Доброе время суток. Я рада, что Вы нашли возможность заглянуть на мою страничку. Данная страница является результатом проектной работы, в рамках которой нами были подготовлены материалы по темам «Сообщающиеся сосуды» и «Давление на больших глубинах». Дополнительно нами из готовлены приборы, позволяющие проводить демонстрационные опыты и фронтальные лабораторные работы.
Надеюсь, что Вам будет интересно.
Давление на дне морей и океанов
Нельзя сказать, что людям надоело жить на суше
или места вдруг стало катастрофически не хватать,
но мысли о переселении в океан манят все сильнее.
Две трети земного шара покрыто водой. Это моря, океаны. Глубина их в отдельных местах настолько велика, что высочайшие горные хребты и отдельные вершины скрылись бы целиком под водой, если бы каким-либо путём удалось погрузить эти горы в морскую пучину.
И решил человек постичь тайны, скрывающиеся под водой.
А для чего? — Чтобы изучать морских животных и морские растения; — Чтобы добывать со дна морей и океанов полезные ископаемые; — Чтобы прокладывать по дну кабели и трубопроводы; — Чтобы производить спасательные работы; — Для подводной охоты; — Ради спорта (дайвинг).
В морской глубине существуют особые условия. Там царствует мрак, так как солнечный свет, постепенно угасая, совершенно исчезает на глубине 180м. Из практики подводных работ установлено, что при спуске на каждые 10,3 м давление увеличивается на 1 атмосферу, соответственно, давление на глубине 10 км в 1000 раз превышает атмосферное. Вот почему при погружении на большие глубины человеку приходится использовать специальное снаряжение.
И сейчас я предлагаю вам познакомиться с различными видами снаряжения, предназначенного для погружения.
Трудность создания конструкции, приспособленной для исследования больших глубин, заставила учёных искать решение вопроса в постройке особой герметической камеры, в которой можно было бы опускать исследователя со всеми приборами на глубину более чем 1000 м. Такая шарообразная кабина, названная учёными «батисферой», рассчитана на большие давления и удерживается с помощью троса. Батисфера не может передвигаться самостоятельно под водой, она может только висеть на одном месте, размотав трос. С глубиной погружения риск опускания в батисфере растёт, т.к. чем глубже уходит в море батисфера, тем сильнее натягивается трос, на котором она опускается, тем больше возрастает её вес. Впервые с её помощью на глубину 923м в 1934 г. опустился профессор Биби. В 1940г. тоже в батисфере на глубину 1360 м опустился инженер Бартан, сотрудник Биби. Эта глубина стала рекордной для спуска батисферы.
В 1948 г. состоялось первое испытание батискафа — автономного аппарата для погружения на большие глубины. Достигнув рассчитанной глубины, батискаф может неподвижно «висеть» в воде, может и передвигаться в горизонтальном направлении при помощи гребного винта вращающегося от электродвигателя. Несмотря на то, что прочность кабины рассчитана на давление морской глубины в 20 км, первые пробы спуска батискафа производились без экипажа. Глубина его опускания была 1380 м. Второй, более усовершенствованный, батискаф «Триест» совершил погружение уже на глубину 3150 м. А в 1954 г. погружение составило 4050 м. В 1960 году Жак с улучшенной моделью батискафа “Триест” из высокопрочной легированной стали, после пятичасового спуска достиг дна на глубине 10910 м в Марианской впадине Тихого океана-самой глубокой впадине Мирового океана.
Кратко рассмотрим, как меняются физические условия в воде морей и океанов в зависимости от глубины. Начнем с давления. В неподвижной жидкости оно растет пропорционально глубине. Понятно, почему: вода несжимаема, и вес столба жидкости растет прямо пропорционально его высоте h. То есть
где Q — плотность воды (ее масса в 1 см 3 или 1 м 3 );
g — ускорение свободного падения.
Кроме того, поскольку вода находится в покое (в ней отсутствуют течения), то точно такое же давление будет во всех направлениях на данной глубине.
