Как сделать заземление для генератора
Как выполнить заземление и молниезащиту дизель-генераторной установки?
Дизель-генераторные установки (ДГУ), размещаемые в морском контейнере, получили широкое распространение для электроснабжения временных объектов, а также в качестве резервного источника питания. Генераторы в этом исполнении требуют такое же заземляющее устройство, как все другие источники напряжением 380 В. Давайте выясним, каким образом выполнить для них заземление и молниезащиту?
Пример дизель-генераторной установки
В соответствии с ПУЭ 7-е изд. Глава 1.7, сопротивление заземления должно быть не более 4 Ом. Контур может быть проложен вокруг контейнера, а при установке молниезащиты, также использоваться и для растекания молниевых токов. Решение, отражающее цели этих систем, не требует большой площади – заземлитель располагается по периметру контейнера на удалении одного метра и дополняется вертикальными электродами. Ниже подробно рассмотрен расчет и расположение заземления и молниезащиты для контейнера с дизель-генераторной установкой, расположенного в Сколково.
Комплекс мероприятий для молниезащиты:
Комплекс мероприятий для заземления:
Расположение элементов системы молниезащиты и заземляющего устройства показано на рисунках 1 и 2.
Зона защиты, соответствующая зоне Б РД, показана на рисунке 3.
Рисунок 1 – План расположения элементов молниезащиты и заземляющего устройства
Рисунок 2 – Эскиз с расположением элементов молниезащиты и заземляющего устройства
Рисунок 3 – Зона защиты, соответствующая зоне Б РД
Расчёт молниезащиты:
Для расчёта приняты следующие исходные данные:
Результаты расчёта молниезащиты, проведённого с помощью программного обеспечения, разработанного ОАО «Энергетический институт им. Г.М.Кржижановского»(ОАО «ЭНИН») приведены в таблице 1.
Таблица 1 – Результаты расчёта молниезащиты
Объект
Высота молние-приемника, м
Надежность защиты
Число ударов в объект,
Число прорывов в объект,
Период ударов, год
Период прорывов, год
Расчёт сопротивления заземляющего устройства:
Расчётное значение удельного сопротивления вечномерзлого грунта глина принято равным 60 Ом∙м. Как было сказано ранее, в соответствии с ПУЭ 7-е изд. Глава 1.7.101 сопротивление заземляющего устройства, к которому присоединены нейтрали генератора или трансформатора или выводы источника однофазного тока, в любое время года должно быть не более 4 Ом при линейном напряжении 380 В источника трехфазного тока.
Расчётное сопротивление заземляющего устройства составляет 3,88 Ом, что меньше требуемого значения 4 Ом.
Перечень необходимых материалов приведен в таблице 2
Таблица 2 – Перечень потребности материалов
Опасно: как не надо делать заземление
Обозначим тему
Можно и нужно ли заземлять один из выводов электрогенератора? В интернете можно встретить как минимум два противоположных ответа на данный вопрос. Почему вообще возник данный спор? Смысл прост. На обоих выводах однофазного электрогенератора есть потенциал, т.е. указатель напряжения покажет напряжение на каждом из них. Ну и что тут такого? А вот что. Если мы используем электрогенератор для работы электроинструмента на какой-нибудь стройке, то все нормально. Но если генератор используется как резервный (например, в связке со щитом АВР) или основной источник тока для частного жилого дома, то возникают вопросы:
Мифы о заземлении и UPS
В последнее время в связи с большим распространением электронного оборудования, бурным развитием сетевых технологий, электронной коммерции и ежегодному росту денежного оборота в этой сфере, все большее число компаний на российском рынке признают, что финансовые и имидживые потери от сбоев в работе компьютерного оборудования становятся настолько ощутимыми и что вопрос обеспечения их безаварийной работы становится одним из наиболее приоритетных. Исследование, проведенное Лондонской школой бизнеса совместно с компанией Connect, предоставляющей консалтинговые услуги в области ИТ, установило, что прямые потери компаний по всему миру, связанные со сбоями в работе технологий, составляют ежегодно 48 млрд. долл. /1/.
