Цементированная броня что это
Крупповская броня
Содержание
Предпосылки появления изобретения
Существует мнение, что первенство в изобретении хромоникелевой брони, не принадлежит именно фирме Крупп. По некоторым данным, хромоникелевую броню впервые запустила в производство французская фирма «Сен-Шамон» ( фр. Saint-Chamond ) в 1891-1892 годах. Другие исследователи считают, что первыми хром и марганец в производстве броневой стали применили французские фирмы «Терренуар» ( фр. Terrenoire ) и «Фирминьи» ( фр. Firminy ).
Впервые применять сталь легированную хромом для производства брони рекомендовал француз Я. Хольтцер. На Всемирной выставке 1878 года впервые обнародовалась информация, что хромистая сталь превосходит все другие. Даже односторонне закалённая нецементированная броня Круппа по снарядостойкости превосходила Гарвеевскую броню на 13-26%. А цементированная, полностью закалённая, хромоникелевая броня Круппа в 1900 году превосходила гарвеевскую никелевую на 16%. По факту, хромоникелевая броня Круппа толщиной 254 мм по снарядостойкости была эквивалентна 584 мм сварочной пудлинговой брони или 457 мм брони «Шнейдер-Крезо».
Особенности процесса получения Крупповской брони
Углерод является важнейшим укрепляющим элементом стали, из-за чего его содержание стараются сделать как можно выше. Однако повышенное содержание углерода усложняет производство, вызывает разрывы при ковке, сложнее становится создание волокнистой структуры, плита становится хрупкой, склонной к растрескиванию и откалыванию при баллистических испытаниях. Добавление никеля увеличивает вязкость стали и позволяет при соответствующей обработке получать волокнистую структуру, а хром дополнительно повышает твердость, не увеличивая при этом хрупкости. Хром также делает сталь особенно чувствительной к термообработке, что облегчает финишную закалку.
Сначала для производства Крупповской брони использовался технологический процесс, принципиально аналогичный производству брони Харви, однако если в производстве последней использовалась никелевая сталь, то в процессе по Круппу была применена твердая хромистая сталь с содержанием хрома в 1%. Кроме того, если в гарвеевском процессе сталь углеродилась длительным (обычно в течение нескольких недель) нагреванием в присутствии древесного угля, Крупповская броня цементировалась путем обдува поверхности разогретой стали газом, содержащим углерод в связанном виде. За счет этого было достигнуто значительное сокращение времени, затраченного на химико-термическую обработку, и, соответственно, обеспечивалось существенное ускорение производства брони, что составляло огромное преимущество этого способа.
Примерно тогда же у Круппа была разработана технология углубления цементированного слоя с одной стороны плиты. Для этого плита покрывалась глиной, причем цементированная сторона оставалась открытой, а затем открытая сторона подвергалась сильному и быстрому нагреву. Так как температура падает от поверхности в глубину плиты, поверхность оказывается более нагретой, чем задняя сторона плиты, позволяет осуществлять так называемую нисходящую закалку поверхности брызгами воды. Сталь, нагретая выше определенной (критической) температуры, становится очень твердой после быстрого охлаждения водой, тогда как сталь, температура которой ниже указанной границы, практически не меняет своих свойств при закалке.
Сталь нагревается таким образом, чтобы уровень критической температуры не проникал глубже 30-40% её толщины. Когда это условие достигалась, плиту быстро вытаскивали из печи, устанавливали в камере закалки и подавали мощные струи воды сначала на нагретую поверхность, а затем, через определенный момент времени, на обе поверхности одновременно (двойное опрыскивание). Такое двустороннее орошение нужно было для предотвращения деформации плиты из-за неравномерного охлаждения.
Следует отметить, что метод укрепления, основанный на нисходящем нагревании не обязательно предполагает изменение содержания углерода в стали. Другими словами, в этом способе укрепления лицевая сторона становится сверхтвердой из-за высокой температуры в момент закаливания, а глубина упрочнённого слоя может регулироваться изменением режима нагрева и может быть больше глубины цементации, при необходимости.
Процесс укрепления лицевой поверхности был, как правило, процессом окончательной обработки плиты, который применялся после процесса термообработки. Он улучшал зернистость материала и создавал волокна, которые увеличивали прочность и пластичность стали.
Использование и усовершенствование брони
Крупповская цементированная броня
Состав и свойства
KCA имела характеристики предварительной брони, но отличалась большей эластичностью тыльной части листа, что снижало растрескивание брони при попадании в нее снаряда.
В последующие 15 лет былb внедрены улучшения в технологию производства, и следующие варианты Крупповской брони примерно на 10% превосходили по прочности первые ее образцы.
