Как сделать градусник настоящий
Бесконтактный термометр: как сделать инфракрасный градусник своими руками?
Главная страница » Бесконтактный термометр: как сделать инфракрасный градусник своими руками?
Не только для медицинского измерения температуры нужен градусник без контакта. На практике отладки схем электроники, тестирования новых конструкций аппаратного обеспечения и т.п. может успешно применяться бесконтактный термометр. Сильно нагревающиеся электронные компоненты, в таком случае, проверяются без риска получения ожога.
Основа инфракрасного бесконтактного градусника
Аппарат такого типа, конечно же нужен каждому электронщику. И было бы правильным говорить, что настоящий электронщик всегда испытывает желание сделать электронику своими руками, в том числе технический градусник. Поэтому рассмотрим тему – как сделать бесконтактный термометр своими руками на основе инфракрасного сенсора.
Своего рода «тепловую пушку» доступно построить своими руками на базе популярного набора «Arduino». Схема построения требует применения бесконтактного измерительного модуля температуры типа MLX90614.
Благодаря этому устройству, прибор успешно подходит не только для измерения температуры компонентов электронных схем, но также для контроля температуры тела живых организмов.
Один из вариантов исполнения измерительного и преобразующего модуля MLX90614, который необходим для изготовления своими руками электронного инфракрасного градусника
Кроме того, созданный своими руками бесконтактный термометр достаточно точно измеряет температуру:
Собственно, бесконтактные термометры широким ассортиментом доступны на коммерческом рынке. Однако цена таких устройств, но главное – творческий интерес, заставляют любителя электронщика применить собственные руки для изготовления градусника.
Что нужно для создания бесконтактного термометра?
Рассмотрим в подробностях, какие электронные компоненты и прочие комплектующие потребуются для самостоятельного производства бесконтактного инфракрасного градусника. Список нужных составляющих следующий:
Модуль измерительный MLX90614 — продукт «Melexis Microelectronics», представляет композицию двух устройств. Одним устройством выступает инфракрасный термический сенсор, другим — устройство обработки сигналов DSP (вычислительный элемент).
Модуль измерительный бесконтактного термометра работает на принципах закона Стефана-Больцмана. Согласно этому закону, все объекты излучают инфракрасную энергию. Причём интенсивность энергии прямо пропорциональна температуре объекта.
Чувствительный элемент модуля измеряет количество ИК-энергии, излучаемой целевым объектом. В свою очередь, вычислительный модуль преобразует полученное значение 17-разрядным АЦП и выводит уже данные температуры через протокол связи I2C.
Модулем измеряется как температуру объекта, так и температура окружающей среды для калибровки бесконтактного термометра. Характеристики измерительного модуля типа MLX90614 приведены в техническом описании (datasheet MLX90614).
Эффективное расстояние между сенсором и объектом
Одной из важнейших технических характеристик бесконтактного термометра является оптимальная величина расстояния между датчиком и объектом, в границах которой получается точный результат измерений.
Значение этого расстояния, как правило, напрямую связано с техническим термином «Поле зрения» (FOV). Так вот для постройки бесконтактного термометра своими руками используется датчик, значение FOV которого около 80°.
Так называемое «поле зрения» инфракрасного сенсора, которым определяется степень чувствительности объекта с точки зрения точного определения температуры
Если применить графику, диапазон чувствительности устройства логично отобразить конической формой, конус которой расширяется по мере удаления от точки восприятия датчика. Соответственно, по мере удаления от измерительного объекта зона чувствительности прибора увеличивается вдвое.
Таким образом, каждый 1 см удаления бесконтактного термометра от контрольного объекта приводит к увеличению зоны чувствительности на 2 см и как результат — к снижению точности измерения.
Практика применения самодельного бесконтактного термометра показала оптимальное расстояние от объекта не более 2 см.
Конструкция бесконтактного термометра своими руками предполагает размещение лазерного диода недалеко от сенсора, чтобы контролировать направленность и чувствительную область датчика.
Принципиальная схема самодельного инфракрасного термометра
Электронная схема прибора относительно проста, не представляет особых сложностей для сборки своими руками.