Однако на очень больших глубинах начинает сказываться сжимаемость воды: вследствие сжатия ее плотность в нижних слоях больше, чем на поверхности, и поэтому давление растет с глубиной несколько быстрее, чем по линейному закону Qgh. Добавка давления, обусловленная сжатием воды, нарастает пропорционально квадрату глубины h. На наибольшей глубине океана, равной 11 км, эта добавка составляет почти 3% от полного давления в этом месте.
Несмотря на огромное давление, существующее на таких глубинах, и здесь обитают некоторые животные: различные иглокожие, ракообразные, моллюски, черви, а также глубоководные рыбы. Организмы этих животных приспособлены к существованию в условиях большого давления воды, и точно такое же давление создается внутри их тел.
С глубиной изменяется и температура воды в океане. Сначала понижение ее очень значительно, а затем оно замедляется. На глубинах более 3—4 км температура обычно колеблется от +2 до 0°С.
Из других физических свойств воды для обитающих в морях и океанах живых существ особенно важны малая теплопроводность и очень высокая теплоемкость. Благодаря им температурный режим не меняется так резко, как на суше. Это важно как для холоднокровные так и для теплокровных животных. Водным организмам не нужно приспосабливаться к резким переменам температуры окружающей среды.
Медленно нагреваясь, вода океанов так же неспешно отдает тепло в атмосферу. Поэтому самой теплой вода океанов и морей бывает тогда, когда летний жаркий период на суше уже заканчивается. Вода океанов хранит громадные запасы тепла. Отдавая его воздуху, она существенно влияет на климат окружающих территорий. Средняя температура поверхностного слоя воды Мирового океана равна +17,4°С, а приземного слоя воздуха на поверхности всего земного шара только +14>4°С.
В морской глубине царит мрак, потому что солнечный свет, постепенно угасая, полностью исчезает на глубине 180 м. Это объясняется, прежде всего, тем, что часть солнечных лучей отражается от поверхности воды. Чем ниже солнце над горизонтом, тем больший процент лучей отражается от морской поверхности. Поэтому в арктических морях свет проникает на меньшую глубину, чем в экваториальных водах.
В воду, как уже отмечалось, различные част солнечного спектра проникают на разную глубину. Красные и оранжевые лучи быстро поглощаются первыми метрами воды, зеленые исчезают на глубине 500 м, и только синие проникают до 1500 м. Водорослям особенно нужны красный и оранжевый лучи и в меньшей мере зеленые. Поэтому растения в море встречаются в основном на глубине до 100 м, реже до 200 м. Животные не особо нуждаются в свете и населяют воды океана до максимальных глубин. Их обитатели либо слепые, либо, наоборот, имеют очень развитые органы зрения. Некоторые из глубоководных животных излучают собственный свет.
Идущий по рыхлому снегу человек будет в него постоянно проваливаться. А вот на лыжах он сможет передвигаться по тому же самому снегу спокойно. Казалось бы, ничего не меняется — человек воздействует на снег с одинаковой силой и на лыжах, и без них.
Дело в том, что «проваливание» в снег характеризуется не только силой — оно также зависит от площади, на которую эта сила воздействует. Площадь поверхности лыжи в 20 раз больше площади поверхности подошвы, поэтому человек, стоя на лыжах, действует на каждый квадратный сантиметр с силой в 20 раз меньшей, чем без них.
Или, например, если вы будете с одинаковой силой втыкать кнопки в пробковую доску, легче войдет та кнопка, у которой более заостренный конец, так как его площадь меньше.
Резюмируем: результат действия силы зависит не только от ее модуля, направления и точки приложения, но и от площади поверхности, к которой эта сила приложена.
А теперь подтвердим этот вывод опытами, как настоящие физики.
Возьмем небольшую доску и вобьем гвозди в ее углы. Также возьмем емкость с песком и поставим конструкцию из доски и гвоздей в эту емкость. Сначала расположим конструкцию шляпками вниз и поставим на нее гирю. Конструкция не утонет в песке, а только чуть-чуть углубится в него.
