в течении 25 банковских дней 777 852 акции
Арифметическая прогрессия и сумма ее членов
теория по математике 📈 последовательности
Арифметической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему, сложенному с одним и тем же числом.
Другими словами, последовательность (аn) – арифметическая прогрессия, если для любого натурального числа n выполняется условие аn+1=аn+d, где d – некоторое число. Из данного равенства следует, что можно найти это число d, если вычесть из последующего члена предыдущий, то есть d = аn+1–аn. Число d называют разностью арифметической прогрессии.
Арифметической прогрессией, например, является ряд чисел 3; 8; 13; 18…. так как разница между числами равна 5, мы видим, что каждое последующее на 5 больше предыдущего.
Если известен первый член арифметической прогрессии a1 и разность d, то можно вычислить любой член арифметической прогрессии:
Этот ряд можно продолжать до бесконечности, поэтому надо запомнить, что n-ый член арифметической прогрессии можем получить быстрее, если к первому члену прогрессии добавить (n−1) разностей, то есть:
Формула n-ого члена арифметической прогрессии
где n – порядковый номер члена арифметической прогрессии, a1 – первый член прогрессии, d – разность арифметической прогрессии
Формулу используют, чтобы вычислить заданный член арифметической прогрессии (например, пятнадцатый, двухсотый и т.д.), если известны первый член последовательности и ее разность. Рассмотрим на примерах применение данной формулы.
Пример №1. Найти а20 арифметической прогрессии (аn), если а1=14, d=5. Составляем формулу для а20 и подставляем в нее данные: а20= a1 + d(20−1)=14+5(20−1)=109. Таким образом, мы вычислили, что на 20-ом месте в данной арифметической прогрессии стоит число 109.
Найти а7 арифметической прогрессии (аn), если а1=−8, d=−3. Аналогично работаем, составляя формулу и подставляя в нее данные значения (обращаем внимание на знаки чисел, чтобы не допустить ошибок): а7= a1 + d(7−1)= −8−3(7−1)= −26.
Дана арифметическая прогрессия 10; 12; 14;…… Найти а12. Здесь для нахождения а12 надо сначала найти разность d: d=12−10=2, то есть из последующего вычтем предыдущее. Можно было 14−12, порядок здесь не имеет значения, главное берем два соседних члена прогрессии. Теперь можем составлять формулу и находить а12: а12= a1 + d(12−1)=10+2(12−1)=32.
Любая арифметическая прогрессия может быть задана формулой вида an=kn+b, где k и b некоторые числа. Верно и обратное утверждение: если последовательность чисел задана формулой вида an=kn+b, где k и b некоторые числа, то она является арифметической.
Так, например, формула an=5n+1 задает арифметическую прогрессию, в которой разность d равна 1; по данной формуле можно найти любой член последовательности, например, найдем 20-ый член, подставляя в формулу число 20: a20=5 × 20+1=101.
Свойство арифметической прогрессии
Каждый член арифметической прогрессии, начиная со второго, равен среднему арифметическому предыдущего и последующего членов. Формула:
Другими словами, используя данное свойство, мы можем найти член арифметической прогрессии, стоящий между двумя известными членами, без использования разности d. Рассмотрим это на примерах.
Пример №2. Найти а10 арифметической прогрессии (аn), если а9=24; а11=38. Здесь используем свойство, так как видим, что у а10 известны соседние члены. Значит, а10=(а9+а11):2=(24+38):2=31. Таким образом, десятый член равен 31.
Дана арифметическая прогрессия …..23; х; 35. Найти х. Применяем свойство для нахождения х: х=(23+35):2=29. Для наглядности запишем, что ряд чисел выглядит так: …23; 29; 35.
Формулы суммы n первых членов арифметической прогрессии
В данной формуле мы видим, что для нахождения суммы нужны первый и последний член прогрессии. Но встречаются случаи, когда аn не известно, но известна разность. Тогда для нахождения суммы применяют вторую формулу.