Электронная схема включения набора Arduino как функционального элемента бесконтактного термометра: 1 – модуль Arduino Uno; 2 – измерительный модуль MLX90614
Фактически представленной схемой задействованы всего четыре функциональных линии, две из которых линии питания и другие две линии связи SDA и SQL. В составе схемы бесконтактного термометра под сборку своими руками используется минимум компонентов обвязки:
Соответственно, к модулю Arduino Uno подключается информационный дисплей – модуль SSD1306 OLED или аналогичный. Схему подключения этого модуля легко отыскать среди публикаций, рассматривающих работу с Arduino.
Какой необходим корпус под градусник своими руками?
Здесь фантазии электронщиков-любителей ограничиваются только лишь существующими возможностями и расходной ценой. Как правило, корпус бесконтактного термометра выглядит удобным и практичным, если сделан в образе пистолета.
Такую конструкцию комфортно удерживать в руках и направлять детектор на контрольный объект. Самодельный «пистолет» бесконтактного термометра допустимо изготовить из разных материалов. Удачно подходит:
Пример корпуса бесконтактного термометра, сделанного своими руками, показан на картинке ниже:
Таким, примерно, достаточно эксклюзивным и оригинальным может выглядеть корпус самодельного бесконтактного термометра, внутри которого вмещаются все рабочие модули
Корпус прибора изготавливается не только с учётом размещения всех электронных модулей, но также с учётом размещения элемента питания, как правило, батареи типа «Крона».
Как запрограммировать Arduino на бесконтактный термометр?
Программирование модуля Arduino преследует цель получения значения температуры от измерительного модуля MLX90614 с последующим отображением на OLED-дисплее Arduino. Содержимое имеющегося программного кода упрощённое, благодаря разработанной библиотеке чтения данных MLX90614. Библиотека доступна для загрузки здесь.
Также потребуется выполнить инструкции по взаимодействию OLED дисплея с модулем Arduino, установить необходимые библиотеки для модуля дисплея OLED.
Код бесконтактного термометра под Arduino загружается внешним программатором TTL или аналогичным. Затем останется подать питание, нажать кнопку активации бесконтактного термометра. Если всё сделано правильно, лазерный луч отобразится на контрольном объекте, а температура объекта отобразится на OLED-экране.
Как сделать термометр своими руками?
Термометр – предмет, который присутствует практически в каждом доме. Он всегда нужен и полезен, ведь глядя на его шкалу, можно узнать, какова настоящая температура воздуха за окном. Основной процент людей покупает эту деталь в специализированных магазинах, но на самом деле хороший термометр вполне возможно соорудить своими руками. В этой статье мы узнаем, как это можно сделать правильно.
Принцип работы
Прежде чем спешить самостоятельно изготавливать хороший термометр, важно разобраться в принципе его работы. Также важно знать схему будущего изделия и разобраться во всех схемах, которые будут присутствовать в нем. В наше время многие люди выбирают электронные устройства, различающиеся и по форме, и по размерам. Рассмотрим принцип действия современных термометров на примере этих устройств.
Параметры производительности материала напрямую зависят от температуры окружающей среды. Отталкиваясь от этого, проектируется сама электронная схема будущего термометра. Обычно в его устройстве имеет место термопара. Это такой электронный прибор, который состоит из 2 металлов, которые были сварены друг с другом. На их поверхности присутствует специальная контактная площадка, подключенная к измерительной схеме. В условиях нагрева или охлаждения контактов образуется термоэлектродвижущая сила. Ее появление и изменения держатся под контролем и регистрируются платой электроники устройства.
В новых усовершенствованных устройствах вместо обычного термочувствительного составного элемента применяется диод кремниевого типа.
Полупроводниковый радиоэлемент отличает зависимость вольтамперной характеристики от воздействия температурных значений. Проще говоря, при условии прямого запуска значение падения напряжения на переходе меняется исходя из уровня нагрева полупроводниковой детали.
