения хэш-кода вводимого юзером с тем, который хранится на сервере ресурса. Ревизию кодов может осуществлять простейшая хэш-функция.

Важно! В реальности программисты применяют многоярусный комплексный криптографический протокол с добавлением, в большинстве случаев, дополнительной меры безопасности – защищенного канала связи, чтобы виртуальные мошенники не перехватили пользовательский код до того, как он пройдет проверку на сервере.

Как появилось понятие хэш?

Сделаем небольшую паузу, чтобы интеллект окончательно не поплыл от потока сложных для простых пользователей терминов и информации. Расскажем об истории появления термина «хэш». А для простоты понимания выложим «инфу» в табличной форме.

Дата (год)Хронология событий
1953Известный математик и программист Дональд Кнут авторитетно считает, что именно в этот промежуток времени сотрудник IBM Ханс Питер Лун впервые предложил идею хеширования.
1956Арнольд Думи явил миру такой принцип хеширования, какой знают его подавляющее большинство современных программистов. Именно эта «светлая голова» предложила считать хэш-кодом остаток деления на любое простое число. Кроме этого, исследователь видел идеальное хеширование инструментов для позитивной реализации «Проблемы словаря».
1957Статья Уэсли Питерсона, опубликованная в «Journal of Research and Development», впервые серьезно затронула поиск информации в больших файлах, определив открытую адресацию и ухудшение производительности при ликвидации.
1963Опубликован труд Вернера Бухгольца, где было представлено доскональное исследование хэш-функции.
1967В труде «Принципы цифровых вычислительных систем» авторства Херберта Хеллермана впервые упомянута современная модель хеширования.
1968Внушительный обзор Роберта Морриса, опубликованный в «Communications of the ACM», считается точкой отсчета появления в научном мире понятия хеширования и термина «хэш».

Интересно! Еще в 1956 году советский программист Андрей Ершов называл процесс хеширования расстановкой, а коллизии хэш-функций – конфликтом. К сожалению, ни один из этих терминов не прижился.

Стандарты хеширования: популярные варианты

Итак, от экскурса в историю перейдем вновь к серьезной теме. Опять-таки, ради простоты восприятия предлагаем краткое описание популярных стандартов хеширования в табличном виде. Так проще оценить информацию и провести сравнение.

На этом, пожалуй, закончим экскурсию в мир сложных, но весьма полезных и востребованных протоколов хеширования.

Источник

Что такое Хэширование? Под капотом блокчейна

Так что же такое хэширование?

Простыми словами, хэширование означает ввод информации любой длины и размера в исходной строке и выдачу результата фиксированной длины заданной алгоритмом функции хэширования. В контексте криптовалют, таких как Биткоин, транзакции после хэширования на выходе выглядят как набор символов определённой алгоритмом длины (Биткоин использует SHA-256).

Хеш функция что это простыми. Смотреть фото Хеш функция что это простыми. Смотреть картинку Хеш функция что это простыми. Картинка про Хеш функция что это простыми. Фото Хеш функция что это простыми
Input- вводимые данные, hash- хэш

Посмотрим, как работает процесс хэширования. Мы собираемся внести определенные данные. Для этого, мы будем использовать SHA-256 (безопасный алгоритм хэширования из семейства SHA-2, размером 256 бит).

Как видите, в случае SHA-256, независимо от того, насколько объёмные ваши вводимые данные (input), вывод всегда будет иметь фиксированную 256-битную длину. Это крайне необходимо, когда вы имеете дело с огромным количеством данных и транзакций. Таким образом, вместо того, чтобы помнить вводимые данные, которые могут быть огромными, вы можете просто запомнить хэш и отслеживать его. Прежде чем продолжать, необходимо познакомиться с различными свойствами функций хэширования и тем, как они реализуются в блокчейн.

Криптографические хэш-функции

Криптографическая хэш-функция — это специальный класс хэш-функций, который имеет различные свойства, необходимые для криптографии. Существуют определенные свойства, которые должна иметь криптографическая хэш-функция, чтобы считаться безопасной. Давайте разберемся с ними по очереди.

Свойство 1: Детерминированние
Это означает, что независимо от того, сколько раз вы анализируете определенный вход через хэш-функцию, вы всегда получите тот же результат. Это важно, потому что если вы будете получать разные хэши каждый раз, будет невозможно отслеживать ввод.

Свойство 2: Быстрое вычисление
Хэш-функция должна быть способна быстро возвращать хэш-вход. Если процесс не достаточно быстрый, система просто не будет эффективна.

Свойство 3: Сложность обратного вычисления
Сложность обратного вычисления означает, что с учетом H (A) невозможно определить A, где A – вводимые данные и H(А) – хэш. Обратите внимание на использование слова “невозможно” вместо слова “неосуществимо”. Мы уже знаем, что определить исходные данные по их хэш-значению можно. Возьмем пример.

