Идущий по рыхлому снегу человек будет в него постоянно проваливаться. А вот на лыжах он сможет передвигаться по тому же самому снегу спокойно. Казалось бы, ничего не меняется — человек воздействует на снег с одинаковой силой и на лыжах, и без них.
Дело в том, что «проваливание» в снег характеризуется не только силой — оно также зависит от площади, на которую эта сила воздействует. Площадь поверхности лыжи в 20 раз больше площади поверхности подошвы, поэтому человек, стоя на лыжах, действует на каждый квадратный сантиметр с силой в 20 раз меньшей, чем без них.
Или, например, если вы будете с одинаковой силой втыкать кнопки в пробковую доску, легче войдет та кнопка, у которой более заостренный конец, так как его площадь меньше.
Резюмируем: результат действия силы зависит не только от ее модуля, направления и точки приложения, но и от площади поверхности, к которой эта сила приложена.
А теперь подтвердим этот вывод опытами, как настоящие физики.
Возьмем небольшую доску и вобьем гвозди в ее углы. Также возьмем емкость с песком и поставим конструкцию из доски и гвоздей в эту емкость. Сначала расположим конструкцию шляпками вниз и поставим на нее гирю. Конструкция не утонет в песке, а только чуть-чуть углубится в него.
Затем перевернем конструкцию так, чтобы шляпки гвоздей оказались сверху и также поставим на доску гирю. Теперь конструкция утонет в песке.
От того, какая сила действует на каждую единицу площади поверхности, зависит результат действия силы.
Во всех примерах мы говорили о действии силы, перпендикулярной поверхности. Чтобы охарактеризовать это действие, используется величина давление.
Давление
p = F/S
p — давление [Па]
F — сила [Н]
S — площадь [м 2 ]
Как уменьшить или увеличить давление
Тяжелый гусеничный трактор производит давление на почву, равное 40–50 кПа. Мальчик массой 45 кг производит давление всего лишь в 3 раза меньше, чем такой трактор. Это связано с большой площадью гусениц трактора.
В зависимости от того, какое давление хотят получить, площадь опор уменьшают или увеличивают. Например, чтобы уменьшить давление здания на грунт, в процессе строительства увеличивают площадь нижней части фундамента.
Шины грузовых автомобилей делают значительно шире легковых автомобилей. Чтобы убедиться в этом, обратите внимание на колеса какой-нибудь большой фуры. Самые широкие шины можно увидеть на автомобилях, предназначенных для передвижения в пустыне. Тот же лайфхак используется в шасси самолетов.
Обратную зависимость тоже применяют, например, при создании лезвий колющих и режущих инструментов. Острое лезвие имеет малую площадь, поэтому даже при небольшом нажатии создается большое давление.
Задачка раз
Книга лежит на столе. Масса книги равна 0,6 кг. Площадь ее соприкосновения со столом равна 0,08 м2. Определите давление книги на стол.
Решение
На стол будет давить сила, равная весу книги. Так как она покоится, ее вес будет равен силе тяжести. Следовательно:
p = mg/S = 0,6 × 10 / 0,08 = 75 Па
Ответ: давление книги на стол будет равно 75 Па.
Задачка два
Решение:
p = mg/S = 6 610 × 10 / 1,4 = 47 214 Па = 47,2 кПа
Ответ: давление трактора на почву составляет 47,2 кПа.
Задачка три
Человек массой 80 кг с сумкой весом 100 Н стоит неподвижно на полу. Сила давления подошв его ботинок на пол равномерно распределена по площади 600 см2. Какое давление человек оказывает на пол?
Решение
Масса человека: m = 80 кг.
Вес сумки, которую держит человек: Pc = 100 Н.
600 см 2 = 600 / 10 000 м 2 = 0,06 м 2
Давление — это отношение силы к площади, на которую она действует. В данном случае на площадь действует сила, равная сумме силы тяжести человека и веса сумки:
Поэтому давление, оказываемое человеком с сумкой на пол, равно:
p = (mg + Pс) / S = (80 × 10 + 100) / 0,06 = 15 000 Па = 15 кПа
Ответ: давление человека с сумкой на пол равно 15 кПа.