Возникает резонный вопрос, а что именно необходимо предпринять и какие технические решения воплотить в жизнь, чтобы обеспечить должный уровень работоспособности и помехоустойчивости подобных устройств. В нашей стране, из-за стремительного внедрения информационных технологий практически во все сферы бизнеса, персонал обслуживающий инженерные системы зданий оказался не готов к столь быстрому изменению ситуации, поэтому довольно быстро были найдены «простые решения» возникающих проблем. Происходит повсеместное внедрение источников бесперебойного питания ( UPS ), кроме того выполняются работы по разработке и монтажу «чистой системы заземления» для компьютерного и сетевого оборудования. К сожалению, подобные технические мероприятия не только не решают возложенные на них задачи, но в большинстве случаев приводят к обратному эффекту. Иными словами, позаимствованные российскими специалистами у зарубежных коллег технические решения, являются необходимыми, но далеко не достаточными, и поэтому зачастую оказываются не только ошибочными, с точки зрения безаварийной работы, но и опасными (с точки зрения обеспечения электро- и пожаробезопасности). Мифы об UPS Основное заблуждение по поводу установки источников бесперебойного питания сводится к концепции, которую проповедуют большинство российских компаний, предлагающих подобные и смежные им устройства на рынке. В целом эта концепция сводится к утверждению, что UPS «спасает» от всех существующих и возможных будущих проблем в системе электроснабжения. В связи с этим необходимо напомнить, что несмотря на постоянное техническое совершенствование выпускаемых устройств, основная функция источников бесперебойного питания заключается в защите оборудования от длительных перерывов в электроснабжении. В тоже время, основная задача, которая ставится перед системами бесперебойного питания – это результирующая надежность, которая подразумевает: гарантию сохранности данных, сохранности оборудования, а также гарантию защиты от простоев в работе.
Для чего это нужно? Во-первых, наличие токов утечки в системе электроснабжения здания приводит к искажению изображения на видеомониторах компьютеров, сбоям в работе оборудования и потере информации при передаче данных по сети. Во-вторых, неправильно выполненная система молниезащиты и система защиты от перенапряжений при определенном стечении обстоятельств (в результате прямого и/или удаленного удара молнии) почти гарантированно приведет к физическому выходу из строя электронного оборудования.
В нашей практике имел место случай, когда источник бесперебойного питания, установленный в офисном здании и питающий группу ответственных электропотребителей часто и необоснованно переходил на питание от аккумуляторных батарей. Длительный мониторинг питающего UPS напряжения не показал каких-либо значительных отклонений от нормы. Кроме того, было проведено обследование систем защитного зануления и заземления. В ходе проверки были выявлены грубые ошибки в выполнении вышеуказанных систем, после их устранения и приведения в соответствие с требованиями отечественной и международной нормативной документации количество частых переключений источников бесперебойного питания на аккумуляторные батареи резко снизилось. Исходя из этого, можно сделать вывод о высокой чувствительности современных UPS средней и большой мощности к повышенному и изменяющемуся напряжению между системами рабочего и защитного заземления, вызванному Поскольку все вышеизложенные факторы прямо или косвенно влияют на предъявляемую ко всем электронным системам и оборудованию надежность, можно утверждать, что только после выполнения всего комплекса технических мероприятий целесообразно разрабатывать систему бесперебойного питания и принимать решение об установке тех или иных типов UPS в зависимости от характера и мощности установленных нагрузок здания, а также в соответствии с обеспечением необходимого уровня надежности. Мифы о заземлении В отличие от систем бесперебойного электропитания, применение которых является дополнительным средством обеспечения надежности, заземление прежде всего выполняет функции защиты людей от поражения электрическим током, а также обеспечивает пожаробезопасность зданий и сооружений. Сейчас все чаще выдвигаются предположения, что для нормального функционирования компьютерной техники, информационных сетей и систем связи необходимо применять отдельное, «чистое» заземление, изолированное от общей системы защитного заземления здания. Однако реализация этих решений является не только ошибочной и приводящей к выходу из строя электронных устройств, но в ряде случаев и опасной для здоровья и жизни людей.