Предположим, вы играете в кости, а итоговое число — это хэш числа, которое появляется из кости. Как вы сможете определить, что такое исходный номер? Просто все, что вам нужно сделать, — это найти хэши всех чисел от 1 до 6 и сравнить. Поскольку хэш-функции детерминированы, хэш конкретного номера всегда будет одним и тем же, поэтому вы можете просто сравнить хэши и узнать исходный номер.

Но это работает только тогда, когда данный объем данных очень мал. Что происходит, когда у вас есть огромный объем данных? Предположим, вы имеете дело с 128-битным хэшем. Единственный метод, с помощью которого вы должны найти исходные данные, — это метод «грубой силы». Метод «грубой силы» означает, что вам нужно выбрать случайный ввод, хэшировать его, а затем сравнить результат с исследуемым хэшем и повторить, пока не найдете совпадение.

Итак, что произойдет, если вы используете этот метод?

Свойство 4: Небольшие изменения в вводимых данных изменяют хэш
Даже если вы внесете небольшие изменения в исходные данные, изменения, которые будут отражены в хэше, будут огромными. Давайте проверим с помощью SHA-256:

Хеш функция что это простыми. Смотреть фото Хеш функция что это простыми. Смотреть картинку Хеш функция что это простыми. Картинка про Хеш функция что это простыми. Фото Хеш функция что это простыми

Видите? Даже если вы только что изменили регистр первой буквы, обратите внимание, насколько это повлияло на выходной хэш. Это необходимая функция, так как свойство хэширования приводит к одному из основных качеств блокчейна – его неизменности (подробнее об этом позже).

Свойство 5: Коллизионная устойчивость
Учитывая два разных типа исходных данных A и B, где H (A) и H (B) являются их соответствующими хэшами, для H (A) не может быть равен H (B). Это означает, что, по большей части, каждый вход будет иметь свой собственный уникальный хэш. Почему мы сказали «по большей части»? Давайте поговорим об интересной концепции под названием «Парадокс дня рождения».

Что такое парадокс дня рождения?
Если вы случайно встречаете незнакомца на улице, шанс, что у вас совпадут даты дней рождений, очень мал. Фактически, если предположить, что все дни года имеют такую же вероятность дня рождения, шансы другого человека, разделяющего ваш день рождения, составляют 1/365 или 0,27%. Другими словами, он действительно низкий.

Однако, к примеру, если собрать 20-30 человек в одной комнате, шансы двух людей, разделяющих тот же день, резко вырастает. На самом деле, шанс для 2 человек 50-50, разделяющих тот же день рождения при таком раскладе.

Как это применяется в хэшировании?
Предположим, у вас есть 128-битный хэш, который имеет 2 ^ 128 различных вероятностей. Используя парадокс дня рождения, у вас есть 50% шанс разбить коллизионную устойчивость sqrt (2 ^ 128) = 2 ^ 64.

Как вы заметили, намного легче разрушить коллизионную устойчивость, нежели найти обратное вычисление хэша. Для этого обычно требуется много времени. Итак, если вы используете такую функцию, как SHA-256, можно с уверенностью предположить, что если H (A) = H (B), то A = B.

Свойство 6: Головоломка
Свойства Головоломки имеет сильнейшее воздействие на темы касающиеся криптовалют (об этом позже, когда мы углубимся в крипто схемы). Сначала давайте определим свойство, после чего мы подробно рассмотрим каждый термин.

Для каждого выхода «Y», если k выбран из распределения с высокой мин-энтропией, невозможно найти вводные данные x такие, что H (k | x) = Y.

Вероятно, это, выше вашего понимания! Но все в порядке, давайте теперь разберемся с этим определением.

В чем смысл «высокой мин-энтропии»?
Это означает, что распределение, из которого выбрано значение, рассредоточено так, что мы выбираем случайное значение, имеющее незначительную вероятность. В принципе, если вам сказали выбрать число от 1 до 5, это низкое распределение мин-энтропии. Однако, если бы вы выбрали число от 1 до бесконечности, это — высокое распределение мин-энтропии.

Что значит «к|х»?
«|» обозначает конкатенацию. Конкатенация означает объединение двух строк. Например. Если бы я объединила «голубое» и «небо», то результатом было бы «голубоенебо».
Итак, давайте вернемся к определению.

Предположим, у вас есть выходное значение «Y». Если вы выбираете случайное значение «К», невозможно найти значение X, такое, что хэш конкатенации из K и X, выдаст в результате Y.