Затем перевернем конструкцию так, чтобы шляпки гвоздей оказались сверху и также поставим на доску гирю. Теперь конструкция утонет в песке.
От того, какая сила действует на каждую единицу площади поверхности, зависит результат действия силы.
Во всех примерах мы говорили о действии силы, перпендикулярной поверхности. Чтобы охарактеризовать это действие, используется величина давление.
Давление
p = F/S
p — давление [Па]
F — сила [Н]
S — площадь [м 2 ]
Как уменьшить или увеличить давление
Тяжелый гусеничный трактор производит давление на почву, равное 40–50 кПа. Мальчик массой 45 кг производит давление всего лишь в 3 раза меньше, чем такой трактор. Это связано с большой площадью гусениц трактора.
В зависимости от того, какое давление хотят получить, площадь опор уменьшают или увеличивают. Например, чтобы уменьшить давление здания на грунт, в процессе строительства увеличивают площадь нижней части фундамента.
Шины грузовых автомобилей делают значительно шире легковых автомобилей. Чтобы убедиться в этом, обратите внимание на колеса какой-нибудь большой фуры. Самые широкие шины можно увидеть на автомобилях, предназначенных для передвижения в пустыне. Тот же лайфхак используется в шасси самолетов.
Обратную зависимость тоже применяют, например, при создании лезвий колющих и режущих инструментов. Острое лезвие имеет малую площадь, поэтому даже при небольшом нажатии создается большое давление.
Задачка раз
Книга лежит на столе. Масса книги равна 0,6 кг. Площадь ее соприкосновения со столом равна 0,08 м2. Определите давление книги на стол.
Решение
На стол будет давить сила, равная весу книги. Так как она покоится, ее вес будет равен силе тяжести. Следовательно:
p = mg/S = 0,6 × 10 / 0,08 = 75 Па
Ответ: давление книги на стол будет равно 75 Па.
Задачка два
Решение:
p = mg/S = 6 610 × 10 / 1,4 = 47 214 Па = 47,2 кПа
Ответ: давление трактора на почву составляет 47,2 кПа.
Задачка три
Человек массой 80 кг с сумкой весом 100 Н стоит неподвижно на полу. Сила давления подошв его ботинок на пол равномерно распределена по площади 600 см2. Какое давление человек оказывает на пол?
Решение
Масса человека: m = 80 кг.
Вес сумки, которую держит человек: Pc = 100 Н.
600 см 2 = 600 / 10 000 м 2 = 0,06 м 2
Давление — это отношение силы к площади, на которую она действует. В данном случае на площадь действует сила, равная сумме силы тяжести человека и веса сумки:
Поэтому давление, оказываемое человеком с сумкой на пол, равно:
p = (mg + Pс) / S = (80 × 10 + 100) / 0,06 = 15 000 Па = 15 кПа
Ответ: давление человека с сумкой на пол равно 15 кПа.
Определение закона Паскаля
Итак, мы подошли к формулировке закона Паскаля, и звучит она так:
Давление, производимое на жидкость или газ, передается в любую точку одинаково во всех направлениях.
Обратите внимание — закон работает только с жидкостями и газами. Дело в том, что молекулы жидких и газообразных веществ под давлением ведут себя совсем не так, как молекулы твердых тел. Если молекулы жидкости и газа движутся почти свободно, то молекулы твердых тел так не умеют. Они могут лишь колебаться, немного отклоняясь от исходного положения. Именно благодаря свободному передвижению молекулы газа и жидкости оказывают давление во всех направлениях.
Рассмотрим опыт с шаром Паскаля, чтобы стало понятнее.
Присоединим к трубе с поршнем полый шар со множеством небольших отверстий. Зальем в шар воду и будем давить на поршень. Давление в трубе вырастет и вода будет выливаться через отверстия, причем напор всех струй будет одинаковым. Такой же результат получится, если вместо воды в шарике будет газ.
Давление жидкости
Из закона Паскаля следует, что раз давление передается одинаково во всех направлениях, то верхние слои жидкости давят на средние, средние — на нижние, нижние — на дно сосуда.