Формула суммы членов арифметической прогрессии с первым членом и разностью
Рассмотрим на примерах применение данных формул.
Пример №3. Найти сумму первых пятидесяти членов арифметической прогрессии (аn), если а1=11, а50=39.
Для решения лучше использовать первую формулу, так как здесь есть первый и последний члены: а1=11, а50=39. Поэтому составляем формулу, подставляем в нее данные значения и вычисляем:
Найти сумму первых десяти членов арифметической последовательности 3; 18; …. В данном случае задание можно выполнить двумя способами, как по первой формуле, так и по второй, а затем выяснить, какой способ короче, а значит, рациональнее.
Способ №1 (по первой формуле): надо найти разность d, затем десятый член прогрессии, а затем сумму:
Способ №2 (по второй формуле): надо знать разность d, d=18-3=15. Теперь подставим значения во вторую формулу и сосчитаем результат:
Результаты в обоих случаях получились у нас одинаковые. А если сравнить два способа, то видно, что второй способ быстрее, тем более что в большинстве случаев разность арифметической прогрессии можно вычислить устно.
Таким образом, выбор формулы для нахождения суммы n первых членов арифметической прогрессии зависит от заданного условия.
-6-8=-14 через 1 минуту
-14-8=-22 через 2 минуты
-22-8=-30 через 3 минуты
-30-8=-38 через 4 минуты
-38-8=-46 через 5 минут
-46-8=-54 через 6 минут
Вторым способом является решение по формуле n-ого члена арифметической прогрессии, которая есть также и в справочном материале, т.е. an=a1+d(n – 1). В данном случае a1=-6; d=-8, n=7 (так как ЧЕРЕЗ 6 минут). Подставим значения в формулу: a7=-61-8(7 – 1). Вычислим: a6=-6-8 ∙ 5=-6-48=-54.
pазбирался: Даниил Романович | обсудить разбор | оценить
Содержание данной задачи говорит нам о том, что здесь есть арифметическая прогрессия, так как число жителей города возрастало на одну и ту же величину.
2008 г – 38100 человек
2016 г. – 43620 человек
Итак, можно вычислить прирост населения с 2008 по 2016 ежегодно:
(43620 – 38100):(2016 – 2008)= 5520:8=690 человек.
Теперь можно найти, сколько человек проживало в конце 2012 года.
38100+690(2016 – 2012)= 40860 человек
pазбирался: Даниил Романович | обсудить разбор | оценить
pазбирался: Даниил Романович | обсудить разбор | оценить
В содержании задачи есть фраза, что акции дорожали ежедневно на одну и ту же сумму, следовательно, имеем арифметическую прогрессию. Итак, определяем, что известно: в 7-й день акция стоила 777 рублей, это а7=777; в 12-й день – 852 рубля, это а12=852. Известно, что акции дорожали 25 дней, а найти надо стоимость акции в последний, т.е. в 25-ый день, значит, будем искать а25.
1 способ:
В данной арифметической прогрессии нет первого члена, не идет речь про сумму, поэтому воспользуемся формулой аn=ak+d(n – k), где n>k. Числа n и k – это порядковые номера. Составим формулу для наших данных и подставим в неё значения: а12=а7+d(12-7); 852=777+d(12 – 7). Упростим выражение и найдем разность d, 852–777= d(12 – 7); 75= d∙5; отсюда d=75:5=15. Итак, мы нашли, что акции ежедневно дорожали на 15 рублей.
Теперь, зная число d, мы можем найти а25 через, например, а12, используя всё ту же формулу. Получаем: а25=а12+d(25-12); а25=852+15(25-12)=852+15∙13= 852+195=1047. Значит, 1047 рублей стоила акция в последний день.