Определение закона Паскаля
Итак, мы подошли к формулировке закона Паскаля, и звучит она так:
Давление, производимое на жидкость или газ, передается в любую точку одинаково во всех направлениях.
Обратите внимание — закон работает только с жидкостями и газами. Дело в том, что молекулы жидких и газообразных веществ под давлением ведут себя совсем не так, как молекулы твердых тел. Если молекулы жидкости и газа движутся почти свободно, то молекулы твердых тел так не умеют. Они могут лишь колебаться, немного отклоняясь от исходного положения. Именно благодаря свободному передвижению молекулы газа и жидкости оказывают давление во всех направлениях.
Рассмотрим опыт с шаром Паскаля, чтобы стало понятнее.
Присоединим к трубе с поршнем полый шар со множеством небольших отверстий. Зальем в шар воду и будем давить на поршень. Давление в трубе вырастет и вода будет выливаться через отверстия, причем напор всех струй будет одинаковым. Такой же результат получится, если вместо воды в шарике будет газ.
Давление жидкости
Из закона Паскаля следует, что раз давление передается одинаково во всех направлениях, то верхние слои жидкости давят на средние, средние — на нижние, нижние — на дно сосуда.
Давление внутри жидкости на одном и том же уровне одинаково по всем направлениям. С глубиной давление увеличивается.
Это утверждение проверяется с помощью манометра — прибора для измерения давления. Чем глубже мы измеряем давление, тем больше показания.
Давление столба жидкости
p = ρgh
ρ — плотность [кг/м 3 ]
h — высота столба жидкости [м]
g — ускорение свободного падения [м/с 2 ]
На Земле g = 9,8 м/с 2
Формула давления столба жидкости часто требуется в задачах.
Задачка раз
На горизонтальном столе стоят два цилиндрических сосуда — узкий и широкий (см. рисунок). В узкий сосуд налита вода, в широкий — керосин. Уровень жидкости в сосудах одинаковый. Сравните давления p жидкостей в точках A, B, C, D и выберите правильную пару утверждений.
Решение
Давление столба жидкости прямо пропорционально ее плотности и высоте столба. Плотность воды больше плотности керосина, следовательно, давление в точке A больше давления в точке C. Давления в точках B и D равны.
Правильный ответ указан под номером 4.
Задачка два
Решение
Поскольку вода не вытекает из пробирки, давление столба высотой h2 на жидкость в сосуде высотой h1 уравновешено давлением, которое оказывает вода в сосуде на столб воды в пробирке. Сосуд открытый, поэтому на него действует внешнее давление, которое и передается столбу воды. В результате столб воды в пробирке не оказывает дополнительного давления на точку А, поэтому давление, оказываемое водой на дно сосуда в точке А, равно p = ρgh1. Тогда:
У веществ есть три агрегатных состояния — твердое, жидкое и газообразное.
Их характеристики — в таблице:
Агрегатные состояния
Свойства
Расположение молекул
Расстояние между молекулами
Движение молекулы
Твердое
сохраняет форму и объем
в кристаллической решетке
соотносится с размером молекул
колеблется около положения в кристаллической решетке
Жидкое
близко друг к другу
молекулы малоподвижны, при нагревании скорость движения увеличивается
Газообразное
занимает предоставленный объем
больше размеров молекул
хаотичное и непрерывное
В жизни мы встречаем вещества в газообразном состоянии, когда чувствуем запахи. Запах очень легко распространяется, потому что газ не имеет ни формы, ни объема (занимает весь предоставленный объем) и состоит из хаотично движущихся молекул, расстояние между которыми больше, чем размеры молекул.
Агрегатных состояний точно три?
На самом деле есть еще четвертое — плазма. Звучит как что-то из научной фантастики, но это просто ионизированный газ — газ, в котором, помимо нейтральных частиц, есть еще и заряженные. Ионизаторы воздуха как раз строятся на принципе перехода из газообразного вещества в плазму.
Модель идеального газа
В физике есть такое понятие, как модель. Модель — это что-то идеализированное, она нужна в случаях, когда можно пренебречь некоторыми параметрами объекта или процесса.
