Основные сведения о машинах и механизмах
Основные понятия технической механики
Основные сведения о механизмах и машинах
Механизмом называется совокупность связанных между собой тел, которые могут совершать определенные движения. Механизм служит для передачи или преобразования движения.
Машина — это механизм или сочетание механизмов, осуществляющих определенные целесообразные движения для преобразования энергии (машины-двигатели), производства работы (машины-орудия) или для сбора, передачи, хранения, обработки и использования информации (кибернетические и другие машины).
Хотя всякая машина состоит из одного или нескольких механизмов, не всякий механизм является машиной. Так, например, часы — это не машина, а довольно сложный механизм.
Работа механизма или машины обязательно сопровождается тем или иным движением ее органов. Это основной фактор, отличающий механизмы и машины от сооружений — мостов, эстакад и т. д.
Простейшей частью механизма является звено. Звено — это одно тело или сочетание тел с неизменным положением относительно друг друга.
Два звена, соединенные между собой и допускающие относительное движение, называются кинематической парой. Кинематические пары бывают низшими и высшими. Звенья низших пар соприкасаются по поверхностям (поступательные, вращательные и винтовые пары); звенья высших пар соприкасаются по линиям и точкам (зубчатые пары, подшипники качения). Кинематические пары могут быть плоскими и пространственными.
Совокупность кинематических пар называется кинематической цепью.
Механизм получается из кинематической цепи путем закрепления одного из звеньев. Это неподвижное звено называется станиной или стойкой.
Звено, которому извне сообщается определенное движение, называется ведущим. Остальные подвижные звенья называются ведомыми.
Различные звенья и кинематические пары механизмов имеют свои условные обозначения по ГОСТу, которые применяются в литературе, схемах и т. п.
Наука, изучающая механизмы и машины и применяющая к ним законы теоретической механики, называется теорией механизмов и машин.
Лекция №2. Общие сведения о машинах и механизмах
Машина — это совокупность механизмов, выполняющих определенную работу или преобразующих один вид энергии в другой. В зависимости от назначения различают машины — двигатели и рабочие машины.
В зависимости от назначения рабочие машины могут выполнять определенную работу по изменению формы, размеров, свойств и состояния объектов труда. Объектами труда в предприятиях общественного питания служат пищевые продукты, подвергающиеся различной технологической обработке — очистке, измельчению, взбиванию, перемешиванию, формированию и т.д.
По степени автоматизации и механизации выполняемых технологических процессов различают машины неавтоматические, полуавтоматические, автоматические. В машинах неавтоматического действия загрузка, выгрузка, контроль и вспомогательные технологические операции выполняются поваром, закрепленным за данной машиной. В машинах полуавтоматического действия основные технологические операции выполняются машиной, ручные остаются только транспортные, контрольные и некоторые вспомогательные процессы. В машинах автоматического действия вес технологические и вспомогательные процессы выполняются машиной. Они используются в составе поточных и поточно-механизированных линий и полностью заменяют труд человека.
Основные требования предъявляемые к машинам и механизмам.
Машины и механизмы должны удовлетворять требованиям прогрессивной технологии обработки сырья и продуктов.
Для этого необходимо, чтобы конструктивные, кинематические и гидравлические параметры оборудования обеспечивали оптимальные режимы технологических процессов и высокие технико-экономические показатели. Такими параметрами являются: удельная энергоемкость, удельная металлоемкость, удельная материалоемкость, удельный расход воды, занимаемая оборудованием площадь и др., т. е. параметры машины, отнесенные к единице производительности.
Конструкция должна обеспечивать высокую надежность и долговечность машины, быструю замену изношенных и неисправных рабочих органов, инструментов, узлов и деталей. Конструкция должна быть технологичной, т. е. в процессе изготовления и эксплуатации машины затрачиваются минимальные средства. Необходимо, чтобы машины и механизмы отвечали требованиям техники безопасности и производственной санитарии (машины заземляют; рабочие органы, инструменты и элементы передачи закрывают кожухами, крышками, предохранительными кольцами, облицовками или заключают в корпуса; в конструкцию многих машин включают различные блокировочные устройства и элементы, обеспечивающие отключение их при поднятых ограждениях).