2 способ:
pазбирался: Даниил Романович | обсудить разбор | оценить
В условии задачи встречаются слова, что норма увеличивалась на одно и то же число. И это значит, что мы имеем арифметическую прогрессию, в которой а1=6, так как в первый день перевезли 6 тонн. Далее, известно, что вся работа была выполнена за 11 дней, значит число n=11. Так как масса всего щебня равна 176, то это число является суммой нашей прогрессии, т.е. S11=176. Требуется найти, сколько тонн было перевезено в последний день, а он – 11, значит, найти надо а11.
pазбирался: Даниил Романович | обсудить разбор | оценить
Из содержания данной задачи видно, что время процедуры увеличивалось с каждым днем на одно и то же количество времени – на 15 минут, следовательно, это арифметическая прогрессия. Так как в первый день курс был 15 минут, то а1=15; так как время ежедневно увеличивалось на 15 минут, то значит разность d=15; зная, что продолжительность процедуры должна достигнуть 1 ч 15 мин, т.е. достигнуть 75 минут (1 час=60 мин, плюс 15 минут), то это число 75 и будет являться n членом арифметической прогрессии. Требуется найти, в какой по счету день продолжительность процедуры достигнет этих 75 минут, т.е. найдем число n.
Теперь берем формулу n члена арифметической прогрессии аn=a1+d(n – 1) и подставляем в неё наши данные: 75=15+15(n – 1); упростим данное выражение: 75-15=15(n – 1); 60=15(n – 1); разделим на 15 обе части: 4=n – 1; найдем отсюда, что n=5. Таким образом, на пятый день продолжительность процедуры достигнет 75 минут.
pазбирался: Даниил Романович | обсудить разбор | оценить
Анализируя содержание задачи, мы видим, что улитка проползала ежедневно на одно и то же расстояние меньше, чем в предыдущий день. А это значит, что имеем арифметическую прогрессию. По условию определяем данные: так как в первый и последний дни она проползла 7,5 м, то имеем, что а1+аn=7,5. Так как расстояние между деревьями равно 60 м, то имеем сумму n первых членов прогрессии, т.е. Sn=60. Так как найти надо количество дней, которое она потратила на весь путь, то искомым числом будет число n.
Зная формулу суммы n первых членов арифметической прогрессии
pазбирался: Даниил Романович | обсудить разбор | оценить
При анализе содержания задачи мы видим, что каждую минуту количество осадка увеличивается на одно и то же число, на 0,2 г. А это значит, что имеем арифметическую прогрессию, в которой первый член равен 0,2, так как по условию в первую минуту образовалось 0,2 г осадка. Разность арифметической прогрессии равна также 0,2, так как каждую минуту на это количество увеличивается количество осадков. Найти нужно седьмой член последовательности.
Итак, имеем а1=0,2; d=0,2. Ищем а7. По определению n-ого члена арифметической прогрессии имеем формулу аn=a1+d(n – 1). Подставим в нее наши данные: а7=a1+d(7 – 1)=0,2+0,2·6=1,4
pазбирался: Даниил Романович | обсудить разбор | оценить
В течении 25 банковских дней 777 852 акции
В понедельник акции компании подорожали на некоторое число процентов, а во вторник подешевели на то же самое число процентов. В результате они стали стоить на 49 % дешевле, чем при открытии торгов в понедельник. На сколько процентов подорожали акции компании в понедельник?
Обозначим первоначальную стоимость акций за 1. Пусть в понедельник акции компании подорожали на — десятичная запись процентов, и их стоимость стала составлять
Во вторник акции подешевели на
и их стоимость стала составлять
В результате они стали стоить на
дешевле, чем при открытии торгов в понедельник, то есть 0,51. Таким образом,
Таким образом, в понедельник акции подорожали на 70%.
Математика В течение 20 банковских дней акции компании дорожали ежедневно на одну и ту же сумму
Задача: в течение 20 банковских дней акции компании дорожали ежедневно на одну и ту же сумму. Сколько стоила акция компании в последний день этого периода, если в 9-й день акция стоила 555 рублей, а в 13-й день — 631 рубль?