Необходимые инструменты и материалы
Если вы решили самостоятельно изготовить термометр, то вам стоит подготовить все необходимые для того материалы и инструменты. Изготавливать термометры можно разными способами и из разных материалов – как из дешевых и доступных, так и дорогих. Рассмотрим, что может понадобиться для создания такого полезного предмета:
Конкретный список необходимых составляющих будет напрямую зависеть от того, какой именно термометр вы хотите изготовить.
Все необходимые составляющие желательно заготовить заранее перед началом всех работ, чтобы в нужный момент не пришлось искать необходимое приспособление (особенно если оно маленькое) по всему дому, теряя время.
Особенности изготовления
Сделать термометр своими руками можно разными способами. Возможно сделать самое простое устройство, для которого не требуются специальные запчасти и детали, а есть такие самодельные варианты, сделать которые будет довольно трудно. Рассмотрим, как надо правильно сооружать термометры своими руками на примере нескольких популярных моделей.
Из вольтметра
Термометр подобного вида можно изготовить самостоятельно. Но сперва необходимо соорудить приставку к мультиметру для измерения температурных значений, используя 2 основные детали:
Попутно вольтметр надо переделать в термометр. LM 35 представляет собой интегральный датчик температуры, рассчитанный на широкий диапазон температурных значений.
Следует тщательно распаять схему на макете и там же хорошо зафиксировать источник питания (для этого вполне подойдет батарейка не менее 3 вольт). Далее можно произвести подключение к тестеру. Надо при помощи подстроечника настроить температуру, опираясь на показания другого термометра и на этом устройство будет готово!
Из пластиковой бутылки
Если хочется изготовить своими руками более простой вариант термометра, то можно обойтись и использованием пластиковой бутылки. Разберем пошагово, как в домашних условиях соорудить такую любопытную вещицу.
Собрав такой термометр, его работу надо проверить. По очереди опускайте бутылку с трубочкой в резервуары с горячей и холодной водой.
Когда прибор окажется в холодной жидкости, уровень раствора в трубке должен спуститься вниз, а когда он окажется в горячей воде, уровень повысится.
С выносным датчиком
Это сложный вариант самодельного термометра. Устройства, работающие на специальной термопаре и микроконтроллере, в изготовлении могут оказаться не самыми понятными, поэтому приступать к их самостоятельному изготовлению лучше людям, которые будут точно знать, что делают и с чем работают.
Для сооружения такого прибора будут нужны:
При определенном опыте и умениях можно смонтировать все элементы прямо на разъеме – это очень удобно.
Готовому устройству потребуется правильная калибровка сенсоров. После этого нужно лишь подключить датчик к порту компьютера. Далее понадобится соответствующая программа измерения температуры. Для этого подойдет Temp. Keeper.
Из картона
Как ни странно, термометр можно изготовить из самых простых и доступных материалов, например, из картона. Подобный способ изготовления устройства максимально прост и доступен каждому. Разумеется, такие «устройства» чаще всего делаются для детей или детьми. Рассмотрим пошагово, как можно изготовить такой игрушечный или шуточный термометр своими руками.
Самодельные картонные градусники благотворно влияют на умственное развитие ребенка. Желательно изготавливать подобную поделку в компании с малышом, привлекая его к процессу.
Как собрать термометр из вольтметра и термопары, смотрите далее.
Схема электронного термометра с выносным датчиком своими руками
На замену не совсем удобным аналоговым измерителям температуры, в основе работы которых лежит свойство жидкости расширяться и сжиматься, промышленность предложила дискретные устройства. Эти совсем несложные приборы обладают рядом неоспоримых преимуществ. Купить измеритель можно практически в любом магазине бытовой или климатической техники, но гораздо интереснее изготовить электронный термометр с выносным датчиком своими руками.
Суть устройства
Термометр, разговорный аналог — градусник, предназначен для измерения температуры окружающей среды. Первое устройство было изобретено в 1714 году немецким физиком Д. Г. Фаренгейтом. В основе своей конструкции он использовал прозрачную запаянную колбу, внутри которой находился спирт. После в качестве жидкости учёный применил ртуть. Но шкала аналогового измерителя, существующая и по сей день, была разработана лишь только через 30 лет шведским астрономом и метеорологом Андерс Цельсием. За начальные точки он предложил взять температуру тающего льда и кипения воды.