Выпускаемые машины все в большей степени должны отвечать требованиям производственной эстетики. Правильные пропорции машин, простота их формы, удобное расположение элементов управления, загрузочных и разгрузочных устройств, приятная окраска способствуют повышению производительности труда и созданию безопасных условий работы.
При создании современных машин и механизмов стремятся к стандартизации и унификации узлов, деталей и комплектующих изделий, что позволяет сократить номенклатуру запасных частей и облегчить выполнение ремонтных работ.
Рабочие органы и инструменты машин и механизмов должны обладать высокой износоустойчивостью. Быстровращающиеся узлы и детали машин должны быть уравновешены, чтобы исключить износ подшипников, валов и корпусных деталей.
Слесарь-ремонтник
Основные сведения о механизмах и машинах. Понятие о механизмах. Кинематические схемы. Понятие о машине, классификация машин по характеру рабочего процесса. Определение КПД некоторых типов механизмов
1 страница
Механизм – часть машины, в которой рабочий процесс реализуется путем выполнения определенных механических движений.
Являясь носителем этих движений, механизм представляет собой совокупность (систему) взаимосвязанных тел, предназначенных для преобразования движения одного или нескольких тел в требуемые движения других тел.
Механизм осуществляет: передачу энергии (движения), как правило, с преобразованием сил и характеристик закона движения от источника, например двигателя, к одному или нескольким рабочим органам машины; преобразование и регулирование механического движения; заданную компоновку машины.
Если в преобразовании движения участвуют как твердые, так и жидкие или газообразные тела, то механизм называется соответственно гидравлическим или пневматическим.
Существенно, что однотипные механизмы используются в конструкциях самых разнообразных по назначению машин.
Современное производство немыслимо без всевозможных высокоэффективных машин – устройств для преобразования энергии и (или) движения, накопления и переработки информации.
Благодаря их использованию повышается производительность труда, облегчается физический и умственный труд человека и т. д.
По назначению машины условно подразделяют на три группы.
1. Энергетические машины, в которых какой-либо вид энергии (электрической, тепловой и т.п.) преобразуется в механическую работу и наоборот. К этой группе относятся как машины-двигатели (электродвигатели, тепловые и ядерные двигатели и т.п.), так и машины-преобразователи (компрессоры, электрические генераторы и др.).
2. Технологические или рабочие машины, предназначенные для выполнения производственных процессов по изменению формы, свойств и положения объектов труда (машины отрасли народного хозяйства, например металлорежущие и ткацкие станки, полиграфические, швейные, горнодобывающие, транспортные и другие машины, роботы и т.п.).
3. Информационные (контрольно-управляющие) машины, в которых происходит преобразование вводимой информации для контроля, регулирования и управления технологическими процессами (вычислительные, кибернетические машины и др.).
В зависимости от способа управления различают машины ручного управления (на встроенном рабочем месте или дистанционно), полуавтоматического и автоматического действия.
Машина, в которой преобразование энергии (материалов и информации) происходит без непосредственного участия человека, называется машиной-автоматом. Совокупность машин-автоматов, соединенных между собой автоматическими транспортными устройствами и предназначенных для выполнения определенного технологического процесса, образует автоматическую линию.
Основными характеристиками машин являются: назначение и область применения, способ управления, мощность и производительность, коэффициент полезного действия, масса, габаритные размеры, стоимость и др.
Производительность машин измеряют в единицах, которые наиболее пригодны для обрабатываемых материалов.
Коэффициент полезного действия является характеристикой экономичности машин. Он показывает долю полезно реализуемой энергии и эффективность ее использования.
Массу и габаритные размеры необходимо знать для транспортирования машин и размещения их на производственных площадях. Основные характеристики машин указывают в их техническом паспорте.
К машинам и механизмам предъявляют следующие основные требования: работоспособности; надежности; технологичности; экономичности; эргономичности.
Работоспособностью называют состояние машин и механизмов, при котором они способны нормально выполнять заданные функции с параметрами, установленными нормативно-технической документацией (техническими условиями, стандартами и т.п.)