Давление внутри жидкости на одном и том же уровне одинаково по всем направлениям. С глубиной давление увеличивается.
Это утверждение проверяется с помощью манометра — прибора для измерения давления. Чем глубже мы измеряем давление, тем больше показания.
Давление столба жидкости
p = ρgh
ρ — плотность [кг/м 3 ]
h — высота столба жидкости [м]
g — ускорение свободного падения [м/с 2 ]
На Земле g = 9,8 м/с 2
Формула давления столба жидкости часто требуется в задачах.
Задачка раз
На горизонтальном столе стоят два цилиндрических сосуда — узкий и широкий (см. рисунок). В узкий сосуд налита вода, в широкий — керосин. Уровень жидкости в сосудах одинаковый. Сравните давления p жидкостей в точках A, B, C, D и выберите правильную пару утверждений.
Решение
Давление столба жидкости прямо пропорционально ее плотности и высоте столба. Плотность воды больше плотности керосина, следовательно, давление в точке A больше давления в точке C. Давления в точках B и D равны.
Правильный ответ указан под номером 4.
Задачка два
Решение
Поскольку вода не вытекает из пробирки, давление столба высотой h2 на жидкость в сосуде высотой h1 уравновешено давлением, которое оказывает вода в сосуде на столб воды в пробирке. Сосуд открытый, поэтому на него действует внешнее давление, которое и передается столбу воды. В результате столб воды в пробирке не оказывает дополнительного давления на точку А, поэтому давление, оказываемое водой на дно сосуда в точке А, равно p = ρgh1. Тогда:
Пребывание человека под водой в непривычной для него среде имеет существенные особенности. Погружаясь в воду, человек кроме атмосферного давления воздуха, которое действует на поверхность воды, дополнительно испытывает гидростатическое (избыточное) давление. Общее (абсолютное) давление, измеряемое от нуля — полного вакуума, которое фактически испытывает человек под водой:
или приближенно для пресной воды
Пример 1.1. Определить абсолютное давление воды, действующее на пловца-подводника на глубине 40 м:
1) в море, если атмосферное (барометрическое) давление 760 мм рт. ст. и удельный вес морской воды 1025 кгс/м³;
2) в горном озере, если атмосферное давление 600 мм рт. ст. и удельный вес пресной воды 1000 кгс/м³;
3) в равнинном водоеме с пресной водой, если атмосферное давление 750 мм рт. ст.
Абсолютное давление воды: 1) в море по (1.1)
2) в горном озере по (1.1)
3) в равнинном водоеме по (1.1)
Результаты примера показывают, что с достаточной для практики точностью в большинстве случаев для расчетов можно использовать приближенную формулу (1.2).
Абсолютное давление воды на человека значительно увеличивается с глубиной погружения. Так, на глубине 10 м по сравнению с атмосферным давлением оно удваивается и равно 2 кгс/см² (200 кПа), на глубине 20 м — утраивается и т. д. Однако относительный прирост давления с увеличением глубины уменьшается.
Как видно из табл. 1.1, наибольший относительный прирост давления приходится на зону первых десяти метров погружения. В этой критической зоне наблюдаются значительные физиологические перегрузки, о которых не следует забывать, особенно начинающим пловцам-подводникам (см. 10.2).
Кровообращение под водой в силу неравномерного гидростатического давления на различные участки тела имеет свои особенности. Например, при вертикальном положении человека среднего роста (170 см) в воде независимо от глубины погружения его стопы будут испытывать гидростатическое давление на 0,17 кгс/см² (17 кПа) больше, чем голова.
Таблица 1.1. Изменение давления воды в зависимости от глубины погружения
К верхним областям тела, где давление меньше, кровь приливает (полнокровие), от нижних областей тела, где давление больше, отливает (частичное обескровливание). Такое перераспределение тока крови несколько увеличивает нагрузку на сердце, которому приходится преодолевать большее сопротивление движению крови по сосудам.