Для того, чтобы развеять этот миф, рассмотрим простую ситуацию. Допустим что для заземления компьютерной техники в каком-либо помещении была выполнена «чистая» система заземления, т.е. все металлические корпуса компьютерной техники, сетевых и прочих устройств присоединены к выделенному контуру заземления не связанному с системой защитного заземления здания (рис.1.).
Рис.1. Применение выделенного контура заземления на компьютерное оборудование очень опасно
Рисунок иллюстрирует путь тока при коротком замыкании (КЗ) между фазным проводником, питающим компьютер и его корпусом, возникающее вследствие пробоя конденсатора в сетевом фильтре на входе в устройство. Обратный путь тока КЗ будет проходить через два контура: общий контур защитного заземления здания (ТП) и «компьютерное заземление». Сопротивление контура заземления трансформаторной подстанции (ТП) обычно составляет не более 4 Ом, сопротивление «чистого» заземления составляет порядка 10 Ом. Поэтому, при питании оборудования напряжением 220 В максимальный ток КЗ протекающий по поврежденной линии составит: Этого тока будет не достаточно для срабатывания автоматического выключателя, установленного на поврежденной линии. Если на линии установлен автоматический выключатель с номинальным током 16 А, то для быстрого отключения тока короткого замыкания должен сработать электромагнитный расцепитель, величина уставки которого находится в пределах от 45 до 100 А и более. Следовательно, при протекании тока величиной 15,7 А устройство защиты просто «не поймет», что протекающий по нему ток является результатом аварийной ситуации в системе электроснабжения и не отключит поврежденную линию. При прикосновении к корпусу такого электрооборудования люди попадают под напряжение, кроме того небольшие по сечению соединительные провода и интерфейсные элементы оборудования будут интенсивно нагреваться. Нагрев происходит из-за разности потенциалов между корпусом и экранами сетевых кабелей, таким образом по ним будет протекать ток, что может привести к выходу их из строя и возгоранию. Потенциал, который будет возникать на корпусе оборудования легко подсчитать следующим образом:
следовательно, при касании человеком корпуса возникнет разность потенциалов равная 157В и через человека (сопротивление которого, в среднем, равно 1 кОм) будет протекать ток: Хотя поражение электрическим током зависит от множества факторов (состояние нервной системы, состояние кожи и т.д.), тем не менее из расчетов очевидно, что при неотпускающем токе 20-30мА /7/, протекающий через тело человека ток в 155мА – смертелен.
В то же время, существуют методы выполнения заземления, которые соответствуют всем нормам, являются безопасными и уменьшают разности потенциалов между корпусами электронного оборудования и близко расположенными заземленными объектами, а также обеспечивают стабильную работу оборудования. Главная идея заключается в том, что все заземляемые части оборудования, нулевые защитные проводники, металлические трубопроводы коммуникаций, металлические части каркаса здания, металлические части централизованных систем вентиляции и кондиционирования, заземляющие устройства системы молниезащиты, заземляющие проводники рабочего заземления, металлические оболочки телекоммуникационных и сетевых кабелей должны быть объединены в основную систему уравнивания потенциалов (рис.2.). Для соединения с основной системой уравнивания потенциалов все указанные части должны быть присоединены к главной заземляющей шине /3/.
Рис.2. Безопасная система заземления
Это соглашение минимизирует помехи, возникающие от протекания токов по системе заземления в аварийных режимах, обеспечивая тем самым надежное функционирование оборудования и безопасность людей. В этом случае по поврежденной линии будет протекать существенно больший ток (определяемый сопротивлением петли фаза-нуль), что позволит электромагнитному расцепителю автоматического выключателя быстро отключить поврежденную линию, а ток, протекающий это короткое время по системе заземления, равномерно растечется и не вызовет появления помех благодаря наличию системы уравнивания потенциалов.