Надежностью изделия называют свойство выполнять заданные функции, сохраняя во времени значения установленных эксплуатационных показателей в заданных пределах, соответствующих заданным режимам в условиях использования, технического обслуживания, ремонта, хранения и транспортирования.
Надежность является общей проблемой для всех отраслей машиностроения и приборостроения. Любая современная машина или прибор, какими бы высокими характеристиками они ни обладали, будут обесценены при ненадежной работе.
Надежность изделия зависит от необходимой наработки, которая может исчисляться в часах работы станка, в километрах пробега автомобиля, гектарах обработанной земли для сельскохозяйственной машины и т.д. Надежность зависит от всех этапов создания и эксплуатации изделий. Ошибки проектирования, погрешности в производстве, упаковке, транспортировке и эксплуатации изделия сказываются на его надежности.
Технологичными называют машины, требующие минимальных затрат средств, времени и труда в производстве, эксплуатации и ремонте.
Машины должны быть конструктивно гибкими, т.е. приспособленными к гибкому автоматизированному производству (ГАП). Для этого их конструкции должны характеризоваться также высокой преемственностью и высоким уровнем стандартизации и унификации конструкционных элементов, материалов, расчетов и технологий, возможностью «сращивания» систем автоматизированного проектирования и производства и др.
При оценке экономичности учитывают затраты на проектирование, изготовление, эксплуатацию и ремонт. Экономичность машин достигается за счет снижения материалоемкости, энергоемкости и трудоемкости производства, за счет максимального коэффициента полезного действия в эксплуатации при высокой надежности; высокой специализацией производства и т.д.
Совершенство и красота внешних форм машины и удобство обслуживания существенно влияют на отношение к ней со стороны обслуживающего персонала.
Красивый внешний вид деталям, узлам и машине придают форма и внешняя отделка конструкции (декоративная полировка, окраска, нанесение гальванических покрытий и оксидных пленок и т.д.). Существенное значение имеет и влияние машин на окружающую среду.
Чтобы разобраться в устройстве механизма, следует обратить внимание не на отдельно взятые звенья, а на характер их соединения. Подвижное соединение двух звеньев в механизмах называется кинематической парой. При этом следует интересоваться лишь кинематическими возможностями пар (то есть возможностью звеньев совершать определенные движения) и не принимать во внимание конструктивные особенности.
Кинематическая схема – это схема, на которой показана последовательность передачи движения от двигателя через передаточный механизм к рабочим органам машины (например, шпинделю станка, режущему инструменту, ведущим колёсам автомобиля и др.) и их взаимосвязь.
На кинематических схемах изображают только те элементы ма шины или механ изма, которые принимают участие в передаче движения (зубчатые колёса, ходовые винты, валы, шкивы, муфты и др.) без соблюдения размеров и пропорций.
× 100 %,
где А – полезная работа, а Q – затраченная энергия.
В силу закона сохранения энергии КПД всегда меньше единицы или равен ей, то есть невозможно получить полезной работы больше, чем затрачено энергии.
Для механизма КПД равен отношению реального выигрыша к идеальному. КПД рычага может быть очень высоким – до 90% и даже больше. В то же время КПД полиспаста из-за значительного трения и массы движущихся частей обычно не превышает 50%. КПД домкрата может составлять лишь 25% из-за большой площади контакта между винтом и его корпусом, а следовательно, большого трения. Это приблизительно такой же КПД, как у автомобильного двигателя.
КПД можно в известных пределах повысить, уменьшив трение за счет смазки и применения подшипников качения.
Основные понятия деталей машин
1. Основные понятия и определения.
2. Классификация деталей машин.
3. Основные требования к деталям машин.
4. Модели нагружения деталей машин.
5. Основные критерии работоспособности деталей машин.
1. Основные понятия и определения
Детали машин – раздел по теории расчета и конструированию деталей и узлов машин общемашиностроительного применения. Детали общего назначения применяют в машиностроении в очень больших количествах, поэтому любое усовершенствование расчета и конструкций этих деталей, позволяющее уменьшить затраты материала, снизить стоимость производства, повысить долговечность, приносит большой экономический эффект.
Под деталью понимают элемент конструкции (изделие), изготовленный из однородною материала (одной марки) без применения сборочных операций.
