Как сделать единичную матрицу
Некоторые свойства операций над матрицами.
Матричные выражения
На базовых уроках Действия с матрицами, Как найти обратную матрицу? мы познакомились с понятием матрицы и основными операциями над матрицами. При этом основные акценты были подробно расставлены на технических приёмах вычисления, чтобы совершенно неподготовленный человек смог быстро научиться решать матрицы. Поэтому чайникам следует начать с первых двух статей и лягушатника с определителем матрицы. Из инструментальных средств рекомендую запастись матричным калькулятором, который позволит контролировать весь процесс решения и не допустить ошибок. Найти его можно, например, на складе математических формул и таблиц.
А сейчас последует продолжение темы, в котором мы рассмотрим не только новый материал, но и отработаем действия с матрицами.
Некоторые свойства операций над матрицами
Существует достаточно много свойств, которые касаются действий с матрицами, в той же Википедии можно полюбоваться стройными шеренгами соответствующих правил. Однако на практике многие свойства в известном смысле «мертвЫ», поскольку в ходе решения реальных задач используются лишь некоторые из них. Моя цель – рассмотреть прикладное применение свойств на конкретных примерах, и если вам необходима строгая теория, пожалуйста, воспользуйтесь другим источником информации.
Но сначала вернёмся к действиям с матрицами (к слову, в той статье мы уже неявно затронули ряд свойств). Начну с небольшого вопроса, который вызвал трудности у некоторых посетителей сайта:
Можно ли к матрице прибавить число?
Например: 
Нет. К матрице можно прибавить только другую матрицу, причём точно такого же размера.
Матрицу можно умножить на число. Но сложить их нельзя. Таковы правила игры.
Следует отметить, что допустимо сложение определителя матрицы с числом:
Результат вычисления определителя – число, а два числа суммируются без всяких проблем.
Вышесказанное, естественно, справедливо и для разности, ведь вычитание – это частный случай сложения.
Как на счёт того, чтобы плотно зависнуть у меня сегодня вечером? =) Практика показывает, что наибольшие трудности у студентов вызывает умножение матриц. Так наполним же кружки соответствующей информацией.
Повторим само правило. В статье Действия с матрицами я рассказал о том, какие матрицы можно умножать и привёл ряд наиболее распространённых примеров. Давайте рассмотрим операцию чуть подробнее и выделим два существенных пункта:
1) Смотрим на левую часть. Из первого урока нам известно, что матричное умножение возможно в том и только в том случае, если количество столбцов первой матрицы равно количеству строк второй матрицы.
2) Смотрим на правую часть и обращаем внимание на размерность результата – СКОЛЬКО строк и столбцов должно быть у итоговой матрицы.
Умножить матрицы
Решение: произведение существует, причём итоговая матрица состоит из 1 строки и 2 столбцов:
Ответ:
Умножить матрицы
Это пример для самостоятельного решения.
Предложенные примеры не случайны. Они вроде бы просты, но у начинающих здесь нередко возникает путаница с размерами матрицы-результата. Поэтому читателям с небольшим опытом целесообразно переписать вышеприведённую формулу и особенно серьёзно отнестись к практическим примерам.
А по каким принципам составляются начинка (суммы произведений чисел), думаю, все уже поняли. Дополнительно возьмём на вооружение образную ассоциацию, которая поможет хорошо запомнить действие. Читаем следующий параграф:
Как возвести матрицу в квадрат?
Операция определена только для квадратных матриц – «два на два», «три на три» и т.д.
Возвести квадратную матрицу 
Возвести в квадрат матрицу
Решение: пример рутинный, и чтобы извлечь максимальную пользу, давайте закрепим очень распространённый случай умножения двух матриц «три на три»:
Строки первой матрицы – это столы в ресторане, а цветные столбцы второй матрицы – официанты. Сначала столы обслуживает красный официант, затем зелёный официант, и под конец застолья – синий официант. Тааак, хватит прикалываться, он не голубой =)
Это действительно удобный мысленный приём, который можно использовать на практике – последовательно (слева направо) перебираем столбцы второй матрицы и «пристраиваем» их к каждой строке первой матрицы.
Ответ:
Возведение матрицы в куб и более высокие степени разберём позже.
Немного о некоммутативности матричного умножения и единичной матрице
Материал, по меньшей мере, частично вам знаком. Для тех, кто не знает термина:
Коммутативность = Перестановочность.
Обычные числа переставлять можно: 