Производство Крупповские цементируемой брони
Процесс производства следующий:
Нецементированая Крупповская броня
Как уже отмечалось, бронированная плита может закаляться без предварительной цементации. Следует отметить, что цементированная лицевая сторона в большей степени склонна к разрывам и растрескиванию при ковке и нарушении формы, чем остальная масса плиты, что делает изготовление тонких плит сложнее, чем толстых. Эти обстоятельства подтолкнули «Бетлехем Стил» ( англ. Bethlehem Steel Company ) к производству Крупповской брони без цементации. Позже компания «Мидвейл Стил» ( англ. Midvale Steel Company ) использовала эту же технологию. Такая броня обычно называется Крупповской нецементированой ( англ. Krupp non-cemented, KNC ). Структура брони существенно отличается от структуры Крупповской цементируемой брони (KCA). Например, отсутствующим является суперцементированый слой, а закалка сама по себе обычно дает более высокую твердость и глубину.
Боевое применение
Во время Цусимского боя броненосец получил 10 попаданий 305-мм и 22 попадания 152-мм снарядами, но на его боевых качествах эти попадания не сказались.
Примечания
См. также
Литература и источники информации
Галерея изображений
Результаты тестов бронепробития
Результаты тестов бронепробития
Тесты пробития брони 75-мм снарядом
Баллистические испытания 3-дюймовой брони
Баллистические испытания 9-дюймовой брони
Баллистические испытания 11,8-дюймовой брони
О стойкости германской корабельной брони эпохи Первой мировой войны
Кратко напомню, что данный коэффициент является одной из переменных формулы бронепробития де Марра. А более подробно о нем рассказано в предыдущих статьях.
Но перед тем, как начать разговор о германской броне, необходимо сказать пару слов вот о чём.
О критике методики определения стойкости русской брони
Как уже говорилось ранее, я строю данный цикл статей в формате диалога с уважаемыми читателями. И всегда внимательно изучаю комментарии к моим статьям. Должен отметить, что пока я увидел только одно возражение моей оценке стойкости русской брони. И заключается оно вот в чем.
Так, например, в результате одного из попаданий 356-мм снаряда в 270 мм броню на испытаниях 1920 года
Поэтому лично я ничего удивительного не вижу в том, что два наших «чемодана» калибром 305-мм, попав в 69 см и в метре от ближайших к ним мест попаданий предыдущих снарядов, показали пониженную стойкость брони («К» меньше или равен 1862).
Тем не менее, один из моих читателей заявил, что «на диаметрах», это все же не «в радиусе». Следовательно, оба 305-мм снаряда попали отнюдь не в поврежденный слой брони. И, раз уж снаряды попали в бронеплиту в места, где наблюдатели не отмечали наличия повреждений, то в таких местах броня должна была показать свойственную ей стойкость, то есть «К» = 2005.
А раз этого не произошло, значит, настоящая прочность российской брони – «К» не более 1862.
Я не могу согласиться с таким подходом. И вот почему.
При попадании каждого снаряда бронеплита испытывала очень сильное физическое воздействие. Так, например, при попадании 356-мм фугасного снаряда с ВВ (взорвался на броне, выбив пробку), плита получила изменения геометрических размеров: ее погнуло, причем стрелка прогиба в районе пробоины достигла 4,5 дюйма, а нижний и верхний края бронеплиты поднялись на 5 и 12 мм соответственно. При этом наблюдателями не отмечались повреждения вокруг места попадания, но, несмотря на это, плиту всё же погнуло.
Могли ли подобные воздействия не отразиться на общей прочности брони?
Можно ли говорить о том, что за пределами видимых повреждений по типу
броня полностью сохраняла свои защитные свойства?
Как по мне – ни в каком случае нельзя.
Не будем забывать, что броня Круппа, благодаря особенной процедуре закалки (цементации), была, по сути, двухслойной. Верхний слой составляла более прочная, но при этом и более хрупкая броня. А за ней уже шел менее прочный, но более вязкий слой броневой стали.
При попаданиях броня вполне могла расслаиваться («цементированный слой отскочил на диаметрах 74*86 см»). И будет совершенно логично предположить, что этот слой получал повреждения, микротрещины. Также и вне радиуса видимых повреждений.
Иными словами, если в радиусе 30 см от пробоины, сделанной снарядом, замечено повреждение брони, это отнюдь не значит, что за пределами этих 30 см броня осталась неизменной. Физическое воздействие снаряда, даже не снаряженного ВВ, могло привести к частичному отслоению цементированного слоя, микротрещинам (и т.д.) внутри брони. И они, конечно, уменьшали прочность плиты, ослабляя ее.