Совокупность деталей, соединенных посредством сборочных операций и предназначенных для совместной работы или выполняющих определенные функции, называют сборочной единицей или узлом.
Механизмом называют систему твердых тел, предназначенную для преобразования движения одного или нескольких тел в требуемые движения других тел (редуктор, коробка передач и др.).
Машиной называют механизм или устройство, выполняющие механические движения и служащие для преобразования энергии, материалов или информации с целью облегчения или замены физического или умственного груда человека и повышения ею производительности.
Структурно любая машина состоит из шести блоков, приведенных на рис. 1.1.
Рис. 1.1 Схема машины
2. Классификация деталей машин
Все детали машин можно разделить на две большие группы: общего назначения и специального назначения.
В курсе «Детали машин» рассматриваются только вопросы расчета и конструирования деталей машин общего назначения. Вопросы, связанные с конструированием деталей специального назначения, изучаются в специальных курсах.
По функциональному признаку детали машин общего назначения подразделяются на следующие группы:
1. Детали соединения.
1.1. Разъемные соединения: резьбовые, клиновые, штифтовые, шпоночные, шлицевые (зубчатые), профильные, клемовые.
1.2. Неразъемные соединения: свариваемые, клепаные, паяные, склеиваемые.
1.3. Промежуточные соединения: цилиндрические с натягом, соединения стяжными кольцами и планками.
2.1. Управляющие передачи: двигательные передачи, передачи исполнительным механизмом.
2.2. По физическому эффекту.
2.2.4.2. Трением: фрикционные, ременные.
3. Детали, обслуживающие вращательное движение.
3.2. Подшипники: качения, скольжения.
4. Шарнирно-рычажные механизмы: направляющие кулисы и ползуны, кривошипно-ползунный механизм, кривошипы, шатуны, коромысла, кулачки, эксцентрики, ролики.
5. Упругие элементы: пружины, рессоры.
6. Уравновешивающие равномерность движения: маховики, маятники, бабы, шаботы, грузы.
7. Детали, обеспечивающие смазывание и защиту от загрязнения: манжеты, уплотнения и т. д.
8. Детали и механизмы управления: рукоятки, тяги.
3. Основные требования к деталям машин
Вновь разрабатываемая машина (механизм) должна иметь более высокие технико-экономические показатели по сравнению с существующим (базовым) образцом: более высокую скорость и производительность при меньших затратах на производство и эксплуатацию, меньшую массу, металлоемкость и энергоемкость.
Машина (деталь) должна быть работоспособной. Работоспособностью называют состояние деталей, при котором они способны выполнять заданные функции с параметрами, установленными нормативно-технической документацией, и сохранением прочности, жесткости, неизменяемости формы и размеров, износостойкости, виброустойчивости и теплостойкости.
Машина (деталь) должна обеспечивать заданную надежность. Под надежностью понимают свойство изделия выполнять заданные функции, сохраняя свои эксплуатационные показатели в заданных пределах в течение определенного промежутка времени или требуемой наработки.
Деталь должна быть технологичной, т. е. изготовленной из недефицитных материалов, и требовать минимальных затрат средств, времени и труда в производстве, эксплуатации и ремонте.
Машина (деталь) должна отвечать требованиям безопасности для персонала, находящихся рядом людей, машин, зданий и сооружений.
Кроме того, необходимо учитывать требования экономичности, экологической безопасности и эстетичности.
4. Модели нагружения деталей машин
Для расчета и проектирования деталей и узлов машин необходимо знать нагрузки, которые могут воздействовать на деталь в процессе ее эксплуатации. При проектировании обычно оперируют расчетными схемами деталей, а все нагрузки, воздействующие на детали, рассматривают как режимы нагружений. Для более точного учета нагрузок в расчетах деталей машин используют общепринятые типичные модели нагружения.
По характеру нагружения внешние силы разделяются на поверхностные и объемные. Поверхностные силы действуют на поверхность деталей и являются результатом взаимодействия деталей, объемные силы — силы тяжести и инерции — приложены к каждой частице детали.