Еще раз обратите внимание на слово «невозможно», но не исключено, потому что люди занимаются этим постоянно. На самом деле весь процесс майнинга работает на этом (подробнее позже).

Примеры криптографических хэш-функций:

1. Указатели
2. Связанные списки

Указатели
В программировании указатели — это переменные, в которых хранится адрес другой переменной, независимо от используемого языка программирования.

Например, запись int a = 10 означает, что существует некая переменная «a», хранящая в себе целочисленное значение равное 10. Так выглядит стандартная переменная.

Однако, вместо сохранения значений, указатели хранят в себе адреса других переменных. Именно поэтому они и получили свое название, потому как буквально указывают на расположение других переменных.

Связанные списки
Связанный список является одним из наиболее важных элементов в структурах данных. Структура связанного списка выглядит следующим образом:

Хеш функция что это простыми. Смотреть фото Хеш функция что это простыми. Смотреть картинку Хеш функция что это простыми. Картинка про Хеш функция что это простыми. Фото Хеш функция что это простыми
*Head – заголовок; Data – данные; Pointer – указатель; Record – запись; Null – ноль

Это последовательность блоков, каждый из которых содержит данные, связанные со следующим с помощью указателя. Переменная указателя в данном случае содержит адрес следующего узла, благодаря чему выполняется соединение. Как показано на схеме, последний узел отмечен нулевым указателем, что означает, что он не имеет значения.

Важно отметить, что указатель внутри каждого блока содержит адрес предыдущего. Так формируется цепочка. Возникает вопрос, что это значит для первого блока в списке и где находится его указатель?

Первый блок называется «блоком генезиса», а его указатель находится в самой системе. Выглядит это следующим образом:

Хеш функция что это простыми. Смотреть фото Хеш функция что это простыми. Смотреть картинку Хеш функция что это простыми. Картинка про Хеш функция что это простыми. Фото Хеш функция что это простыми
*H ( ) – Хэшированные указатели изображаются таким образом

Если вам интересно, что означает «хэш-указатель», то мы с радостью поясним.
Как вы уже поняли, именно на этом основана структура блокчейна. Цепочка блоков представляет собой связанный список. Рассмотрим, как устроена структура блокчейна:

Хеш функция что это простыми. Смотреть фото Хеш функция что это простыми. Смотреть картинку Хеш функция что это простыми. Картинка про Хеш функция что это простыми. Фото Хеш функция что это простыми
* Hash of previous block header – хэш предыдущего заголовка блока; Merkle Root – Корень Меркла; Transactions – транзакции; Simplified Bitcoin Blockchain – Упрощенный блокчейн Биткоина.

Блокчейн представляет собой связанный список, содержащий данные, а так же указатель хэширования, указывающий на предыдущий блок, создавая таким образов связную цепочку. Что такое хэш-указатель? Он похож на обычный указатель, но вместо того, чтобы просто содержать адрес предыдущего блока, он также содержит хэш данных, находящихся внутри предыдущего блока. Именно эта небольшая настройка делает блокчейн настолько надежным. Представим на секунду, что хакер атакует блок 3 и пытается изменить данные. Из-за свойств хэш-функций даже небольшое изменение в данных сильно изменит хэш. Это означает, что любые незначительные изменения, произведенные в блоке 3, изменят хэш, хранящийся в блоке 2, что, в свою очередь, изменит данные и хэш блока 2, а это приведет к изменениям в блоке 1 и так далее. Цепочка будет полностью изменена, а это невозможно. Но как же выглядит заголовок блока?

Хеш функция что это простыми. Смотреть фото Хеш функция что это простыми. Смотреть картинку Хеш функция что это простыми. Картинка про Хеш функция что это простыми. Фото Хеш функция что это простыми
* Prev_Hash – предыдущий хэш; Tx – транзакция; Tx_Root – корень транзакции; Timestamp – временная отметка; Nonce – уникальный символ.

Заголовок блока состоит из следующих компонентов:

· Версия: номер версии блока
· Время: текущая временная метка
· Текущая сложная цель (См. ниже)
· Хэш предыдущего блока
· Уникальный символ (См. ниже)
· Хэш корня Меркла

Прямо сейчас, давайте сосредоточимся на том, что из себя представляет хэш корня Меркла. Но до этого нам необходимо разобраться с понятием Дерева Меркла.

Что такое Дерево Меркла?

Хеш функция что это простыми. Смотреть фото Хеш функция что это простыми. Смотреть картинку Хеш функция что это простыми. Картинка про Хеш функция что это простыми. Фото Хеш функция что это простыми
Источник: Wikipedia

На приведенной выше диаграмме показано, как выглядит дерево Меркла. В дереве Меркла каждый нелистовой узел является хэшем значений их дочерних узлов.