Разумеется, ослабление это наверняка снижалось с удалением от места попадания. Но в том, что броня в некоторой степени (примерно на 7,1 %) утратила свои защитные свойства на расстоянии 70–100 см от места попадания снаряда – на мой взгляд, ничего удивительного нет.
Под обстрелом – традиционное немецкое качество
К моему глубокому сожалению, данных о реальных обстрелах германских бронеплит сравнительно немного.
А те, которые есть – крайне малоинформативны. По причине того, что во время этих обстрелов никто не стремился определять предельную бронестойкость германской брони.
Собственно говоря, имеется информация о двух таких обстрелах.
Сведения об одном из них приводятся в книге Т. Эверса «Военное кораблестроение».
Кроме этого, имеются также сведения об обстреле трофейного германского линкора «Баден» британскими 381-мм снарядами «гринбой».
Полный перечень выстрелов приведен в книге уважаемого С. Виноградова «Супердредноуты второго рейха «Байерн» и «Баден»». Но, к сожалению, он содержит в себе ряд неточностей.
Конечно, можно вспомнить о знаменитом Ютландском сражении, в котором германские корабли получили множество попаданий 305-мм, 343-мм и 381-мм снарядами англичан. Но, как это ни печально, каких-то выводов на основе боевых повреждений германских кораблей сделать решительно невозможно.
Во-первых, англичане сами признавали, что качество их бронебойных снарядов, использовавшихся при Доггер-Банке и в Ютландском сражении, было весьма и весьма невысоко. Отчего они в дальнейшем в спешном порядке создавали новый тип бронебойных снарядов (программа «Гринбой»).
Кроме того, есть и еще один аспект, крайне затрудняющий оценку стойкости брони по ее повреждениям в бою.
Обычно максимум, который может быть известен достоверно – это калибр снаряда и толщина брони, в которую он попал. Хотя уже тут возможны ошибки. Так как историки могут иной раз перепутать калибры снарядов.
Так, например, германская 305-мм/50 пушка «Дерфлингера» на дистанции в 80 кабельтов вполне могла пробить 254 мм бронеплиту с «К» = 2 000 – но лишь в случае, если эта бронеплита окажется в идеальной позиции. Так, что угол отклонения от нормали определится лишь углом падения снаряда (13,68 град.).
В то же время разница в положении кораблей иной раз бывает крайне существенна – например, в сражении при Доггер-Банке, когда британские линейные крейсера нагоняли германские, находясь в параллельной кильватерной колонне, сильно отстающей от немецкого строя. Здесь германские снаряды попадали в британские бронепояса под очень острым углом.
Так что не приходится удивляться тому, что даже относительно слабая 229 мм броня
подобные попадания вполне могла выдержать.
Обстрел «Бадена»
Целью испытаний была проверка качества британских снарядов. А параметры обстрела были подобраны таким образом, чтобы соответствовать дистанции результативного огневого боя, под которой англичане после Первой мировой войны понимали 75–80 кабельтов.
Соответственно, заряд орудий «Террора» подбирался таким образом, чтобы скорость снаряда на броне составляла 472 м/сек. Британцы полагали, что это соответствует расстоянию в 77,5 кабельтов.
Это была совершенно правильная методология для проверки эффективности британских снарядов. Потому что по итогам этих испытаний англичане на практике увидели результаты обстрела бронебойными, полубронебойными и фугасными 381-мм снарядами различных частей германского тяжелого корабля на характерной для того времени дистанции боя.
Соответственно, какой-то шанс удержать британские снаряды имела только 350 мм германская вертикальная броня. А всё, что имело меньшую толщину, пробивалось априори.
Всего в ходе обстрела 2 февраля 1921 года по вертикальной 350 мм броне линкора «Баден» было произведено 4 выстрела вперемешку со стрельбой по другим частям корабля.
Ниже я буду указывать порядковый номер выстрела.
Отмечу, что расчеты «К» производились мной с поправкой на неэквивалентное увеличение стойкости брони с ростом толщины бронелиста свыше 300 мм.
Мы располагаем двумя случаями, когда английские снаряды встретились с германской броней в условиях, близких к предельному бронепробитию: речь, разумеется, о выстрелах № 9 и № 14. В первом случае «К» оказался равным или выше 2107, во втором – равным или ниже 2041. Данные, очевидно, противоречат друг другу. Так что мне остается лишь констатировать наличие двух версий.
Если при выстреле № 9 взрыватель снаряда сработал штатно, то стойкость германской брони следует определять где-то в промежутке от 2041 до 2107;
Если при выстреле № 9 взрыватель снаряда сработал преждевременно, то «К» брони линкора «Баден» составляет 2041 или ниже.