Силы вызывают в деталях деформации и напряжения. По характеру изменения во времени напряжения подразделяют на статические и циклические. Статическими называют нагрузки (напряжения), медленно изменяющиеся во времени. Циклические нагрузки характеризуются параметром цикла и непрерывно изменяются с течением времени. Параметрами цикла нагружения являются амплитуда напряжений, среднее, максимальное и минимальное напряжение.
Машины и их основные элементы
1. Машины и их основные элементы
2. Плоская система сил
Список использованной литературы
1. Машины и их основные элементы
Основные сведения о машинах и механизмах
В строительстве применяются различные машины и механизмы, предназначенные для повышения производительности труда и облегчения труда людей. В состав механизмов входит множество тел, часть из которых совершает движения. Закономерность движения определяется связями этих тел друг с другом. Так, подвижная губка слесарных тисков будет двигаться вполне определенно-поступательно при вращении рукоятки.
Механизм — это система тел, связанных между собой и предназначенных для преобразования движения одного или нескольких тел в движения других тел. Тела, образующие механизм, называются звеньями.
Звенья в свою очередь могут состоять из нескольких отдельных тел, жестко соединенных между собой. Такие тела называют деталями.
В каждом механизме обязательно есть неподвижное звено, которое называют стойкой или станиной. Звено, движение которому сообщается извне, называют ведущим, а звено, которому движение передается,– ведомым. В слесарных тисках, например, корпус с неподвижной губкой образует неподвижное звено, ведущим звеном является рукоятка, а ведомым — подвижная губка.
Подвижное соединение двух звеньев называют кинематической парой. В зависимости от характера движения пары бывают вращательные и.поступательные. Если механизм имеет более двух звеньев, то его можно разбить на несколько пар. Систему звеньев, образующих между собой кинематические пары, называют кинематической цепью.
На чертежах для указания пути передачи движения от ведущего звена к ведомому, а также для возможности изучения движения зиеньев механизма вместо конструктивного изображения кинематических пар и звеньев механизма вводят их условные изображения в виде схем. Схема, на которой в условных обозначениях показаны звенья и пары, называется кинематической схемой механизма.
Па рис. 1.1, а в качестве примера представлена конструктивная схема механизма двигателя внутреннего сгорания, а на рис. 1.1, б — его кинематическая схема. Механизм имеет четыре звена: поршень У, неподвижный цилиндр 2, шатун 3 и кривошип 4, образующих кинематическую цепь, состоящую из одной поступательной пары: стойка (неподвижный цилиндр) — ползун, и трех вращательах пар — ползун — шатун, шатун — кривошип, кршюшип — гойка.
Механизмы чаще всего являются составными частями машин. Машина — это устройство, выполняющее механические движе-ия для преобразования энергии или для выполнения полезной аботы.
По характеру выполняемых работ машины можно разделить на ве основные группы: энергетические и рабочие.
Рис. 1.1. Схема механизма двигателя внутреннего сгорания
Энергетические машины служат для преобразования любого вида энергии в механическую работу и наоборот. Например, двигатель внутреннего сгорания превращает химическую энергию топлива в механическую энергию вращающегося вала, а в электрогенераторе механическая энергия превращается в электрическую.
Рабочие машины делятся на технологические и транспортные. Технологические машины преобразуют материал. К ним, например, относятся машины для земляных работ, камнедробилки и многие другие.
Транспортные машины — автомобили, насосы, транспортеры и другие — используются для перемещения материалов, не изменяя их форму и свойства.
Рабочая машина приводится в движение энергетической машиной. Движение от нее передается рабочему органу, который непосредственно воздействует на обрабатываемый материал. При этом рабочий орган может соединяться непосредственно с двигателем или через передаточный механизм.
Механической передачей называется механизм, служащий для преобразования скорости движения и момента двигателя при передаче его рабочему органу машины.
Различают передачи, осуществляемые силами трения,– ременные, фрикционные, и передачи, основанные на использовании зацепления,– цепные, зубчатые и червячные.
В каждой передаче различают два вала: ведущий и ведомый; Ведущий вал приводит во вращение ведомый. Основными характеристиками передачи являются мощность на ведущем Л/ и на ведомом N2 валах, быстроходность, определяемая частотой вращения ведущего щ и ведомого п2 валов.