Необходимо напомнить, что по системе заземления в нормальном режиме работы не должно протекать никаких токов. Тем не менее, имеются несколько источников вероятного появления помех в системе заземления, это перенапряжения, вызванные прямыми и/или удаленными ударами молнии, а также коммутациями в системе электроснабжения, кроме того могут возникать повреждения в измерительных цепях и цепях релейной защиты и автоматики. Не стоит также недооценивать токи утечки на металлоконструкции и трубопроводы здания. Если компьютер находится в помещении, по стенам, за потолком или под полом которого проходят кабельные линии с токами утечки, вызывающие повышенный уровень магнитного поля, то изображение на мониторе может заметно искажаться («плыть» или «дрожать»). Известны случаи, когда картинка покрывается цветными пятнами различных оттенков, а иногда изображение полностью или частично пропадает на несколько секунд, и появляется вновь. Естественно, работать за таким монитором невозможно и вредно. Протекание токов по системе РЕ здания, а значит и по защитным экранам интерфейсных и сетевых кабелей компьютеров может вызывать сбои и «зависания» компьютерных сетей и невозможность нормальной работы другого офисного и электронного оборудования. Подобные проблемы возникают из-за изменения потенциала в системе защитного заземления, которая в свою очередь является системой опорного потенциала для компьютерной техники.
Кроме того, перенапряжения, вызванные прямыми и/или удаленными ударами молний, а также коммутациями в системе электроснабжения, могут инициировать помехи протекающие по системе опорного потенциала здания, эти помехи имеют разную частоту (от единиц Гц до десятков МГц) и в связи с этим в системе заземления, выполненной по одноточечному принципу (рис.2) могут протекать значительные помехи, вызванные резонансными явлениями в защитных проводниках.
Для подавления высокочастотных помех основную систему защитного заземления можно дополнять установкой рабочего (функционального) заземления. Однако необходимо помнить, что функциональное заземление служит только для обеспечения работы оборудования, но ни в коем случае не для обеспечения электробезопасности. Поэтому использовать рабочее заземление в качестве единственной системы заземления категорически запрещается.
Список использованных источников:
Теория вопроса. Что говорит ПУЭ?
А ПУЭ говорит вот что:
1.1.17. Для обозначения обязательности выполнения требований ПУЭ применяются слова «должен», «следует», «необходимо» и производные от них. Слова «как правило» означают, что данное требование является преобладающим, а отступление от него должно быть обосновано.
1.7.100. В электроустановках с глухозаземленной нейтралью нейтраль генератора или трансформатора трехфазного переменного тока, средняя точка источника постоянного тока, один из выводов источника однофазного тока должны быть присоединены к заземлителю при помощи заземляющего проводника.
1.7.157. … При питании от автономного передвижного источника его нейтраль, как правило, должна быть изолирована.
1.7.158. При питании стационарных электроприемников от автономных передвижных источников питания режим нейтрали источника питания и меры защиты должны соответствовать режиму нейтрали и мерам защиты, принятым для стационарных электроприемников.
Электрогенератор — автономный передвижной источник. Для него, согласно пункту 1.7.157, преобладающим правилом является применение системы заземления с изолированной нейтралью, т.е. системы IT. Если данный вариант не подходит (не работают газовые котлы, отсутствует отдельный контур заземления на объекте и т.д.), то п. 1.7.158 позволяет нам использовать другие системы заземления.
Можно найти еще множество правил и норм, которые, возможно, будут друг другу противоречить. Но пока ограничимся данными пунктами ПУЭ. Если кто из вас, уважаемые читатели, дочитал до этого места и с чем-то не согласен — пишите, обсудим.
Для себя сделаем вывод — ПУЭ позволяет нам использовать различные системы заземления для электрогенераторов. Наш выбор зависит от решаемых задач при соблюдении Правил.