Идеальный газ — это модель реального газа. Молекулы идеального газа представляют собой материальные точки, которые не взаимодействуют друг с другом на расстоянии, но взаимодействуют при столкновениях друг с другом или со стенками сосуда. При работе с идеальным газом можно пренебречь потенциальной энергией молекул (но не кинетической).
В повседневной жизни идеальный газ, конечно, не встречается. Но реальный газ может вести себя почти как идеальный. Такое случается, если среднее расстояние между молекулами во много раз больше их размеров, то есть если газ очень разреженный.
Свойства идеального газа
Среднеквадратичная скорость
Потенциальной энергией молекул газа пренебречь можно, а вот кинетической — никак нельзя. Потому что кинетическая энергия — это энергия движения, а мы не можем пренебрегать скоростью движения молекул.
На графике показано распределение Максвелла — то, как молекулы распределяются по скоростям. Судя по графику, большинство молекул движутся со средним значением скорости. Хотя есть и быстрые, и медленные молекулы, просто их значительно меньше.
Но наш газ идеальный, а в идеальном газе случаются чудеса. Одно из таких чудес — то, что все молекулы идеального газа двигаются с одинаковой скоростью. Эта скорость называется средней квадратичной.
Средняя квадратичная скорость
v1, v2, vn — скорости разных молекул [м/с]
N — количество молекул [-]
Давление идеального газа
Молекулы газа беспорядочно движутся. Во время движения они сталкиваются друг с другом, а также со стенками сосуда, в котором этот газ находится. Поскольку молекул много, ударов тоже много.
Например, в комнате, в которой вы сейчас находитесь, за одну секунду на каждый квадратный сантиметр молекулы воздуха наносят столько ударов, что их количество выражается двадцатитрехзначным числом.
Хотя сила удара отдельной молекулы мала, действие всех молекул на стенки сосуда приводит к значительному давлению. Представьте, что комар пытается толкать машину — она не сдвинется с места. Но если за работу возьмется пара сотен миллионов комаров, то машину получится сдвинуть.
Эксперимент
Чтобы смоделировать давление газа, возьмите песок и лист бумаги, зажатый между двумя книгами. Песчинки будут выступать в роли молекул газа, а лист — в роли сосуда, в котором этот газ находится. Когда вы начинаете сыпать песок на лист бумаги, бумага отклоняется под воздействием множества песчинок. Так же и молекулы газа оказывают давление на стенки сосуда, в котором находятся.
Зависимость давления от других величин
Зависимость давления от объема
В механике есть формула давления, которая показывает, что давление прямо пропорционально силе и обратно пропорционально площади, на которую эта сила оказывается.
Давление
p = F/S
F — сила [Н]
S — площадь [м2]
То есть если наши двести миллионов комаров будут толкать легковую машину, они распределятся по меньшей площади, чем если бы толкали грузовой автомобиль, — просто потому, что легковушка меньше грузовика. Из формулы давления следует, что давление на легковой автомобиль будет больше из-за его меньшей площади.
Рассмотрим аналогичный пример с двумя сосудами разной площади.
Давление в левом сосуде будет больше, чем во втором, потому что его площадь меньше. А раз меньше площадь сосуда, то меньше и его объем. Значит, давление зависит от объема следующим образом: чем больше объем, тем меньше давление, и наоборот.
При этом зависимость будет не линейная, а примет вот такой вид (при условии, что температура постоянна):
Зависимость давления от объема называется законом Бойля-Мариотта. Она экспериментально проверяется с помощью такой установки:
Объем шприца увеличивают с помощью насоса, а манометр измеряет давление. Эксперимент показывает, что при увеличении объема давление действительно уменьшается.
Зависимость давления от температуры
Рассмотрим зависимость давления газа от температуры при условии неизменного объема определенной массы газа. Исследования в этой области впервые провел французский изобретатель Жак Шарль в XVIII веке.
В ходе эксперимента газ нагревали в большой колбе, соединенной с ртутным манометром в виде узкой изогнутой трубки. Незначительным увеличением объема колбы при нагревании можно пренебречь, как и столь же незначительным изменением объема при смещении ртути в узкой манометрической трубке. Таким образом, объем газа можно считать неизменным.
Подогревая воду в сосуде, окружающем колбу, ученый измерял температуру газа термометром, а давление — манометром.