Рассмотрим некоторые исключения из правила, которые потребуются для выполнения практических задач.
Если у квадратной матрицы 

Чтобы проверить, правильно ли найдена обратная матрица, нужно вычислить произведение 


Единичной матрицей называется квадратная матрица, у которой на главной диагонали расположены единицы, а остальные элементы равны нулю. Например: 

При этом справедливо следующее свойство: если произвольную матрицу 
Как видите, здесь также имеет место коммутативность матричного умножения.
Возьмём какую-нибудь матрицу, ну, скажем, матрицу из предыдущей задачи: 
Желающие могут провести проверку и убедиться, что:
Единичная матрица для матриц – это аналог числовой единицы для чисел, что особенно хорошо видно из только что рассмотренных примеров.
Коммутативность числового множителя относительно умножения матриц
Для матриц 

То есть числовой множитель можно (и нужно) вынести вперёд, чтобы он «не мешал» умножить матрицы.
Примечание: вообще говоря, формулировка свойства неполная – «лямбду» можно разместить в любом месте между матрицами, хоть в конце. Правило остаётся справедливым, если перемножаются три либо бОльшее количество матриц.
Вычислить произведение
Решение:
(1) Согласно свойству 
(2) – (3) Выполняем матричное умножение.
(4) Здесь можно поделить каждое число 10, но тогда среди элементов матрицы появятся десятичные дроби, что не есть хорошо. Однако замечаем, что все числа матрицы делятся на 5, поэтому умножаем каждый элемент на 
Окончательный ответ лучше оставить в виде 

Ответ:
Маленькая шарада для самостоятельного решения:
Вычислить 
Решение и ответ в конце урока.
Какой технический приём важен в ходе решения подобных примеров? С числом разбираемся в последнюю очередь.
Прицепим к локомотиву ещё один вагон:
Как умножить три матрицы?
Прежде всего, ЧТО должно получиться в результате умножения трёх матриц 
Произведение трёх матриц 
1) найти 

2) либо сначала найти 

Результаты обязательно совпадут, и в теории данное свойство называют ассоциативностью матричного умножения:
Перемножить матрицы двумя способами
Алгоритм решения двухшаговый: находим произведение двух матриц, затем снова находим произведение двух матриц.
1) Используем формулу
Действие первое:
Действие второе:
2) Используем формулу
Действие первое:
Действие второе:
Ответ:
Более привычен и стандартен, конечно же, первый способ решения, там «как бы всё по порядку». Кстати, по поводу порядка. В рассматриваемом задании часто возникает иллюзия, что речь идёт о каких-то перестановках матриц. Их здесь нет. Снова напоминаю, что в общем случае ПЕРЕСТАВЛЯТЬ МАТРИЦЫ НЕЛЬЗЯ. Так, во втором пункте на втором шаге выполняем умножение 

Свойство ассоциативности умножения справедливо не только для квадратных, но и для произвольных матриц – лишь бы они умножались:
Найти произведение трёх матриц
Это пример для самостоятельного решения. В образце решения вычисления проведены двумя способами, проанализируйте, какой путь выгоднее и короче.
Свойство ассоциативности матричного умножения имеет место быть и для бОльшего количества множителей.
Теперь самое время вернуться к степеням матриц. Квадрат матрицы рассмотрен в самом начале и на повестке дня вопрос:
Как возвести матрицу в куб и более высокие степени?
Данные операции также определены только для квадратных матриц. Чтобы возвести квадратную матрицу 
Фактически это частный случай умножения трёх матриц, по свойству ассоциативности матричного умножения: 
Таким образом, получаем рабочую формулу:
То есть задание выполняется в два шага: сначала матрицу необходимо возвести в квадрат, а затем полученную матрицу 