При горизонтальном положении тела в воде разность гидростатического давления на грудь и спину невелика — всего 0,02. 0,03 кгс/см² (2. 3 кПа) и нагрузка на сердце возрастает незначительно.
Дыхание под водой возможно, если внешнее давление воды равно внутреннему давлению воздуха в системе «легкие — дыхательный аппарат» (рис. 1.1). Несоблюдение этого равенства затрудняет дыхание или делает его вообще невозможным. Так, дыхание через трубку на глубине 1 м при разности между внешним и внутренним давлением 0,1 кгс/см² (10 кПа) требует большого напряжения дыхательных мышц и долго продолжаться не может, а на глубине 2 м дыхательные мышцы уже не в состоянии преодолеть давление воды на грудную клетку(2).
Человек в покое на поверхности делает 12. 24 дыхания в минуту, и его легочная вентиляция (минутный объем дыхания) составляет 6. 12 л/мин.
В нормальных условиях при каждом вдохе-выдохе в легких обменивается не более 1/6 всего находящегося в них воздуха. Остальной воздух остается в альвеолах легких и является той средой, где происходит газообмен с кровью. Альвеолярный воздух имеет постоянный состав и в отличие от атмосферного содержит 14% кислорода, 5,6% углекислого газа и 6,2% водяных паров (см. 1.2).
Даже незначительные изменения в его составе приводят к физиологическим сдвигам, которые являются компенсаторной защитой организма. При значительных изменениях компенсаторная защита не будет справляться, в результате возникнут болезненные (патологические) состояния (см. 10.5. 10.8).
Не весь воздух, попадающий в организм, достигает легочных альвеол, где происходит газообмен между кровью и легкими. Часть воздуха заполняет дыхательные пути организма (трахеи, бронхи) и не участвует в процессе газообмена. При выдохе этот воздух удаляется, не достигнув альвеол. При вдохе в альвеолы вначале поступает воздух, который остался в дыхательных путях после выдоха (обедненный кислородом, с повышенным содержанием углекислого газа и водяных паров), а затем свежий воздух.
Объем дыхательных путей организма, в которых воздух увлажняется и согревается, но не участвует в газообмене, составляет примерно 175 см³. При плавании с дыхательным аппаратом(3) (дыхательной трубкой) общий объем дыхательных путей (организма и аппарата) увеличивается почти в два раза. При этом вентиляция альвеол ухудшается и снижается работоспособность.
Интенсивные мышечные движения под водой требуют большого расхода кислорода, что приводит к усилению легочной вентиляции, в результате увеличивается скорость потока воздуха в дыхательных путях организма и аппарата (дыхательной трубки). При этом пропорционально квадрату скорости потока воздуха возрастает сопротивление дыханию. С увеличением плотности сжатого воздуха соответственно глубине погружения сопротивление дыханию также возрастает.
Сопротивление дыханию оказывает существенное влияние на длительность и скорость плавания под водой.
Если сопротивление дыханию достигает 60. 65 мм рт. ст. (8. 9 кПа), дышать становится трудно и дыхательные мышцы быстро утомляются. Растягивая по времени фазу вдоха и выдоха, можно уменьшить скорость потока воздуха в дыхательных путях. Это приводит к некоторому снижению легочной вентиляции, но в то же время заметно уменьшает сопротивление дыханию.
Плавучесть. Вследствие большой плотности воды человек, погружаясь в нее, находится в условиях, близких к состоянию невесомости. При выдохе средний удельный вес человека находится в пределах 1020. 1060 кгс/м³ (10,2. 10,6 кН/м³) и наблюдается отрицательная плавучесть 1. 2 кгс (10. 20 Н) — разность между весом вытесненной телом воды и его весом. При вдохе средний удельный вес человека понижается до 970 кгс/м³ (9,7 кН/м³) и появляется незначительная положительная плавучесть.