Эксперимент показал, что давление газа увеличивается с увеличением температуры. Это связано с тем, что при нагревании молекулы газа движутся быстрее, из-за чего чаще ударяются о стенки сосуда.
С температурой все проще. Зависимость давления от температуры при постоянных объеме и массе будет линейной:
Эта зависимость называется законом Шарля в честь ученого, открывшего ее.
Основное уравнение МКТ
Основная задача молекулярно-кинетической теории газа заключается в том, чтобы установить соотношение между давлением газа и его микроскопическими параметрами: массой молекул, их средней скоростью и концентрацией. Это соотношение называется основным уравнением молекулярно-кинетической теории газа или кратко — основным уравнением МКТ.
В основе молекулярно-кинетической теории лежат три положения.
Молекулы химического вещества могут быть простыми и сложными, то есть состоять из одного или нескольких атомов. Молекулы и атомы представляют собой электрически нейтральные частицы. При определенных условиях молекулы и атомы могут приобретать дополнительный электрический заряд и превращаться в положительные или отрицательные ионы.
Мы уже выяснили, что причина давления газа на стенки — это удары молекул. Давление напрямую зависит от количества молекул — чем их больше, тем больше ударов о стенки и тем больше давление. А количество молекул в единице объема — это концентрация. Значит, давление газа зависит от концентрации.
Также давление пропорционально квадрату скорости, так как чем больше скорость молекулы, тем чаще она бьется о стенку сосуда. Расчеты показывают, что основное уравнение молекулярно-кинетической теории для идеального газа имеет следующий вид.
Основное уравнение МКТ
p = nkT
p — давление газа [Па]
T — температура газа [К]
m 0 — масса одной молекулы [кг]
v — средняя квадратичная скорость [м/с]
Коэффициент 1/3 обусловлен трехмерностью пространства: во время хаотического движения молекул все три направления равноправны.
Важный нюанс: средняя квадратичная скорость сама по себе не в квадрате! Ее формула указана выше, а в основном уравнении МКТ (да и не только в нем) она возведена в квадрат. Это значит, что формулу средней квадратичной скорости нужно подставлять не вместо v2, а вместо v— и потом уже возводить эту формулу в квадрат. Это часто провоцирует путаницу.
Мы знаем, что кинетическая энергия вычисляется по следующей формуле:
Кинетическая энергия
Ек = mv 2 /2
Ек — кинетическая энергия [Дж]
m — масса тела [кг]
v — скорость [м/с]
Для молекулы газа формула примет вид:
Средняя кинетическая энергия поступательного движения молекулы
Ек — средняя кинетическая энергия поступательного движения молекулы [Дж]
m0 — масса молекулы [кг]
v — скорость молекулы [м/с]
Из этой формулы можно выразить m0v 2 и подставить в основное уравнение МКТ. Подставим и получим, что давление идеального газа пропорционально произведению концентрации молекул на среднюю кинетическую энергию поступательного движения молекулы.
Основное уравнение МКТ
p — давление газа [Па]
n — концентрация [м-3]
E — средняя кинетическая энергия поступательного движения молекулы [Дж]
Хранение и транспортировка газов
Если нужно перевезти значительное количество газа из одного места в другое или если газ необходимо длительно хранить, его помещают в специальные прочные металлические сосуды. Из-за того, что при уменьшении объема увеличивается давление, газ можно закачать в небольшой баллон, но он должен быть очень прочным.
Сосуды, предназначенные для транспортировки газов, выдерживают высокие давления. Поэтому с помощью специальных насосов (компрессоров) туда можно закачать значительные массы газа, которые в обычных условиях занимали бы в сотни раз больший объем.
Поскольку давление газов в баллонах даже при комнатной температуре очень велико, их ни в коем случае нельзя нагревать. Например, держать под прямыми лучами солнца или пытаться сделать в них отверстие — даже после использования.
Причина давления газов связана с хаотичным быстрым движением молекул. Из-за этого молекулы газа сталкиваются с поверхностями. Так как молекул много, то их множественные удары создают давление.
Газы занимают весь предоставленный им объем, так как их молекулы не связаны между собой. Понятно, что чем объем больше, тем количество молекул в единице объема будет меньше. Следовательно, меньше молекул будет ударять по поверхности, и, значит, давление газа будет меньше.