Проанализируем теперь данные, приведенные Т. Эверсом.
Пробные стрельбы германского флота
Тут для анализа почти и вовсе ничего нет.
Честно сказать, я совершенно не понимаю, зачем немцы стреляли по 200–300 мм броне со скоростью в момент попадания от 580 до 700 м/сек.
Возможно, конечно, что германских моряков интересовали углы рикошета – по той же 200 мм выстрел делался с отклонением от нормали 30 град. Но даже и в этом случае можно было смело рассчитывать на пробой бронеплиты 388 мм толщиной…
С учетом понижения стойкости брони с ростом ее толщины, фактически подвергнутая обстрелу 450 мм бронеплита будет соответствовать расчетной, толщиной 401 мм.
Мне остается только сделать вывод, что при самых позитивных допущениях для германской брони, ее «К» составлял 2041 или ниже.
Другими словами, германская корабельная цементированная броня Круппа была аж на 1,8 % прочнее, чем ее российский аналог, имевший коэффициент «К» (согласно приведенным нами ранее расчетам) равный 2005. Но с учетом не слишком обширной статистики, скорее, следует говорить о том, что российская и германская броня обладали примерно равной стойкостью к воздействию снарядов.
Есть и еще один немаловажный аспект.
Сопоставляя защитные свойства брони, мы сравниваем российскую броню довоенного выпуска с броней последних германских сверхдредноутов «Байерн» и «Баден». А она, по некоторым данным, была улучшена относительно той, что использовалась при строительстве немецких линкоров предыдущих серий и, конечно же, линейных крейсеров.
Следовательно, нельзя исключать даже и того, что германские бронеплиты, каковыми защищались «Кениги», «Мольтке» и «Дерфлингеры», имели несколько меньшую стойкость, нежели те, что были установлены на линкорах типа «Севастополь».
Что могло бы опровергнуть эти соображения?
Можно предположить, что английские и германские снаряды были лучше и прочнее, чем российские 305-мм 470,9 кг «чемоданы».
Но, вообще говоря, практически все источники утверждают, что русские снаряды имели очень высокое качество.
Понятно, что чем меньше заряд ВВ, тем прочнее стенки снаряда. И тонкостенным германский фугас назвать никак нельзя. Тем не менее, он не смог осилить броню толщиной всего в 45 % собственного калибра.
У нас же фугасные снаряды меньшего калибра поражали 225 мм броню, взрываясь в процессе ее преодоления. Конечно, один-единственный пример никак не может претендовать на роль правила. Но (из имеющегося статистического материала) у нас нет оснований считать германские снаряды превосходящими по качеству русские – с поправкой на калибры, разумеется.
Безусловно, все вышесказанное не есть твердое доказательство.
В прочности русской брони мы можем быть уверены более-менее твердо. Но вот для оценки германской статистического материала все же маловато.
Однако есть еще одно, косвенное подтверждение того, что германская цементированная броня эпохи Первой мировой войны, если и имела коэффициент «К» свыше 2000, то очень ненамного.
Дело в том, что Т. Эверс в своем «Военном кораблестроении» упоминает уже о новом поколении крупповской цементированной брони, которая в том числе использовалась при создании линкора «Бисмарк».
Ниже приводится копия из книги The Battleship Bismarck: Anatomy of the Ship (Jack Brower).
Как видим, составы брони идентичны.
Что из этого следует?
Дело в том, что Т. Эверс в своей книге предлагает для расчетов бронепробиваемости использовать формулу де Марра (которую использую и я) с коэффициентом «К» (в его книге, это коэффициент «С»), равным 1900 для нецементированных и 2337 – для цементированных плит.
Вполне очевидно, что данный коэффициент должен использоваться именно для новейших типов брони.
Таким образом, мы видим, что прирост стойкости знаменитой германской брони в сравнении с русской и германской броней эпохи Первой мировой (если считать их равнозначными) составляет всего-то 16,6 %.
Если же предположить, что германская броня «Кенига» и «Дерфлингера» все же превосходила русскую хотя бы процентов на 10, то получается, что следующее поколение германской брони, созданное спустя 20 лет, оказалось всего только на 5–6 % лучше предыдущей.
Безусловно, подобное допущение выглядит крайне сомнительным.
Исходя из вышесказанного, я полагаю, будет правильным предположить примерное равенство качества русской и германской брони эпохи Первой мировой войны.
Во всех последующих расчетах я буду рассчитывать бронепробиваемость и для русских, и для германских орудий с коэффициентом «К» величиной в 2005.