При плавании в гидрозащитной одежде за счет воздуха в ее складках положительная плавучесть увеличивается, что затрудняет погружение в воду. Плавучесть можно отрегулировать с помощью грузов. Для плавания под водой обычно создают незначительную отрицательную плавучесть — 0,5. 1 кгс (5. 10 Н). Большая отрицательная плавучесть требует постоянных активных движений для удержания на нужной глубине и обычно создается только при работах с опорой на грунт (объект).
Ориентирование под водой представляет определенные трудности. На поверхности человек ориентируется в окружающей среде с помощью зрения, а равновесие тела его поддерживается с помощью вестибулярного аппарата, мышечно-суставного чувства и ощущений, возникающих во внутренних органах и коже при изменении положения тела. Он все время испытывает действие силы тяжести (чувство опоры) и воспринимает малейшее изменение положения тела в пространстве.
При плавании под водой человек лишен привычной опоры. В этих условиях из органов чувств, ориентирующих человека в пространстве, остается вестибулярный аппарат, на отолиты которого продолжают действовать силы земного тяготения. Особенно затруднено ориентирование под водой человека с нулевой плавучестью. Под водой пловец с закрытыми глазами допускает ошибки в определении положения тела в пространстве на угол 10. 25°.
Большое значение для ориентирования под водой имеет положение человека. Наиболее неблагоприятным считается положение на спине с запрокинутой назад головой.
При попадании в слуховой проход холодной воды вследствие раздражения вестибулярного аппарата у пловца появляется головокружение, затрудняется определение направления и ошибка часто достигает 180°.
Для ориентирования под водой пловец вынужден использовать внешние факторы, сигнализирующие о положении тела в пространстве: движение пузырьков выдыхаемого воздуха из аппарата, буйки и т. п. Большое значение для ориентирования под водой имеет тренировка пловца.
Сопротивление воды оказывает заметное влияние на скорость плавания. При плавании на поверхности со скоростью 0,8. 1,7 м/с сопротивление движению тела возрастает соответственно с 2,5 до 11,5 кгс (с 25 до 115 Н ). При плавании под водой сопротивление движению меньше, так как пловец-подводник занимает более горизонтальное положение и ему не надо периодически поднимать голову из воды, чтобы сделать вдох. Кроме того, под водой меньше тормозящая сила волн и завихрений, возникающих в результате движений пловца. Опыт в бассейне показывает, что один и тот же человек, проплывающий дистанцию 50 м брассом за 37,1 с, под водой проплывает то же расстояние за 32,2 с.
Средняя скорость плавания под водой в гидроодежде с аппаратом 0,3. 0,5 м/с. На коротких дистанциях хорошо подготовленные пловцы могут развивать скорость 0,7. 1 м/с, отлично подготовленные — до 1,5 м/с.
Охлаждение организма в воде протекает интенсивнее, чем на воздухе. Теплопроводность воды в 25 раз, а теплоемкость в 4 раза больше, чем воздуха. Если на воздухе при 4° С человек может без опасности для своего здоровья находиться в течение 6 ч и при этом температуря тела у него не понижается, то в воде при такой же температуре незакаленный человек без защитной одежды в большинстве случаев погибает от переохлаждения уже спустя 30. 60 мин. Охлаждение организма усиливается с понижением температуры воды и при наличии течения.
В воздушной среде интенсивные теплопотери при температуре воздуха 15. 20° С происходят в результате излучения (40. 45%) и испарения (20. 25%), а на долю теплоотдачи с помощью проведения приходится лишь 30. 35%.
В воде у человека без защитной одежды тепло в основном теряется в результате проведения. На воздухе теплопотери происходят с площади, составляющей около 75% поверхности тела, так как между соприкасающимися поверхностями ног, рук и соответствующими областями туловища существует теплообмен. В воде же теплопотери происходят со всей поверхности тела.
Воздух, непосредственно соприкасающийся с кожей, быстро нагревается и фактически имеет более высокую температуру, чем окружающий. Даже ветер не может полностью удалить с кожи этот слой теплого воздуха. В воде с ее большой удельной теплоемкостью и большой теплопроводностью слой, прилегающий к телу, не успевает нагреваться и легко вытесняется холодной водой. Поэтому температура поверхности тела в воде понижается интенсивнее, чем на воздухе. Кроме того, вследствие неравномерного гидростатического давления воды нижние области тела, которые испытывают большее давление, охлаждаются больше и имеют температуру кожи ниже, чем верхние, менее обжатые водой.