Таким образом давление и объем газа находятся в обратнопропорциональной зависимости: чем больше объем, тем меньше давление, и чем меньше объем, тем больше давление. При этом надо иметь в виду, что масса газа и температура считаются неизменными.
В отличие от жидкостей и твердых тел, газы легко сжимаемы. Это связано с тем, что молекулы газа находятся далеко друг от друга и их легко можно «подвинуть» друг к другу. Это значит, что объем, а, следовательно, и давление газа легко менять.
Как известно, при более высокой температуре молекулы веществ начинают быстрее двигаться (в случае газов) или колебаться (в случае твердых веществ). Если в газе молекулы двигаются быстрее, то они чаще и сильнее ударяют по поверхностям. Это значит, что давление газа увеличивается.
Таким образом давление и температура газа находятся в прямопропорциональной зависимости: чем больше температура, тем больше давление, и чем меньше температура, тем меньше давление. Это правило всегда выполняется при условии, что объем и масса газа остаются неизменными.
Существует множество опытов, подтверждающих эти зависимости.
Если несильно надутый шарик положить в теплую воду, то он увеличится. Это связано с тем, что газ внутри шарика нагреется, и молекулы начнут сильнее бить по стенкам шарика, то есть оказывать на стенки большее давление. От этого шарик слегка раздувается.
Если опять-таки несильно надутый воздушный шарик положить в герметичную емкость, из которой потом откачать воздух, то шарик раздуется. Здесь эффект связан с тем, что когда воздух в емкости присутствует, то давление на стенки шарика извне и изнутри одинаковы. Когда же воздух откачан, то внешнее давление сильно уменьшается, а внутреннее остается прежним.
Если в трубке с одной стороны будет поршень, а с другой резиновая пленка, то при движении поршня вниз пленка будет растягиваться вниз, так как объем газа будет уменьшаться, и, следовательно давление увеличиваться. Это давление, которое больше внешнего давления воздуха, и будет растягивать пленку. Если же двигать поршень вверх, то пленка будет «засасываться» внутрь трубки. Это связано с тем, что объем газа увеличивается, следовательно, давление уменьшается. Внешнее давление воздуха давит на пленку сильнее внутреннего и «заталкивает» ее внутрь трубки.
Кроме того, у газа давление изменяется с высотой столба газа. Причина та же, что и у жидкости, — вес в следствие притяжения к Земле. Однако, в следствие разреженности молекул газа, его вес незначителен по сравнению с твердыми телами и жидкостями таких же объемов. Поэтому данным изменением давления часто пренебрегают.
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.
Получите невероятные возможности
Конспект урока «Давление газа»
это самое давление»
В этой теме речь пойдёт о том, каким образом могут оказывать давление газы.
В газах молекулы расположены друг от друга на большом расстоянии, поэтому, силы взаимного притяжения между молекулами практически отсутствуют. Известно также, что газы легко сжимаются. Молекулы газа двигаются беспорядочно, занимая весь предоставленный им объём. Молекулы сталкиваются не только друг с другом, но и ударяются о стенки сосуда. Именно эти удары и создают давление. Сила удара одной молекулы ничтожно мала, но ведь количество молекул даже в маленьком сосуде очень велико.
Рассмотрим классический опыт: возьмем завязанный шарик с небольшим количеством воздуха и накроем его стеклянным сосудом. Если выкачать из сосуда воздух, то объём воздушного шарика увеличится. Почему же это произошло? Дело в том, что изначально по шарику ударяли молекулы воздуха внутри сосуда, противодействуя ударам молекул внутри шарика. Таким образом, оболочка шарика сохраняла свой объём. Но когда воздух был откачен из сосуда, во много раз уменьшилось количество молекул воздуха внутри него. Ударов по шарику снаружи стало гораздо меньше, но вот количество молекул внутри шарика не изменилось. Это позволило газу внутри шарика расширяться до тех пор, пока давление газа внутри не стало равно давлению газа снаружи. Из этого можно сделать вывод, что при увеличении объёма, давление газа уменьшается. Но если мы вновь наполним сосуд воздухом, то шарик снова сдуется. Значит, при уменьшении объёма, давление увеличивается.