Контур
Уже от электрощитка вы ведёте лучи контура заземления к каждой специальной розетке с предусмотренным контактом «земля», куда включаются мощные потребители, наподобие бойлеров, стиральных машин, кондиционеров, электрокаминов и т. д. и т. п.
Вы сделали в своём доме заземление? Что ж, могу вас поздравить: теперь мать-земля реально будет оберегать вас и ваших близких. Еще и от ударов электрическим током.
Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад, если вы найдете на моем сайте еще что-нибудь полезное. Всего доброго.
Теория без практики мертва
Вооружимся этим правилом и проверим:
Устанавливаем бензиновый электрогенератор Ergomax GA 7400 E, организуем контур заземления, собираем испытательный стенд, подключаем систему регистрации параметров электрической сети, берем поверенный прибор для измерения сопротивления изоляции и напряжения переменного тока — мегаомметр ПСИ-2500.
Фото испытательного стенда.
Соединение «звезда»
Рассмотрим схему соединения обмоток генератора «звездой». В ней концы трех обмоток соединяют в один узел, а начала служат для подключения нагрузок.
Готовые работы на аналогичную тему
Получить выполненную работу или консультацию специалиста по вашему учебному проекту Узнать стоимость
Задай вопрос специалистам и получи ответ уже через 15 минут!
В нулевом проводе сила тока ($I$) равна сумме линейных токов:
Измерение напряжений при системе IT на электрогенераторе
Для начала используем для электрогенератора систему заземления с изолированной нейтралью — IT. Т.е. заземляем только сам генератор, а выводы — нет. Заводим генератор, прогреваем. Значение напряжения тока между выводами генератора при системе IT — 223В:
Дальше у нас по плану определить наличие напряжения на каждом выводе по отдельности.
Значение напряжения переменного тока между первым выводом электрогенератора и контуром заземления при системе IT на генераторе — 69В: Значение напряжения переменного тока между вторым выводом электрогенератора и контуром заземления при системе IT на генераторе — 36В:
Проверим потенциал каждого из выводов электрогенератора относительно нулевого проводника электросети “от столба”.
Устранение перекоса фаз
Устранение перекоса фаз (выравнивание) возможно только в качестве профилактики. Можно поставить реле фаз контроля, стабилизатор напряжения. На предприятии, где стоит дизель генератор, можно установить стабилизатор, и это снизит риски. Более того – можно будет подключать к сети оборудование, которое требует до 50% от фазной мощности.
Стабилизаторы обеспечивают безопасность пользователям, исключают повреждение потребителей, уменьшают расходы энергии. Оборудование допускает 100% перекос и устраняет явление перекоса фаз вне зависимости от причины его появления. Иногда проблема заключается в неисправности распределительной сети. В этом случае расчет нагрузок не поможет, а стабилизатор будет очень эффективен.
Другое решение проблемы – использование генераторов с запасом. Если, работая на три фазы, обмотки трудятся только на треть, то при подключении с перекосом проблем не будет. Нужно следить за параметрами нагрузки каждой фазы.
Генераторы Янмар серии YEG оснащены системой защиты от перегрузок. Система срабатывает также, если возникает перегрузка по отдельной фазе. Подача тока прекращается, производится перезапуск. Автоматика предотвращает поломки комплектующих в технике.
Измерение напряжений при системе TN-C на электрогенераторе
Заземляем один из выводов бензинового электрогенератора согласно пункту 1.7.100 ПУЭ. К этому же контуру заземления присоединяем корпус генератора. Получается система с глухозаземленной нейтралью — TN-C. Заводим, греем, поехали.
Значение напряжения тока между выводами генератора при системе TN-C — 224В:
Мы видим, что заземление одного из выводов электрогенератора на значение напряжения между выводами не повлияло. При этом мы получили реальный нулевой проводник, в чем убедимся далее.