Интересным фактом является то, что изначально числом 100 была отмечена температура таяния льда, а за ноль взята точка кипения. Впоследствии шкалу «перевернули». По некоторым мнениям это сделал сам Цельсий, по другим — его соотечественники ботаник Линней и астроном Штремер.
Вскоре изготовление ртутных измерителей было широко налажено производством в промышленных масштабах. Со временем ртуть из-за своей ядовитости была заменена на спирт, а затем и вовсе был предложен новый тип устройства — цифровой. Сегодня, пожалуй, градусник стал неотъемлемым атрибутом любого жилища. По совету Всемирной организации здравоохранения была принята Минаматская конвенция, направленная на постепенный вывод из обихода ртутных градусников. Согласно ей в 2022 году использование ртути в измерителях будет полностью прекращено.
Поэтому из-за своих отличных характеристик термометр с цифровой схемой практически не имеет конкурентов. Предлагаемые в продаже спиртовые приборы проигрывают ему по точности и удобству восприятия данных.
Электронные модели могут располагаться в любом месте, ведь в контролируемом помещении необходимо расположить только небольшой датчик, подключённый к устройству. Этот тип используется во многих технологических процессах промышленности, например, строительных, аграрных, энергетических. С их помощью контролируется:
Принцип работы
Перед тем как непосредственно приступить к изготовлению электронного термометра, следует разобраться в принципе его действия и определиться, из каких узлов будет состоять конструкция. Промышленно выпускаемые электронные градусники различаются по своим размерам и назначению. Но все они построены на однотипном принципе действия.
Проводимость материала изменяется в зависимости от температуры окружающей среды. Основываясь на этом и проектируется схема электронного градусника. Так, чаще всего в конструкции применяется термопара. Это электронный прибор, стоящий из двух сваренных между собой металлов. На поверхности каждого из них имеется контактная площадка, подключённая к измерительной схеме. При нагревании или охлаждении контактов возникает термоэлектродвижущая сила, появление и изменение которой регистрируется платой электроники.
В устройствах нового поколения вместо термочувствительного элемента используется кремниевый диод. Полупроводниковый радиоэлемент, у которого наблюдается зависимость вольт-амперной характеристики от температурного воздействия. Иными словами, при прямом включении (направление тока от анода к катоду) значение падения напряжения на переходе изменяется в зависимости от нагрева полупроводника.
Всего же в конструкции простого термометра можно выделить пять блоков:
Особенности изготовления
Человеку, увлекающемуся радиолюбительством, сделать электронный термометр своими руками по схеме не доставит трудностей, но в то же время обычному потребителю понадобится иметь хотя бы навыки паяния. Сегодня существует довольно много различных схем, отличающихся как сложностью повторения, так и дефицитностью радиодеталей.
При выборе схемы учитывают характеристики, которые она сможет обеспечить будущему измерительному устройству. В первую очередь — это диапазон измеряемых температур, а во вторую – погрешность. Конструктивно можно собрать проводную и беспроводную модель. При сборке второго типа используется радиомодуль, значительно удорожающий изделие.
Из-за использования чувствительных специализированных микросхем собирать навесным монтажом схему вряд ли получится. Поэтому предварительно изготавливается печатная плата. Делать её лучше из одностороннего фольгированного стеклотекстолита методом «лазерно-утюжной технологии».
Суть метода заключается в том, что с помощью, например, Sprint Layout, рисуется печатная схема устройства и распечатывается в зеркальном отображении в масштабе 1:1 на лазерном принтере. Затем, приложив отпечатанный рисунок изображением вниз к фольгированному слою, проглаживают чертёж разогретым утюгом. Из-за особенностей тонера изображение линий перенесётся на стеклотекстолит. Далее плата погружается в ванную с реактивом, например, FeCl3.