Следует понимать, что эти утверждения верны только в том случае, если речь идет о неизменной массе газа, находящейся при неизменной температуре. Также следует отметить: когда воздух был откачен из сосуда, форма шарика действительно стала шарообразной (а не вытянутой, как это было изначально). Это значит, что газ давит на оболочку шарика (или стенки сосуда) одинаково по всем направлениям. Это объясняется беспорядочным движением молекул. Они двигаются в случайных направлениях, но их число настолько велико, что можно с уверенностью сказать, что во всех направлениях летит одинаковое число молекул. В результате этого на каждый маленький кусочек площади поверхности шарика приходится одинаковое число ударов, то есть, создается одинаковое давление.
Проведем еще один опыт: возьмем цилиндр с подвижным поршнем и поместим туда некоторое количество газа.
Если поршень будет двигаться, то можно изменять объём газа, при этом сохраняя его массу. Таким образом, плотность газа увеличиться, то есть на единицу объёма будет приходиться большее число молекул газа. В этом случае, они значительно чаще будут ударяться о стенки сосуда. То есть, таким способом можно увеличить давление. Это еще раз доказывает, что при уменьшении объёма газа постоянной массы и температуры, давление увеличивается, а при увеличении объёма – давление уменьшается.
Если плотно закрыть пластиковую бутылку и сжать её, то можно почувствовать значительное сопротивление – молекулы газа будут давить на стенки бутылки изнутри, не давая вам сжать её.
Поставим опыт: Не будем изменять ни массу газа, ни его объём, а просто нагреем газ в плотно закрытом сосуде. В этом случае давление газа увеличится. Это объясняется тем, что при увеличении температуры, молекулы газа начинают двигаться быстрее, а, следовательно, будут чаще ударяться о стенки сосуда. То есть, при увеличении температуры газа постоянной массы и объёма, давление газа увеличивается, и, наоборот, при уменьшении температуры, давление газа уменьшается. Если слегка заткнуть стеклянную бутылку пробкой и нагреть бутылку, то пробка выскочит из горлышка под давлением газа.
Зависимость давления газа от температуры нередко используется людьми. Например, чтобы поместить большое количество газа в сравнительно небольшой объём, газ охлаждают и закачивают в баллон. После того, как газ вновь нагревается, в баллоне создается очень высокое давление. Именно поэтому на таких баллонах, как правило, пишут предупреждения о том, чтобы баллон ни в коем случае не нагревали и не ударяли (это может привести к взрыву – настолько в баллоне высокое давление).
Примеров давления газа можно привести очень много: это и накачанный мяч, и накачанные шины автомобиля, и атмосферное давление.
Упражнение 1. Из баллона медленно выпустили половину газа и снова закрыли его. Как изменится давление в баллоне?
Поскольку молекул газа внутри баллона стало вдвое меньше, они вдвое меньше стали ударяться о стенки баллона. Следовательно, давление уменьшилось вдвое.
Упражнение 2. Одинаковые массы одного и того же газа находятся в двух баллонах: зеленом и синем. Известно, что температура и в том, и в другом баллоне одинакова. В каком баллоне давление будет больше?
По условию задачи, в обоих баллонах одинаковые условия. Из рисунка явно видно, что синий баллон больше зеленого. Поэтому давление в нем будет меньше, поскольку молекулы газа меньше будут ударяться о его стенки.
Упражнение 3. Воздушный шарик завязали и облили его ледяной водой. Из-за этого шарик немного сжался. Можете ли вы объяснить, почему это произошло?
Из-за понижения температуры, давление внутри шарика уменьшилось. В результате внешнее давление сжимало шарик до тех пор, пока внутреннее давление вновь ни стало равным внешнему.
– Давление газа – это давление, которое создается в результате ударов молекул о стенки сосуда (или о какое-то другое тело).
– Давление газаодинаково по всем направлениям.
– При неизменной массе и температуре, давление газа тем больше, чем меньше его объём. И, наоборот, давление газа тем меньше, чем больше объём.
– При постоянной массе и объёме, давление можно изменить, изменяя температуру. При нагревании газа, его давление будет увеличиваться, а при охлаждении – наоборот, уменьшаться.