Значение напряжения переменного тока между первым выводом электрогенератора и контуром заземления при системе TN-C на генераторе — 224В: Значение напряжения переменного тока между вторым (заземленным) выводом электрогенератора и контуром заземления при системе IT на генераторе — 0В:
Чего и следовало ожидать.
Проверим потенциал каждого из выводов электрогенератора относительно нулевого проводника электросети “от столба”.
Значение напряжения переменного тока между первым выводом электрогенератора и N-проводником электросети при системе TN-C на генераторе — 224В: Значение напряжения переменного тока между вторым (заземленным) выводом электрогенератора и N-проводником электросети при системе TN-C на генераторе — 0В:
Мы видим, что нулевой проводник от электрогенератора действительно не имеет потенциала относительно ноля электросети.
Посмотрим напряжения относительно фазы электросети.
Значение напряжения переменного тока между первым выводом электрогенератора и L-проводником электросети при системе TN-C на генераторе — 305В: Значение напряжения переменного тока между вторым (заземленным) выводом электрогенератора и L-проводником электросети при системе TN-C на генераторе — 212В:
Вот так вот. 305 вольт! Будем знать. Поскольку второй вывод генератора по сути является нулевым, здесь ожидаемое значение, близкое к 220В.
Опять же, измерим напряжение между выводами электрогенератора и контуром заземления, который не связан с используемым нами контуром медными проводниками.
Значение напряжения переменного тока между первым выводом электрогенератора и вторым контуром заземления при системе TN-C на генераторе — 224В: Значение напряжения переменного тока между вторым (заземленным) выводом электрогенератора и вторым контуром заземления при системе TN-C на генераторе — 0В:
Все понятно картина складывается.
Глушим электрогенератор, думаем что бы такое еще сделать, анализируем результаты.
Надувательская электробезопасность
Я почему-то ни в одном техпаспорте ни к одному электроагрегату после обозначения класса безопасности не видел уточнения о том, что этот самый класс электробезопасности стиральной машины (как и любого другого бытового электроагрегата) функционален и вообще имеет смысл только в том случае, когда к усилиям производителя техники по защите вашей жены от удара током, подключаются не меньшие, а, возможно, даже и большие усилия лично с вашей стороны.
Речь о монтаже системы и контура заземления в частном доме.
От специальной розетки на три гнезда (где третье – контакт заземления), до закапывания в огороде странной стальной конструкции, похожей на памятник марсианину, работы скульптора-авангардиста.
Включая прокладывание третьего кабеля в системе электропроводки вашего дома, дополнительно к нулю и фазе – кабеля заземления.
Если всего этого нет – на класс электробезопасности стиралки можете даже и не смотреть, она прекрасно так же может шарахнуть током, как китайская электродрель.
В общем, и здесь, как обычно «спасение утопающих – дело рук самих утопающих». Не хотите, чтобы вас и ваших домашних регулярно било током – создавайте заземление.
Выводы
Ответим на вопросы, которые задали сами себе в начале.
Вопрос. Насколько правильно и безопасно пускать по нулевому проводу напряжение от электрогенератора во внутридомовую сеть? Ответ. Напряжение при системе IT на электрогенераторе действительно пойдет по нулевому проводу во внутридомовую сеть. Безопасным такое решение будет при наличии отдельного контура заземления, изолированного от нулевого проводника. При этом присоединять металлические корпуса электроприборов к нулевому проводнику категорически нельзя. Только к контуру заземления.
Вопрос. А можно ли пускать сие напряжение во внешнюю сеть по нулевому проводу? Ответ. Нельзя. По причинам, указанным выше. Куда пойдет этот ток? Может отключение линии произвели для ремонтных работ, а мы туда напряжение от генератора подадим… Т.е. при монтаже системы резервного электроснабжения с системой заземления IT необходимо предусмотреть, чтобы выводы электрогенератора были изолированы от проводников электросети “от столба”.
Как подключить генератор к дому?