В качестве индикатора можно использовать светодиодную матрицу, но лучше приобрести любой монохромный экран. Простой экран можно взять буквально за «копейки», например, подойдёт от старых системных блоков, выполненных в форм-факторе АТ. Если планируется конструкция с выносным датчиком, то неплохим вариантом будет использование шлейфа с диаметром проводника от 0,3 мм2, но в принципе подойдёт любой провод. При этом чем вынос датчика больше, тем большего сечения нужен и провод.
В схемотехнике некоторых термометров используются микроконтроллеры. Их применение позволяет упростить электрическую схему и повысить функциональность, но при этом требует навыков программирования и умения загружать прошивку. Для этого понадобится программатор, который можно также спаять самостоятельно, например, для LPT из пяти проводов.
Простой термометр
В качестве мультиметра можно использовать стрелочный или цифровой прибор. К датчику согласно схеме подключают источник питания. Например, КРОНу или три соединённых последовательно пальчиковых батарейки. Измеритель же подключают к клеммам V и COM и переводят в режим измерения температуры. Потребление датчика при работе не превышает 10 мкА.
Диапазон измерения мультиметра устанавливается на два вольта. Отображённый на экране результат и будет соответствовать измеряемой температуре. Последняя цифра в числе обозначает десятые доли градуса.
При желании устройство можно сделать двухканальным. Для этого дополнительно необходимо будет изготовить механический или электронный переключатель.
Цифровая схема
Одна из самых простых схем состоит всего из нескольких элементов. В основе конструкции лежит использование датчика, выдающего значение температуры в цифровом коде. Стоимость термодатчика LM 335 не превышает 50 центов, при этом после калибровки его точность измерения составляет от 0,3 ° до 1,5° C. Датчик может измерять температуру от — 40 ° до 100° C. Выпускается он в двух корпусах — TO-92 и SOIC. В качестве аналога можно использовать отечественную микросхему К1019ЕМ1.
При монтаже длина соединительных проводов может достигать пяти метров. Калибровка схемы осуществляется изменением напряжения, подаваемым на вывод один. Необходимое значение рассчитывается по формуле:
Uвых = Vвых1 * T / To, где:
Напряжение, формирующее выходной сигнал, зависит от температуры, поэтому питание, подающееся на датчик, должно осуществляться от источника тока. Собирается он на двух транзисторах КТ209 и не требует дополнительных настроек. Максимальный ток питания не превышает 5 мА. Увеличение выходного напряжения на 10 мВ соответствует приросту температуры на один градус.
Использование микроконтроллера
Применение в схеме самодельного термометра микроконтроллера подразумевает использование программы, управляющей его работой. В качестве микросхемы применяется ATmega8, а датчика температуры — DS18B20.
В схеме используется небольшое число радиодеталей. Она несложная и не нуждается после сборки в какой-либо наладке. Напряжение питания микроконтроллера составляет пять вольт. Для его стабилизации используется микросхема L7805. Транзисторы можно использовать любые с NPN структурой. В качестве индикатора подойдёт трёхразрядный сегментный дисплей с общим катодом.
При программировании все установки микроконтроллера оставляются заводскими, и фьюзы не изменяются. Затем к собранному термометру можно добавить ещё один датчик, а также часы. Но для этого необходимо будет обладать знаниями в программировании, чтобы дописать программный код.
Точный термометр
Применение в качестве датчиков полупроводниковых диодов и транзисторов характеризуется сложностью калибровки показаний, что в итоге приводит к погрешности результата измерений. Поэтому для получения точного результата в качестве измерителя применяется бифилярно намотанная катушка из тонкого проводника, размещённая в цилиндре, имеющем размеры порядка 4х20 мм.
Основой конструкции является микросхема ICL707 и светящийся индикатор. Питание можно подавать от любого источника с выходной амплитудой 12 В. На DA3 собран нормирующий преобразователь, изменяющий своё выходное напряжение в зависимости от сигнала, поступаемого с датчика.
Настройка заключается в выставлении на 36 ноге микросхемы напряжения, равного одному вольту. Делается это с помощью резисторов R3 и R4. Вместо датчика подключают резистор на 100 Ом. Изменением сопротивления R14 устанавливают нули на цифровом индикаторе. После чего устройство готово к измерениям.