Ответ: акция компании в последний день этого периода стоила 764 р.
Похожие задачи
В течение 20 банковских дней акции компании дорожали ежедневно на одну и ту же сумму. Сколько стоила акция компании в последний день этого периода, если в 9-й день акция стоила 999 рублей, а в 13-й день — 1063 рубля?
Вычислим скорость дорожания акции в день:
(1063 – 999):(13-9) = 16 руб/день
Следовательно, в последний 20-й день она стоила:
1063 + (13-20)∙16 = 1175 рублей
В течение 20 банковских дней акции компании дорожали ежедневно на одну и ту же сумму. Сколько стоила акция компании в последний день этого периода, если в 9-й день акция стоила 888 рублей, а в 13-й день – 940 рублей?
Дано: арифметическая прогрессия, а9 = 888, а13 = 940.
1) а9 = а1 + 8d; а13 = а1 + 12d; Ответ: 1031
2) а1 + 12d = 940; а1 + 8d = 888; 4d = 52; d = 52 : 4; d = 13
3) а1 + 8d = а9; а1 = 888 – 8*13; а1 = 888 – 104; а1 = 784
4) а20 = а1 + 19d; а20 = 784 + 19*13; а20 = 784 + 247; а20 = 1031
Поделись этой информацией с помощью кнопок ниже (облегчи учёбу другим ученикам, и будет тебе плюс в карму!)
Задание №14 ОГЭ математика 2021 Часть 1
Задача №1 В течение 20 банковских дней акции компании дорожали ежедневно на одну и ту же сумму. Сколько стоила акция компании в последний день этого периода, если в 9-й день акция стоила 888 рублей, а в 13-й день – 940 рублей?
Задача №1 В течение 20 банковских дней акции компании дорожали ежедневно на одну и ту же сумму. Сколько стоила акция компании в последний день этого периода, если в 9-й день акция стоила 888 рублей, а в 13-й день – 940 рублей? Дано: арифметическая прогрессия, а9 = 888, а13 = 940. Найти: а20. Решение: 1) а9 = а1 + 8d а13 = а1 + 12d Ответ: 1031. 2) а1 + 12d = 940 а1 + 8d = 888 4d = 52 d = 52 : 4 d = 13 3) а1 + 8d = а9 а1 = 888 – 8·13 а1 = 888 – 104 а1 = 784 4) а20 = а1 + 19d а20 = 784 + 19·13 а20 = 784 + 247 а20 = 1031
Задача №2 При проведении химического опыта реагент равномерно охлаждали на 7,5°С в минуту. Найдите температуру реагента ( в градусах Цельсия) спустя 6 минут после начала проведения опыта, если начальная температура составляла – 8,7°С.
Задача №2 При проведении химического опыта реагент равномерно охлаждали на 7,5°С в минуту. Найдите температуру реагента ( в градусах Цельсия) спустя 6 минут после начала проведения опыта, если начальная температура составляла – 8,7°С. Дано: арифметическая прогрессия, а1 = – 8,7, d = – 7,5. Найти: а7. Решение: а7 = а1 + 6d а7 = – 8,7 + 6·(– 7,5) Ответ: – 53,7. а7 = – 8,7 + (– 45) а7 = – 53,7
Задача №3 В амфитеатре 20 рядов. В первом ряду 56 мест, а в каждом следующем – на 2 места меньше, чем в предыдущем. Сколько мест в амфитеатре?–
Задача №3 В амфитеатре 20 рядов. В первом ряду 56 мест, а в каждом следующем – на 2 места меньше, чем в предыдущем. Сколько мест в амфитеатре?– Дано: арифметическая прогрессия, а1 = 56, d = – 2. Найти: S20. Решение: Ответ: 740.
Задача №4 В 11:00 часы сломались и за каждый следующий час отставали на одно и то же количество минут по сравнению с предыдущим часом. В 21:00 того же дня часы отставали на 20 минут. На сколько минут отставали часы спустя 24 часа после того, как они сломались?