Все наши жилые дома подключены по третьей категории электроснабжения. А это значит, что перерывы в электроснабжении могут быть до суток. В наше время уже трудно представить дом без электричества, где постоянно работает холодильник, морозильник.
В некоторых районах перебои с электроснабжением бывают очень редко, а где-то поломки в электросетях могут случаться достаточно часто в виду тех или иных причин. В таких районах, дачных поселках бесперебойное питание является очень актуальным.
Рассмотрим схему подключения бензинового генератора к дому.
Тема для написания статьи возникла у меня совершенно случайно. На выходных помогал брату заливать фундамент для дома. Сейчас, наверное, на каждой стройке можно увидеть электрическую бетономешалку и бензогенератор, если на участке еще не подведено электричество. Обычная бетономешалка, которая работает от обычного бензинового однофазного генератора. Купить такой генератор можно за 300-500$. Вот там и возникла у меня идея подключения этого бензогенератора к дому, в случае пропадания электричества.
Бензиновые генераторы такого класса запускаются от ручного стартера, поэтому подключение к электрической схеме дома будет достаточно простым.
Ниже показана, какая у вас должна быть схема щитка учетно-распределительного.
Подключение генератора к дому через розетку
Питающий кабель должен приходить на выключатель нагрузки, затем установлен счетчик электрической энергии, защитный автоматический выключатель (либо дифференциальный автомат на 300мА). Количество групповых автоматов зависит, насколько у вас большой дом. Я условно показал 2. А вот QF3 это как раз та линия, к которой мы будет подключать наш бензогенератор.
Подключение бензинового генератора к дому нам, можно сказать, обойдется бесплатно, поскольку линию с установленной розеткой мы будем использовать не только для генератора.
Розетку нужно установить на наружной стене дома где-нибудь под козырьком дома. Розетка должна быть со степенью защиты не менее IP44. Если у вас дом с гаражом, то розетку для бензогенератора лучше поставить у выхода с гаража, поскольку генератор будет храниться в гараже и не потребуется далеко нести в случае пропадания электричества.
Вернемся к схеме. На этой третьей группе я установил автомат на 16А, кабель должен быть медный сечением не менее 3×1,5мм2. Этого достаточно, чтобы в доме работал холодильник, освещение и другие бытовые приборы. Разумеется, в такое время лучше одновременно не использовать мощные электроприборы, такие как стиральная машина, чайник, электрическая плита. Если у вас генератор более 3кВт, то автомат, кабель и розетку можно установить на порядок выше. Если автомат более 16А, то и розетка должна выдерживать соответствующий ток.
Рядом с домом у вас должен быть забит контур повторного заземления. От этого контура нужно провести проводник до места установленной розетки. Это необходимо для заземления бензогенератора. На корпусе у него есть специальный зажим для заземления. Для присоединения генератора к сети дома нужно изготовить шнур с двумя вилками, а для заземления бензогенератора можно сделать перемычку из провода ПВ3.
Теперь все готово, чтобы применить наш бензогенератор в качестве резервного источника питания в случае аварии в электросетях.
При исчезновении электричества первым делом нужно пойти и отключить автоматический выключатель, который у вас установлен после счетчика.
ОТКЮЧЕНИЕ ВВОДНОГО АВТОМАТИЧЕСКОГО ВЫКЛЮЧАТЕЛЯ ОБЯЗАТЕЛЬНО.
Затем идем в гараж, выносим бензогенератор на улицу, заземляем его, заправляем бензином, включаем в розетку. После всего этого можно завести генератор.
Не в ком случае не включайте бензиновый генератор в закрытом помещении.
После восстановления подачи электроэнергии, необходимо проделать все операции в обратном порядке, т.е. вводной автомат включаем после того как отключили генератор.
Вот так можно подключить бензиновый генератор к дому, а установленная для него розетка может использоваться для переносного инструмента в гараже, подключения газонокосилки и других электроприборов, которые используем на улице.