Тепловые ощущения организма на воздухе и в воде при одной и той же температуре различны. В табл. 1.2 дана сравнительная характеристика ощущений человека при одинаковой температуре воды и воздуха.
Таблица 1.2. Тепловые ощущения организма на воздухе и в воде
Вследствие интенсивного охлаждения и обжатия гидростатическим давлением кожная чувствительность в воде понижается, болевые ощущения притупляются, поэтому могут остаться незамеченными небольшие порезы и даже раны.
При спусках под воду в гидрозащитной одежде температура кожи понижается неравномерно. Наибольшее падение температуры кожи отмечается в конечностях (табл. 1.3).
Слышимость в воде ухудшается, так как звуки под водой воспринимаются преимущественно путем костной проводимости, которая на 40% ниже воздушной.
Дальность слышимости при костной проводимости зависит от тональности звука: чем выше тон, тем лучше слышен звук. Это имеет практическое значение для связи пловцов между собой и с поверхностью.
При погружении в снаряжении с объемным шлемом воздушная проводимость сохраняется почти полностью.
Таблица 1.3. Средняя температура кожных покровов пловца-подводника после пребывания в холодной воде (1. 9°С) в гидрозащитной одежде в течение 2 ч
Звук в воде распространяется в 4,5 раза быстрее, чем в атмосфере, поэтому под водой сигнал от источника звука, расположенного сбоку, поступает в оба уха почти одновременно, разница составляет менее 0,00-001 с. Столь незначительная разница во времени поступления сигнала недостаточно хорошо дифференцируется, и четкого пространственного восприятия звука не происходит. Следовательно, установить направление на источник звука под водой человеку трудно.
Видимость в воде зависит от количества и состава растворенных в ней веществ, взвешенных частиц, которые рассеивают световые лучи. В мутной воде даже при ясной солнечной погоде видимость почти отсутствует.
Глубина проникновения света в толщу воды зависит от угла падения лучей и состояния водной поверхности. Косые солнечные лучи, падающие на поверхность воды, проникают на малую глубину, и большая часть их отражается от поверхности воды. Слабая рябь или волна резко ухудшают видимость в воде.
На глубине 10 м освещенность в 4 раза меньше, чем на поверхности. На глубине 20 м освещенность уменьшается в 8 раз, а на глубине 50 м — в несколько десятков раз. Лучи с различной длиной волны поглощаются неравномерно. Длинноволновая часть видимого спектра (красные лучи) почти полностью поглощается поверхностными слоями воды. Коротковолновая часть (фиолетовые лучи) в наиболее прозрачной океанской воде может проникать на глубину не более 1000. 1500 м. Зеленые лучи не проникают глубже 100 м.
Зрение под водой имеет свои особенности. Вода обладает примерно такой же преломляющей способностью, как и оптическая система глаза. Если пловец погружается без маски, лучи света проходят через воду и попадают в глаз, почти не преломляясь. При этом лучи сходятся не у сетчатой оболочки, а значительно дальше, за ней. В результате острота зрения ухудшается в 100. 200 раз, а поле зрения уменьшается, изображение предметов получается неясным, расплывчатым, и человек становится как бы дальнозорким.
При погружении пловца-подводника в маске световой луч из воды преходит слой воздуха в маске, попадает в глаз и преломляется в его оптической системе как обычно. Но пловец-подводник при этом видит изображение предмета несколько ближе и выше его действительного местоположения. Сами же предметы кажутся под водой значительно больше, чем в действительности. Опытные пловцы приспосабливаются к этим особенностям зрения и не испытывают затруднений.
Резко ухудшается в воде и цветоощущение. Особенно плохо воспринимаются синий и зеленый цвета, которые близки к естественной окраске воды, лучше всего — белый и оранжевый.