Передачу характеризуют также передаточное число i и коэффициент полезного действия (КПД) г.
Для определения вращающего момента (Мв), действующего на валах, пользуются формулой: Мв = 9550 N/n, Н-м, где N— в кВт, п — в об/мин.
В строительных машинах чаще всего применяются передачи при i>l. При передаче мощности с ведущего вала на ведомый они уменьшают частоту вращения и одновременно увеличивают вращающий момент.
Ременная передача состоит из двух шкивов, жестко закрепленных на валах, и бесконечного ремня, надетого на шкивы с начальным натяжением. Движение с ведущего шкива на ведомый передается за счет сил трения, возникающих между шкивами и ремнем.
В строительных машинах наиболее распространены клиноре-менные передачи. Клиновые ремни изготавливают хлопчатобумажными прорезиненными в виде замкнутой бесконечной ленты семи различных типов: О, А, Б, В, Г, Д, Е, которые отличаются размерами поперечного сечения.
Передаточное число ременной передачи определяется по приближенной формуле
Ременные передачи применяются преимущественно для передачи вращения между параллельными валами, расположенными на значительном расстоянии.
Фрикционная передача представляет собой два катка, сестко посаженных на валах и прижатых друг к другу некоторой илой. Передача движения осуществляется силами трения по по-1ерхности прижатия катков.
Зубчатая передача состоит из пары зубчатых колес, кестко соединенных с валами. Зубья одного колеса входят во впа-шны другого. При вращении ведущего колеса зубья его перекаты-»даются по зубьям ведомого, воздействуют на него и приводят во вращение.
Рис. 1.4. Схема зубчатой передачи:
Передаточное число зубчатой передачи
где 21( z2 — число зубьев соответственно ведущего и ведомого колес.
Зубчатые передачи характеризуются шагом t и модулем m = tjn.
Модуль зубчатого зацепления m измеряется в миллиметрах. Значения модулей стандартизованы. Все размеры зубчатого колеса принято выражать в долях модуля.
Зубчатые передачи наиболее распространены, так как обеспечивают постоянное передаточное число, высокий КПД, возможность передачи больших усилий, имеют малые габариты. К недостаткам передач относятся сложность изготовления и небольшое межосевое расстояние.
Червячную передачу образуют червяк и червячное колесо. Червяк — это винт с трапецеидальной резьбой. Он бывает однозаходный и многозаходный. Червячное колесо — цилиндрическое колесо, снабженное косыми зубьями, имеющими впадину на середине обода. Движение в червячной передаче осуществляется от червяка к колесу.
Передаточное число червячной передачи определяется как отношение числа зубьев колеса zK к числу заходов червяка z4:
Главные достоинства червячной передачи — возможность полу-ения больших передаточных чисел (до 200), плавность в работе бесшумность. Червячные передачи с небольшим числом заходов червяка обладают свойством самоторможения, т. е. вращение от червячного колеса не может передаваться червяку. Это свойство часто используют в подъемных механизмах небольшой грузоподъемности, например в червячных талях.
Они служат для понижения частоты вращения и увеличения вращающих моментов. В зависимости от числа зубчатых передач редукторы бывают одно-, двух- и трехступенчатые. Передаточное число редуктора равно произведению передаточных чисел каждой пары. В зависимости от формы колес они бывают цилиндрические, конические, коническо-цилиндрические, червячные.
Цепные передачи состоят из ведущей и ведомой звездочек, охватываемых бесконечной цепью. Они применяются для передачи момента вращения между параллельными валами, находящимися на значительном расстоянии. В отличие от ременных цепные передачи могут передавать значительно большую мощность.
Передаточное число цепной передачи определяется как отношение числа зубьев ведомой звездочки к числу зубьев ведущей звездочки. Звездочки цепных передач по конструкции напоминают зубчатые колеса, но имеют другой профиль зубцов. Цепи бывают втулочные, роликовые и зубчатые. Для нормальной работы передачи цепи должны иметь предварительное натяжение. В процессе эксплуатации они требуют периодической смазки.
2. Плоская система сил
Частный случай общей поставки задачи.