Листовой узел: Листовые узлы являются узлами в самом нижнем ярусе дерева. Поэтому, следуя приведенной выше схеме, листовыми будут считаться узлы L1, L2, L3 и L4.

Дочерние узлы: Для узла все узлы, находящиеся ниже его уровня и которые входят в него, являются его дочерними узлами. На диаграмме узлы с надписью «Hash 0-0» и «Hash 0-1» являются дочерними узлами узла с надписью «Hash 0».

Корневой узел: единственный узел, находящийся на самом высоком уровне, с надписью «Top Hash» является корневым.

Так какое же отношение Дерево Меркла имеет к блокчейну?
Каждый блок содержит большое количество транзакций. Будет очень неэффективно хранить все данные внутри каждого блока в виде серии. Это сделает поиск какой-либо конкретной операции крайне громоздким и займет много времени. Но время, необходимое для выяснения, на принадлежность конкретной транзакции к этому блоку или нет, значительно сокращается, если Вы используете дерево Меркла.

Давайте посмотрим на пример на следующем Хэш-дереве:

Хеш функция что это простыми. Смотреть фото Хеш функция что это простыми. Смотреть картинку Хеш функция что это простыми. Картинка про Хеш функция что это простыми. Фото Хеш функция что это простыми
Изображение предоставлено проектом: Coursera

Теперь предположим, я хочу узнать, принадлежат ли эти данные блоку или нет:

Хеш функция что это простыми. Смотреть фото Хеш функция что это простыми. Смотреть картинку Хеш функция что это простыми. Картинка про Хеш функция что это простыми. Фото Хеш функция что это простыми

Вместо того, чтобы проходить через сложный процесс просматривания каждого отдельного процесса хэша, а также видеть принадлежит ли он данным или нет, я просто могу отследить след хэша, ведущий к данным:

Хеш функция что это простыми. Смотреть фото Хеш функция что это простыми. Смотреть картинку Хеш функция что это простыми. Картинка про Хеш функция что это простыми. Фото Хеш функция что это простыми
Это значительно сокращает время.

Хэширование в майнинге: крипто-головоломки.
Когда мы говорим «майнинг», в основном, это означает поиск нового блока, который будет добавлен в блокчейн. Майнеры всего мира постоянно работают над тем, чтобы убедиться, что цепочка продолжает расти. Раньше людям было проще работать, используя для майнинга лишь свои ноутбуки, но со временем они начали формировать «пулы», объединяя при этом мощность компьютеров и майнеров, что может стать проблемой. Существуют ограничения для каждой криптовалюты, например, для биткоина они составляют 21 миллион. Между созданием каждого блока должен быть определенный временной интервал заданный протоколом. Для биткоина время между созданием блока занимает всего 10 минут. Если бы блокам было разрешено создаваться быстрее, это привело бы к:

Процесс Майнинга

Примечание: в этом разделе мы будем говорить о выработке биткоинов.
Когда протокол Биткоина хочет добавить новый блок в цепочку, майнинг – это процедура, которой он следует. Всякий раз, когда появляется новый блок, все их содержимое сначала хэшируется. Если подобранный хэш больше или равен, установленному протоколом уровню сложности, он добавляется в блокчейн, а все в сообществе признают новый блок.

Однако, это не так просто. Вам должно очень повезти, чтобы получить новый блок таким образом. Так как, именно здесь присваивается уникальный символ. Уникальный символ (nonce) — это одноразовый код, который объединен с хэшем блока. Затем эта строка вновь меняется и сравнивается с уровнем сложности. Если она соответствует уровню сложности, то случайный код изменяется. Это повторяется миллион раз до тех пор, пока требования не будут наконец выполнены. Когда же это происходит, то блок добавляется в цепочку блоков.

• Выполняется хэш содержимого нового блока.
• К хэшу добавляется nonce (специальный символ).
• Новая строка снова хэшируется.
• Конечный хэш сравнивается с уровнем сложности, чтобы проверить меньше он его или нет
• Если нет, то nonce изменяется, и процесс повторяется снова.
• Если да, то блок добавляется в цепочку, а общедоступная книга (блокчейн) обновляется и сообщает нодам о присоединении нового блока.
• Майнеры, ответственные за данный процесс, награждаются биткоинами.

Помните номер свойства 6 хэш-функций? Удобство использования задачи?
Для каждого выхода «Y», если k выбран из распределения с высокой мин-энтропией, невозможно найти вход x таким образом, H (k | x) = Y.

Так что, когда дело доходит до майнинга биткоинов:

• К = Уникальный символ
• x = хэш блока
• Y = цель проблемы

Весь процесс абсолютно случайный, основанный на генерации случайных чисел, следующий протоколу Proof Of Work и означающий:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *