Как сделать твердотопливный ракетный двигатель
Как сделать реактивный мини двигатель своими руками в домашних условиях – самодельная схема устройства
Я собираю модель, имитирующую настоящий реактивный мини двигатель, даже если мой вариант электрический. На самом деле всё просто и каждый может построить реактивный двигатель своими руками в домашних условиях.
То, как я спроектировал и построил самодельный реактивный двигатель — не лучший способ сделать это. Я могу представить миллион способов и схем, как создать лучшую модель, более реалистичную, более надежную и более простую в изготовлении. Но сейчас я собрал такую.
Основные части реактивного модельного двигателя:
Шаг 1: Присоедините двигатель постоянного тока к маховику коробки передач
Основа модели моего реактивного двигателя очень проста. Присоедините двигатель постоянного тока к коробке передач. Идея заключается в том, что мотор приводит в движение ту часть коробки передач, которая была прикреплена к колесам игрушечной машинки. Поместите пластиковый рычаг, чтобы он ударялся о маленькую шестерню маховика, и она издавала шум. Некоторые коробки передач уже оснащены этим устройством, а некоторые нет.
Шаг 2: Соедините магниты и катушку для датчика
Поместите 2 или 4 постоянных магнита на главный вал таким образом, чтобы катушка могла находиться рядом с ними, когда они вращаются. Поместите их так, чтобы шаблон полярности был — + — +. Идея состоит в том, что магниты будут проходить близко к катушке и генерировать небольшое количество тока, которое мы будем использовать для перемещения датчика. Но чтобы это сработало, вам нужно поместить 4 диода в мостовую конфигурацию, чтобы преобразовать переменный ток, который мы генерируем, в постоянный.
Загуглите «диодный мост», чтобы найти об этом больше информации. Также для калибровки датчика до нужной чувствительности, вам необходимо поместить потенциометр между катушкой и датчиком.
Шаг 3: Реостат для управления скоростью
Нам нужно контролировать скорость двигателя. Для этого поместите реостат между розеткой и источником питания. Если вы не знаете, как это сделать, загуглите, как подключить реостат к лампочкам. Но вместо лампочки мы поставим блок питания.
Не пытайтесь сделать это, если вы не уверены на 100%. Мы имеем дело с большим током и использование неподходящего источника питания может вывести его и строя. Чем проще блок питания, тем лучше. Альтернатива — найти реостат постоянного тока, чтобы мы могли контролировать напряжение после подачи питания. Я не смог найти такой ни в одном магазине, поэтому использую реостат для лампочек. Но если вы сможете найти такой, который будет работать с двигателем постоянного тока, то возьмите его. Идея состоит в том, чтобы просто контролировать, какой ток поступает на двигатель, так что это будет нашим дросселем.
Шаг 4: Вентилятор
Вентилятор вы можете сделать так, как захотите. Я вырезал каждое лезвие из тонкого металлического листа и склеил их. Вы можете сделать их из картона и затем покрасить. Или, если у вас есть доступ к 3D принтеру, вы можете напечатать 3d-вентилятор. На www.thingiverse.com есть отличные трёхмерные модели вентиляторов.
Шаг 5: Корпус
Вы можете сделать корпус из картона, а затем, чтобы придать форму, добавить внешний заполнитель. Вам придется много шлифовать, так что это тяжелая и грязная работа. Когда вы всё сгладите, закрасьте корпус глянцевой белой краской.
Внутренняя часть двигателя должна быть окрашена в черный цвет. Передняя часть двигателя обычно имеет серебристый край, который вы, по желанию, можете нарисовать.
Шаг 6: Механизм стартера
Стартер и ручки подачи топлива связаны механически. Стартер имеет выключатель, который подключает двигатель к источнику питания. Этот переключатель также может быть активирован рычагом управления подачей топлива, когда он находится в рабочем положении.
Пружина стартера должна быть нагружена таким образом, чтобы она хотела вернуться в нормальное положение, и блокировала стартовое положение только в том случае, если рычаг управления подачей топлива находится в отключенном положении.
Идея состоит в том, чтобы стартер оставался в исходном положении, пока вы не переместите рычаг подачи топлива в рабочее положение, и теперь рычаг управления подачей топлива будет держать переключатель включенным. Также топливный рычаг является частью основания реостата. Реостат должен быть установлен таким образом, чтобы можно было вращать не только часть ручки, которая должна вращаться, но и всю основу реостата. Эта база — то, что контроль топлива двигает для увеличения скорости, когда он находится в рабочем положении. Это сложно объяснить и поэтому, чтобы лучше понять концепцию, вы должны посмотреть третью часть видео.
Рассказываю как сделать какую-либо вещь с пошаговыми фото и видео инструкциями.
Per aspera ad astra, или как я строил ракету. Часть 1. Делаем движки и запускаем ракеты
Земля – колыбель человечества, но нельзя вечно жить в колыбели
Эту знаменитую фразу К.Э.Циолковского не забывают и по сей день. NASA, ESA, Роскосмос, SpaceX и множество других космических компаний отправляют автоматические миссии на другие планеты, запускают людей в космос и стремятся воплотить в жизнь слова Константина Эдуардовича.
Но что делать, если разработка новой ракеты занимает долгое время, а запустить ее хочется здесь и сейчас? Тогда стоит заняться ракетомоделированием и самим построить и запустить ракету мечты. А о своем опыте проектирования ракет я с удовольствием вам расскажу в этой статье.
Вступление
Всем привет! В этой серии статей я хотел бы поделиться с вами моим опытом разработки и запусков моделей ракет, рассказать о своих первых неудачах и головокружительных успехах, о том как надо делать и как не надо. Я не буду вдаваться в подробности того, как построить ракету, потому что в интернете есть много гайдов по этой теме, а сделаю упор именно на личный опыт, дабы уберечь вас от моих ошибок и показать несколько моих интересных находок и решений.
Космосом я увлекся после того как побывал на программе Большие Вызовы 2017 ОЦ Сириус на направлении “Космические технологии и робототехника”. На ней наша команда разработала первый российский школьный спутник SiriusSat, который в 2018 году вместе со своим братом-близнецом был запущен с МКС во время выхода в открытый космос. Полезная нагрузка спутника — детекторы заряженных частиц и гамма-излучения. Конкретно моей задачей на программе было проведение испытаний спутника. Так как в лаборатории космических систем были установлены вибростенд и термобарокамера, то мы решили “протрясти” и “запечь” наш аппарат. Все испытания прошли успешно, наша команда защитила проект, и все довольные разъехались по своим городам.
SiriusSat-1 и SiriusSat-2. Ручка нужна для того, чтобы космонавт держал спутник
В общем на этой смене я и заразился тематикой космоса. Потом в 10 классе мне пришла в голову идея собрать свою ракету с какой-нибудь электроникой.
Первые попытки собрать движок
Сердцем любой ракеты является ее двигатель, поэтому сперва нужно было собрать его. Среди ракетомоделистов очень популярно карамельное топливо, из-за того, что оно легко в изготовлении и его компоненты (сахарная пудра и калиевая селитра) можно найти в любом городе.
Калиевую селитру купил в ближайшем магазине удобрений, а сахарную пудру в продуктовом магазине. На тот момент надпись N — 13,6% и K2O — 46% меня не смутила, но из-за нее потом было очень много проблем, о которых я расскажу чуть позже.
Для изготовления корпуса мне понадобилась пластиковая водопроводная труба длиной 100мм и диаметром 10 мм, бентонит (наполнитель для кошачьего туалета), чтобы сделать заглушки и для утрамбовки самого топлива нужно было найти любую палку, свободно входящую в двигатель. Селитру, бентонит и сахарную пудру я на всякий случай по отдельности перемолол в ступе. Затем смешал калиевую селитру и пудру в соотношении 70% к 30%. Теперь необходимо было забить все компоненты в трубу следующим образом:
Для поджигания двигателя я сделал бикфордов шнур. Джутовую веревку отварил в растворе карамельного топлива, концентрацию взяв на глаз, примерно 2-3 чайных ложки на стакан воды. После варки необходимо дать шнуру высохнуть, и если пропорции раствора топлива были правильными, то на веревке будет белый налет карамельки. Двигатель и шнур для его поджига были готовы, а это значит, что предстояло провести его прожиг.
К сожалению фотографий первого двигателя и видео его испытаний у меня нет, но по итогу он не взлетел, но знатно дымился на стартовом столе.
Выводы:
It’s alive!
Покопавшись в интернете, я примерно понял в чем была проблема первого движка. Из-за трамбовки топливо распределялось неравномерно, в нем образовывались полости, и оно было неоднородно из-за чего процесс горения был очень вялым и вместо ракеты получилась хорошая дымовая шашка. Решение проблемы было простое — забить в трубу сваренное карамельное топливо. В качестве корпуса взял металлическую штангу для ванной и решил поэкспериментировать с пропорциями топлива и с добавкой оксида железа 3 (то есть обычной ржавчины), потому что он должен был увеличить скорость горения.
Примеры чистого карамельного топлива и с добавлением ржавчины. Источник
Движки я сделал поменьше, так как не видел смысла в изготовлении полноразмерного варианта, так же, как и не видел смысла в заглушках и сопле, на скорость горения топлива повлиять они не должны были, потому что все испытуемые были в равных условиях окружающей среды.
Топливо варил на электрической плите в блиннице до цвета и консистенции сгущенки. Блинница тем хороша, что в ней все ингредиенты равномерно нагреваются и не пригорают.
В итоге у меня получилось несколько подопытных:
Выводы:
Что в итоге?
Если вы смотрели недавнюю серию роликов Амперки Ракета против Лехи, то вы заметили, что они использовали химически чистую калиевую селитру. Благодаря ей у них прогорело все топливо, да и скорость горения была выше (2,85 мм/сек против моих 1-1,25 мм/сек). Ну и еще одним минусом самодельных движков является то, что неизвестна их тяга, а я в будущем хотел бы рассчитывать параметры полета ракеты.
По итогу могу сделать вывод, что на калиевой селитре для удобрений движок не построишь. В общем, на такой грустной ноте я закончил разработку своих движков, и стал искать тех, кто делает и продает готовые движки.
Строим ракету
Двигатели я купил на сайте Real Rockets. Так как вместе с этими двигателями поставляется и электрический воспламенитель, то нужно было собрать пульт для запуска, ну и саму ракету конечно же. В том же магазине приобрел картонные трубы для корпуса.
На просторах интернета нашел схему для пульта и немного переделал ее, чтобы от прозвонки случайно не зажегся движок, и в итоге схема получилась такой:
Корпус сделал из ПВХ листов, внутри разместил спаянную схему, провода к воспламенителю (на схеме R2) вывел на зажимы. К проводу зажигания припаял крокодильчики, которые и подключались к воспламенителю.
Внутренности пульта для запуска
Собранный пульт вместе с проводом зажигания
Ну и как любую космическую систему, пульт необходимо было испытать, да и неплохо было бы посмотреть как вообще работают готовые движки.
Чтобы ракета летела вертикально вверх я решил спроектировать ее в программе Open Rocket, а затем напечатать на 3D принтере все детали. С помощью функции оптимизации ракеты я подобрал форму и размеры обтекателя и стабилизаторов исходя из размеров картонной трубы, обтекателя (в него я хотел установить альтиметр, о котором расскажу в следующей части), массы и тяги двигателя и его крепления. Но сперва необходимо было добавить используемый движок.
Чертеж ракеты в Open Rocket
В базе данных Open Rocket есть только американские двигатели, но если вы хотите использовать двигатели других производителей, то можно добавить их в программу. Сделать это довольно просто, я бы даже сказал увлекательно:
В параметрах самих стабилизаторов и обтекателя выбираем наш материал и начинаем их оптимизировать. Конечно, иногда программа выдает страшные формы деталей, поэтому нужно ограничивать максимальные и минимальные значения, которые вы оптимизируете.
Также не стоит забывать о стабильности, потому что от нее зависит, завалится ли на бок ваша ракета во время полета или полетит строго вверх. Если не вдаваться в физические формулы, то стабильность — это расстояние в диаметрах корпуса (калибрах) от центра давления до центра тяжести. Open Rocket умная программа и за нас рассчитывает их положение, поэтому нам остается только следить за значением стабильности. В идеале стабильность вашей ракеты должна быть 2-3 калибра, поэтому в оптимизации ракеты не забываем поставить ограничения и на эту характеристику.
Когда форма стабилизаторов и обтекателя были рассчитаны, предстояло их смоделировать и отправить на печать. Также я смоделировал и крепление для двигателя.
Реактивный двигатель своими руками
Предлагаю вниманию мозгочинов статью о том, как сделать реактивный двигатель своими руками.
Внимание! Строительство собственного реактивного двигателя может быть опасным. Настоятельно рекомендуем принять все необходимые меры предосторожности при работе с поделкой, а также проявлять крайнюю осторожность при работе с инструментами. В самоделке заложены экстремальные суммы потенциальной и кинетической энергии (взрывоопасное топливо и движущие части), которые могут нанести серьёзные травмы во время работы газотурбинного двигателя. Всегда проявляйте осторожность и благоразумие при работе с двигателем и механизмами и носите соответствующую защиту глаз и слуха. Автор не несёт ответственности за использование или неправильную трактовку информации, содержащейся в настоящей статье.
Шаг 1: Прорабатываем базовую конструкцию двигателя
Начнём процесс сборки двигателя с 3Д моделирования. Изготовление деталей с помощью ЧПУ станка значительно облегчает процесс сборки и уменьшает количество часов, которые будут потрачены на подгонку деталей. Главное преимущество при использовании 3D процессов – это способность видеть, как детали будут взаимодействовать вместе до того момента, как они будут изготовлены.
Если вы хотите изготовить действующий двигатель, обязательно зарегистрируйтесь на форумах соответствующей тематики. Ведь компания единомышленников значительно ускорить процесс изготовления самоделки и значительно повысит шансы на удачный результат.
Шаг 2:
Будьте внимательны при выборе турбокомпрессора! Вам нужен большой «турбо» с одной (не разделенной) турбиной. Чем больше турбокомпрессор, тем больше будет тяга готового двигателя. Мне нравятся турбины с крупных дизельных двигателей.
Как правило, важен не столько размер всей турбины, как размер индуктора. Индуктор – видимая область лопаток компрессора.
Турбокомпрессор на картинке – Cummins ST-50 с большого 18 колесного грузовика.
Шаг 3: Вычисляем размер камеры сгорания
В шаге приведено краткое описания принципов работы двигателя и показан принцип по которому рассчитываются размеры камеры сгорания (КС), которую необходимо изготовить для реактивного двигателя.
В камеру сгорания (КС) поступает сжатый воздух (от компрессора), который смешивается с топливом и воспламеняется. «Горячие газы» выходят через заднюю часть КС перемещаясь по лопастям турбины, где она извлекает энергию из газов и преобразует её в энергию вращения вала. Этот вал крутит компрессор, что прикреплён к другому колесу, что выводит большую часть отработанных газов. Любая дополнительная энергия, которая остаётся от процесса прохождения газов, создаёт тягу турбины. Достаточно просто, но на самом деле немного сложно всё это построить и удачно запустить.
Камера сгорания изготовлена из большого куска стальной трубы с крышками на обеих концах. Внутри КС установлен рассеиватель. Рассеиватель – эта трубка, что сделана из трубы меньшего диаметра, которая проходит через всю КС и имеет множество просверленных отверстий. Отверстия позволяют сжатому воздуху заходить в рабочий объём и смешиваться с топливом. После того, как произошло возгорание, рассеиватель снижает температуру воздушного потока, который входит в контакт с лопастями турбины.
Для расчета размеров рассеивателя просто удвойте диаметр индуктора турбокомпрессора. Умножьте диаметр индуктора на 6, и это даст вам длину рассеивателя. В то время как колесо компрессора может быть 12 или 15 см в диаметре, индуктор будет значительно меньше. Индуктор из турбин (ST-50 и ВТ-50 моделей) составляет 7,6 см в диаметре, так что размеры рассеивателя будут: 15 см в диаметре и 45 см в длину. Мне хотелось изготовить КС немного меньшего размера, поэтому решил использовать рассеиватель диаметром 12 см с длиной 25 см. Я выбрал такой диаметр, прежде всего потому, что размеры трубки повторяют размеры выхлопной трубы дизельного грузовика.
Поскольку рассеиватель будет располагаться внутри КС, рекомендую за отправную точку взять минимальное свободное пространство в 2,5 см вокруг рассеивателя. В моём случае я выбрал 20 см диаметр КС, потому что она вписывается в заранее заложенные параметры. Внутренний зазор будет составлять 3,8 см.
Теперь у вас есть примерные размеры, которые уже можно использовать при изготовлении реактивного двигателя. Вместе с крышками на концах и топливными форсунками – эти части в совокупности будут образовывать камеру сгорания.
Шаг 4: Подготовка торцевых колец КС
Закрепим торцевые кольца с помощью болтов. С помощью данного кольца рассеиватель будет удерживаться в центра камеры.
Наружный диаметр колец 20 см, а внутренние диаметры 12 см и 0,08 см соответственно. Дополнительное пространство (0,08 см) облегчит установку рассеивателя, а также будет служить в качестве буфера для ограничения расширений рассеивателя (во время его нагрева).
Кольца изготавливаются из 6 мм листовой стали. Толщина 6 мм позволит надежно приварить кольца и обеспечить стабильную основу для крепления торцевых крышек.
12 отверстий для болтов, которые расположены по окружности колец, обеспечат надежное крепление при монтаже торцевых крышек. Следует приварить гайки на заднюю часть отверстий, чтобы болты могли просто ввинчиваться прямо в них. Всё это придумано только из-за того, что задняя часть будет недоступна для гаечного ключа. Другой способ– это нарезать резьбу в отверстиях на кольцах.
Шаг 5: Привариваем торцевые кольца
Для начала нужно укоротить корпус до нужной длины и выровнять всё должным образом.
Начнём с того, что обмотаем большой лист ватмана вокруг стальной трубы так, чтобы концы сошлись друг с другом и бумага была сильно натянута. Из него сформируем цилиндр. Наденьте ватман на один конец трубы так, чтобы края трубы и цилиндра из ватмана заходили заподлицо. Убедитесь, что там будет достаточно места (чтобы сделать отметку вокруг трубы), так чтобы вы могли сточить металл заподлицо с отметкой. Это поможет выровнять один конец трубы.
Далее следует измерить точные размеры камеры сгорания и рассеивателя. С колец, которые будут приварены, обязательно вычтите 12 мм. Так как КС будет в длину 25 см, учитывать стоит 24,13 см. Поставьте отметку на трубе, и воспользуйтесь ватманом, чтобы изготовить хороший шаблон вокруг трубы, как делали раньше.
Отрежем лишнее с помощью болгарки. Не волнуйтесь о точности разреза. На самом деле, вы должны оставить немного материала и очистить его позже.
Сделаем скос с обеих концов трубы(чтобы получить хорошее качество сварного шва). Воспользуемся магнитными сварочными зажимами, чтобы отцентровать кольца на концах трубы и убедиться, что они находятся на одном уровне с трубой. Прихватите кольца с 4-х сторон, и дайте им остыть. Сделайте сварной шов, затем повторите операции с другой стороны. Не перегревайте металл, так вы сможете избежать деформации кольца.
Когда оба кольца приварены, обработайте швы. Это необязательно, но это сделает КС более эстетичной.
Шаг 6: Изготавливаем заглушки
Для завершения работ по КС нам понадобится 2 торцевые крышки. Одна крышка будет располагаться на стороне топливного инжектора, а другая будет направлять горячие газы в турбину.
Изготовим 2 пластины того же диаметра что и КС (в моём случае 20,32 см). Просверлите 12 отверстий по периметру для болтов и выровняйте их с отверстиями на конечных кольцах.
На крышке инжектора нужно сделать только 2 отверстия. Одно будет для топливного инжектора, а другое для свечи зажигания. В проекте используется 5 форсунок ( одна в центре и 4 вокруг неё). Единственное требование – инжекторы должны располагаться таким образом, чтобы после окончательной сборки они оказались внутри рассеивателя. Для нашей конструкции – это означает, что они должны помещаться в центре 12 см круга в середине торцевой крышки. Просверлим 12 мм отверстия для монтажа форсунок. Сместимся чуть-чуть от центра, чтобы добавить отверстие для свечи зажигания. Отверстие должно быть просверлено для 14 мм х 1,25 мм нити, которая будет соответствовать свече зажигания. Конструкция на картинке будет иметь 2 свечи (одна про запас, если первая выйдет из строя).
Из крышки инжектора торчат трубы. Они изготовлены из труб диаметром 12 мм (внешний) и 9,5 мм (внутренний диаметр). Их обрезают до длины 31 мм, после чего на краях делают скосы. На обеих концах будет 3 мм резьба. Позже они будут свариваться вместе с 12 мм трубками, выступающими с каждой стороны пластины. Подача топлива будет осуществляться с одной стороны а инжекторы будут вкручены с другой.
Для того, чтобы сделать вытяжной колпак, нужно будет вырезать отверстие для «горячих газов». В моем случае, размеры повторяют размеры входного отверстия турбины. Небольшой фланец должен иметь те же размеры, что и открытая турбина, а также, плюс четыре отверстия для болтов, чтобы закрепить его на ней. Торцовый фланец турбины может быть сварен вместе из простого прямоугольного короба, который будет идти между ними.
Переходный изгиб следует сделать из листовой стали. Свариваем детали вместе. Необходимо, чтобы сварные швы шли по наружной поверхности. Это нужно для того, чтобы воздушный поток не имел никаких препятствий и не создавалась турбулентность внутри сварных швов.
Шаг 7: Собираем всё вместе
Начните с закрепления фланца и заглушек (выпускного коллектора) на турбине. Тогда закрепите корпус камеры сгорания и, наконец, крышку инжектора основного корпуса. Если вы всё сделали правильно, то ваша поделка должна быть похожа на вторую картинку ниже.
Важно отметить, что турбинные и компрессорные секции можно вращать относительно друг друга, ослабив зажимы в середине.
Исходя из ориентации частей, нужно будет изготовить трубу, которая соединит выпускное отверстие компрессора с корпусом камеры сгорания. Эта труба должна быть такого же диаметра, как выход компрессора, и в конечном счёте крепиться к нему шлангом соединителем. Другой конец нужно будет соединить заподлицо с камерой сгорания и приварить его на место, как только отверстие было обрезано. Для своей камеры, я использовать кусок согнутой 9 см выхлопной трубы. На рисунке ниже показан способ изготовления трубы, которая предназначена для замедления скорости воздушного потока перед входом в камеру сгорания.
Для нормальной работы нужна значительная степень герметичности, проверьте сварные швы.
Шаг 8: Изготавливаем рассеиватель
Рассеиватель позволяет воздуху входить в центр камеры сгорания, при этом сохранять и удерживать пламя на месте таким образом, чтобы оно выходило в сторону турбины, а не в сторону компрессора.
Отверстия имеют специальные названия и функции (слева направо). Небольшие отверстия в левой части являются основными, средние отверстия являются вторичными, и самые большие на правой стороне являются третичными.
Чтобы сделать процесс расчета отверстия легким, ниже представлена программа, что будет делать работу за вас.
Поскольку наша камера сгорания 25 см в длину, необходимо будет сократить рассеиватель до этой длины. Я хотел бы предложить сделать её почти на 5 мм короче, чтобы учесть расширение металла, во время нагрева. Рассеиватель по-прежнему будет иметь возможность зажиматься внутри конечных колец и «плавать» внутри них.
Шаг 9:
Теперь у вас есть готовый рассеиватель, откройте корпус КС и вставьте его между кольцами, пока он плотно не войдет. Установите крышку инжектора и затяните болты.
Для топливной системы необходимо использовать насос, способный выдавать поток высокого давления (по меньшей мере 75 л/час). Для подачи масла нужно использовать насос способный обеспечить давление в 300 тис. Па с потоком 10 л/час. К счастью, один и тот же тип насоса можно использовать для обеих целей. Мое предложение Shurflo № 8000-643-236.
Представляю схему для топливной системы и системы подачи масла для турбины.
Для надежной работы системы рекомендую использовать систему регулируемого давления с установкой обходного клапана. Благодаря ему поток, который прокачивают насосы всегда будет полным, а любая неиспользованная жидкость будет возвращена в бак. Эта система поможет избежать обратного давления на насос (увеличит срок службы узлов и агрегатов). Система будет работать одинаково хорошо для топливных систем и системы подачи масла. Для масляной системы вам нужно будет установить фильтр и масляный радиатор (оба из них будут установлены в линию после насоса, но перед перепускным клапаном).
Убедитесь, что все трубы, идущие к турбине выполнены из «жесткого материала». Использование гибких резиновых шлангов может закончиться катастрофой.
Ёмкость для топлива может быть любого размера, а масленый бак должен удерживать по меньшей мере 4 л.
В своей масляной системе использовал полностью синтетическое масло Castrol. Оно имеет гораздо более высокую температуру воспламенения, а низкая вязкость поможет турбине в начале вращения. Для снижения температуры масла, необходимо использовать охладители.
Что касается системы зажигания, то подобной информации достаточно в интернете. Как говорится на вкус и цвет товарища нет.
Далее установим двигатель на испытательный стенд.
Шаг 10:
Для начала поднимите давление масла до минимума 30 МПа. Наденьте наушники и продуйте воздух через двигатель воздуходувкой. Включите цепи зажигания и медленно подавайте топливо, закрывая игольчатый клапан на топливной системе до тех пор, пока не услышите «поп», когда камера сгорания заработает. Продолжайте увеличивать подачу топлива, и вы начнете слышать рёв своего нового реактивного двигателя.