Пусть все действующие силы лежат в одной плоскости – например, листа. Выберем за центр приведения точку О – в этой же плоскости. Получим результирующую силу и результирующую пару в этой же плоскости, то есть
Распределение напряжений при кручении
Деформация кручения возникает, как было отмечено ранее, при действии на брус нагрузок, создающих противоположные пары сил в плоскостях, перпендикулярных продольной оси бруса. Так как при этом прямолинейные образующие круглого бруса принимают вид винтовых линий (это легко наблюдать на резиновом стержне), то можно предположить, что при кручении каждое поперечное сечение по отношению к соседнему поворачивается на некоторый угол. Можно также представить, что брус сложен из множества тончайших дисков; при повороте каждого из них на стыке с соседним происходят перемещения точек в плоскостях, перпендикулярных оси бруса. Вывод таков: при кручении бруса в каждом сечении происходит деформация сдвига и возникают касательные напряжения. Однако, если при сдвиге все точки деформируемого сечения прямолинейно смещались на равные расстояния, то при кручении материал в разных точках, находящихся на разных расстояниях от оси бруса, испытывает разные деформации. Чем дальше точка удалена от оси, тем больше перемещение по дуге. Но так как по закону Гука напряжения прямо пропорциональны относительной деформации, то очевидно, что и напряжения в различных точках одного и того же сечения будут различны и прямо пропорциональны расстоянию точки от центра сечения, называемого полюсом. В точке сечения, совпадающей с полюсом, напряжение будет равно нулю, а наибольшие напряжения тmax возникают в наиболее удаленных от полюса точках, расположенных на поверхности бруса. Таким образом, первое различие деформаций кручения и сдвига заключается в различных законах распределения напряжений по сечению. Второе различие состоит в том, что использование метода сечений при сдвиге позволяет выявить равнодействующую внутренних сил (поперечную силу Q), а при кручении тот же метод приводит к обнаружению равнодействующей пары сил, создающей внутренний крутящий момент Т. Оба различия деформаций необходимо иметь в виду при определении действительных напряжений при кручении. Вывод расчетной формулы для определения действительных напряжений в опасных точках сечения скручиваемого бруса (тmах) достаточно сложен и требует большого числа математических преобразований, но основывается он на известных положениях. Их последовательность, соответствующая порядку действий при математических преобразованиях, такова. В любом сечении скручиваемого бруса должен действовать внутренний крутящий момент сил упругости, равный внешнему вращающему моменту и возникающий следующим образом: в каждой точке деформируемого сечения действует касательное напряжение, по закону Гука прямо пропорциональное относительной деформации; если предположить, что в окрестностях точки, т. е. на очень маленькой площадке, это напряжение остается неизменным, то это равносильно тому, что в сечении действуют элементарные касательные внутренние силы, каждая из которых создает относительно оси бруса (полюса сечения) элементарный внутренний момент: сумма этих элементарных моментов и является внутренним крутящим моментом. Соответствующие приведенным рассуждениям математические преобразования (при условии, что брус имел круглое поперечное сечение диаметром d) приводят к формуле тmax = T/(п * d^3 / 16) Выражение (пd^3)/16 называют полярным моментом сопротивления сечения кручению и обозначают Wp (размерность — м3, см3 или мм3). Для практических расчетов можно принять, что пd^3/16
Расчеты на прочность
Типовой деталью, испытывающей деформацию кручения, является вал. При проектном расчете его на прочность надо по предварительно выявленному крутящему моменту и допускаемому напряжению определить необходимый диаметр вала. Исходной является зависимость, в которой, как обычно, в качестве максимальных действительных напряжений используются допускаемые напряжения. Так как для валов многих машин бывает известен не внешний момент, а передаваемая мощность Р (Вт) и угловая скорость w (1/с) или частота вращения n (об/мин или об/с) вала, то прежде всего определяют внешний вращающий момент. Если числовая величина n дана в об/мин, то w = пn/30, если в об/с, то w = 2пn. При проверочном расчете, как и в случаях других деформаций, определяют действительные напряжения и сравнивают их с допускаемыми. Прочность будет обеспечена, если соблюдается условие тк = T/(0,2d^3)