Возвести матрицу 
Это небольшая задачка для самостоятельного решения.
Возведение матрицы в четвёртую степень проводится закономерным образом:
Используя ассоциативность матричного умножения, выведем две рабочие формулы. Во-первых: 
1) 

2) Но существует решение на шаг короче: 

Дополнительное задание к Примеру 8:
Возвести матрицу 
Как только что отмечалось, сделать это можно двумя способами:
1) Коль скоро известен куб, то выполняем умножение 
2) Однако, если по условию задачи требуется возвести матрицу только в четвёртую степень, то путь выгодно сократить – найти квадрат матрицы и воспользоваться формулой 
Оба варианта решения и ответ – в конце урока.
Аналогично матрица возводится в пятую и более высокие степени. Из практического опыта могу сказать, что иногда попадаются примеры на возведение в 4-ю степень, а вот уже пятой степени что-то не припомню. Но на всякий случай приведу оптимальный алгоритм:
1) находим 
2) находим 
3) возводим матрицу в пятую степень: 
Вот, пожалуй, и все основные свойства матричных операций, которые могут пригодиться в практических задачах.
Во втором разделе урока ожидается не менее пёстрая тусовка.
Матричные выражения
Повторим обычные школьные выражения с числами. Числовое выражение состоит из чисел, знаков математических действий и скобок, например: 
Если числовое выражение имеет смысл, то результат его вычисления является числом, например:
Матричные выражения устроены практически так же! С тем отличием, что главными действующими лицами выступают матрицы. Плюс некоторые специфические матричные операции, такие, как транспонирование и нахождение обратной матрицы.
Рассмотрим матричное выражение 

В первом слагаемом 




Во втором слагаемом 




С третьим слагаемым 
Если матричное выражение имеет смысл, то результат его вычисления является матрицей.
Все задания будут из реальных контрольных работ, и мы начнём с самого простого:
Даны матрицы 
Решение: порядок действий очевиден, сначала выполняется умножение, затем сложение.

Сложение выполнить невозможно, поскольку матрицы разных размеров.
Не удивляйтесь, заведомо невозможные действия часто предлагаются в заданиях данного типа.
Пробуем вычислить второе выражение:
Ответ: действие 

Даны матрицы 
Найти значения выражений:
Решение: Разбираемся с произведением 
И умножаем матрицы:

Матричное умножение выполнить невозможно, так как число столбцов матрицы 

А вот с произведением 
Еще раз заметьте, как на первом же шаге множитель (–1) выносится вперёд, и ноги до него доходят в самую последнюю очередь.
С более сложными выражениями вроде 
Сначала находим произведение:
Затем считаем второе слагаемое:
И, наконец, всё выражение:
Более подготовленные студенты могут оформить решение одной строкой:
Ответ: действие 


Пара заключительных примеров для самостоятельного решения:
Для матриц Примера №10 выполнить действия:
Вычислить значение матричного многочлена 

В последнем примере решение удобно оформить по пунктам.
Матричные выражения – это просто! И вряд ли на практике вам встретится что-то сложнее, чем разобранные примеры.
Теперь во всеоружии можно приступить к изучению матричных уравнений.
Пример 2: Решение: 
Ответ:
Пример 5: Решение: 
Ответ:
Пример 7: Решение:
1) Используем формулу 

2) Используем формулу 

Ответ:
Пример 8: Решение: Сначала возведём матрицу в квадрат: 
Возведём матрицу в куб: 
Возведём матрицу в четвёртую степень двумя способами: 

Ответ:
Пример 11: Решение:
Возведение в квадрат 
Ответ: 

Пример 12: Решение:
1) 
2) 
3) 
4) 
5) 
Ответ: 
Примечание: выражение можно было вычислить и по-другому – предварительно раскрыть скобки:
Автор: Емелин Александр
(Переход на главную страницу)





















