Разумеется, при желании можно сделать схему, чтобы генератор включался автоматически, но для этого нужен специальный генератор, который должен быть выполнен во всепогодном исполнении либо установлен в специальном помещении с отводом выхлопных газов.
Предлагаю еще вашему вниманию более правильную схему с заземлением. Двухполюсный переключатель позволит перейти с системы заземления TN-C-S на систему заземления IT.
Схема подключения генератора к частному дому с заземлением
На схеме показан однополюсный автоматический выключатель, но можно взять и 1Р+N и разрывать фазный и нулевой проводники.
Если имеются лишние деньги, то можно поставить и блок АВР
Советую почитать:
Подключение бактерицидного облучателя
Схема подключения расцепителя минимального и максимального напряжения
Схема управления насосом автоматического наполнения емкости
Типовые схемы подключения УКРМ
Заземление выхода генератора
Всем доброго дня. купил себе вчера инверторный фубаг 2000. 1квт дрель работает без проблем. 2квт флифмашинка при пуске загорается лампа перегрузки. но это не суть. проверил на фазировку. оба горят как фаза (горит индикатор)..
для отопительного котла и более понятной фазы сделал следующее-
а теперь вопрос — правильно ли я сделал? кто подскажет. а то терзают сомнения) спасибо
По хорошему бы в два разных штыря корпус генератора и конец одной из его обмоток /т.е. полюс в розетке../ в противном случае лучше корпус вообще ни к чему не подключать. И в землю бы не штырь, а конструкцию мало-мальскую..
Да. и это. Что перегрузка загорается на пусковые токи шлифмашинки — очень даже суть.
генератор куплен для котла. шлифмашинки гене не светят))) так что все норма меня волнует фаза для котла
1000 процентной гарантии что это наиболее правильное решение у меня нет, но так многие делают и это работает.
так как в данном случае разделить заземление корпуса и одного из проводов. от вилки вывести от провода в землю?
для заземления думаю купить медный пруток
Про работу котла от генератора вопрос
Если генератора уже подключен, то вот тот выход генератора что соединен с нулем в доме — и будет нулем генератора, и должен быть заземлен. Ноль от сети не отрубай и все будет работать Как это сделать не буду говорить а то опять мордой об забор будут водить, надоело Что из них фаза а что ноль?
При подключении осциллографа на розетку гены- красивая синусоида В. Все верно Но если сказать, что утром солнце не встанет, зачем просыпаться?
Кстати у инвертора точно также по вольт на плечо Это не об этом? Я не разбирался в таких тонкосятях Я просто не отключаю ноль сетевой На твоей совести будет еще один «трупппп» ;.
Я буду последним кто забудет фразу которую я с помощью ПашкиРу разместил в шапке конфы. Все высказывания и мнения участников носят исключительно рекомендательный характер, и не являются руководством к действию Кстати, генератор заземлять нужно обязательно..
Откуда куда и на что?
Электрофорум для электриков и домашних мастеров. Добро пожаловать, Электрон. Пожалуйста, войдите или зарегистрируйтесь.
Сутки в памятном генератор молотил не переставая У меня не заземленный, включаю, правда раз в 2 года ттт. Вот давай напряги память Когда в году я купил инвертор и не смог запустить котел, тут мне никто ничего сказать не смог Когда знаешь ответ, то найти правильные мысли в И-нете можно. Но вот найти ответ на не однозначный вопрос, не зная ответа, практически не возможно Проблема лишь в том, что ты не понимаешь почему оно заработало судя по твоим словам.
В котле стоит датчик ионизации пламени Но я действительно не знаю зачем этому датчику нужен ноль сети Кратко: Датчик ионизации — стержень, стоящая в пламени. Если человек разумно подходит к строительству, то в мае у него был отлит фундамент, в июне возведены стены, в июле начался монтаж кровли, а затем планируется отделка фасада. Поэтому сейчас будет актуально разобраться в фасадных штукатурках. Фасадные штукатурки выполняют очень важную для стен защитную функцию.