Задача №4 В 11:00 часы сломались и за каждый следующий час отставали на одно и то же количество минут по сравнению с предыдущим часом. В 21:00 того же дня часы отставали на 20 минут. На сколько минут отставали часы спустя 24 часа после того, как они сломались? Дано: арифметическая прогрессия, 10d = 20. Найти: 24d. Решение: Ответ: 48.
Задача №5 Курс воздушных ванн начинают с 10 минут в первый день и увеличивают время этой процедуры в каждый следующий день на 5 минут. В какой по счету день продолжительность процедуры достигнет 1 часа 5 минут?
Задача №5 Курс воздушных ванн начинают с 10 минут в первый день и увеличивают время этой процедуры в каждый следующий день на 5 минут. В какой по счету день продолжительность процедуры достигнет 1 часа 5 минут? Дано: арифметическая прогрессия, а1 = 10, d = 5, аn = 65. Найти: n. Решение: Ответ: 12.
Задача №6 Каждое простейшее одноклеточное животное инфузория – туфелька размножается делением на 2 части. Сколько инфузорий было первоначально, если после шестикратного деления их стало 1280?
Задача №7 Врач прописал больному капли по схеме: в первый день 5 капель, а в каждый следующий на 5 капель больше, до тех пор, пока доза не достигнет 40 капель. Такую дозу (40 капель) больной ежедневно принимает 5 дней, а затем уменьшает прием на 5 капель в день до последнего дня, когда больной принимает последние 10 капель. Сколько пузырьков лекарства надо купить на весь курс, если в каждом пузырьке 200 капель?
Задача №7 Врач прописал больному капли по схеме: в первый день 5 капель, а в каждый следующий на 5 капель больше, до тех пор, пока доза не достигнет 40 капель. Такую дозу (40 капель) больной ежедневно принимает 5 дней, а затем уменьшает прием на 5 капель в день до последнего дня, когда больной принимает последние 10 капель. Сколько пузырьков лекарства надо купить на весь курс, если в каждом пузырьке 200 капель? Решение: Ответ: 3.
Задача №8 К концу 2009 года в городе проживало 53 100 человек. Каждый год число жителей города возрастало на одну и ту же величину. В конце 2018 года в городе проживало 60 390 человек. Какова была численность населения этого города к концу 2015 года?
Репетитор по математике
Стоимость занятий
Набор на 2020/2021 учебный год открыт. Предусмотрен дистанционный формат.
Видеокурсы подготовки к ЕГЭ-2021
Решения авторские, то есть мои (автор ютуб-канала mrMathlesson — Виктор Осипов). На видео подробно разобраны все задания.
Теория представлена в виде лекционного курса, для понимания методик, которые используются при решении заданий.
Группа Вконтакте
В группу выкладываются самые свежие решения и разборы задач. Подпишитесь, чтобы быть в курсе и получать помощь от других участников.
Преимущества
Педагогический стаж
Собственная методика
За время работы я накопил огромное количество материала для подготовки к итоговым экзаменам. Ребенку не будет даваться неадаптированная школьная программа. С каждым я разберу поэтапно специфичные примеры, темы, способы решений, необходимые для успешной сдачи ЕГЭ и ОГЭ. При этом это не будет «натаскиванием» на решение конкретных задач, но полноценная структурированная подготовка. Естественно, если таковые найдутся, устраню «пробелы» и в школьной программе.
Гарантированный результат
За время моей работы не было ни одного случая, где не прослеживалась бы четкая тенденция к улучшению знаний у ученика. Ни один откровенно не «завалил» экзамен. Каждый вырос в «понимании» математики в сравнении со своим первоначальным уровнем. Естественно, я не могу гарантировать, что двоечник за полгода подготовится на твердую «пять». Но могу с уверенностью сказать, что я подготовлю ребенка на его максимально возможный уровень за то время, что осталось до экзамена.