Начнем с самого сложного — с массы. Казалось бы, это понятие мы слышим с самого детства, примерно знаем, сколько в нас килограмм, и ничего сложного здесь быть не может. На самом деле, все сложнее.
В Международном бюро мер и весов в Париже есть цилиндр массой один килограмм. Материал этого цилиндра — сплав иридия и платины. Его масса равна одному килограмму, и этот цилиндр — эталон для всего мира.
Высота этого цилиндра приблизительно равна 4 см, но чтобы его поднять, нужно приложить немалую силу. Необходимость эту силу прикладывать обуславливается инерцией тел и математически записывается через второй закон Ньютона.
Второй закон Ньютона
F = ma
В этом законе массу можно считать неким коэффициентом, который связывает ускорение и силу. Также масса важна при расчете силы тяготения. Она является мерой гравитации: именно благодаря ей тела притягиваются друг к другу.
Закон Всемирного тяготения
F = GMm/R2
M — масса первого тела (часто планеты) [кг]
m — масса второго тела [кг]
R — расстояние между телами [м]
G — гравитационная постоянная
G = 6.67 × 10-11 м3 кг-1 с-2
Когда мы встаем на весы, стрелка отклоняется. Это происходит потому, что масса Земли очень большая, и сила тяготения буквально придавливает нас к поверхности. На более легкой Луне человек весит меньше в шесть раз. Когда думаешь об этом, хочется взвешиваться исключительно на Луне🙃
Откуда берется масса
Физики убеждены, что у элементарных частиц должна быть масса. Доказано, что у электрона, например, масса есть. В противном случае они не могли бы образовать атомы и всю видимую материю.
Вселенная без массы представляла бы собой хаос из различных излучений, двигающихся со скоростью света. Не существовало бы ни галактик, ни звезд, ни планет. Здорово, что это не так, и у элементарных частиц есть масса. Только вот пока непонятно, откуда эта масса у них берется.
Мужчину на этой фотографии зовут Питер Хиггс. Ему мы обязаны за предположение, экспериментально доказанное в 2012 году, что массу всех частиц создает некий бозон.
Бозон Хиггса невозможно представить. Это точно не частица в форме шарика, как обычно рисуют электрон в учебнике. Представьте, что вы бежите по песку. Бежать ощутимо сложно, как будто бы увеличилась масса. Частицы пробираются в поле Хиггса и получают таким образом массу.
Объем тела
Объем — это физическая величина, которая показывает, сколько пространства занимает тело. Это важный навык — уметь объемы соотносить. Например, чтобы посчитать, сколько пластиковых шариков помещается в гигантский бассейн.
Например, чтобы рассчитать объем прямоугольного параллелепипеда, нам нужно перемножить три его параметра.
Формула объема параллелепипеда
V = a*b*c
А для цилиндра будет справедлива такая формула:
Формула объема цилиндра
V = S*h
S — площадь основания [м^2]
Плотность вещества
Плотность — скалярная физическая величина. Определяется как отношение массы тела к занимаемому этим телом объёму.
Формула плотности вещества
р — плотность вещества [кг/м^3]
m — масса вещества [кг]
V — объем вещества [м^3]
Плотность зависит от температуры, агрегатного состояния вещества и внешнего давления. Обычно если давление увеличивается, то молекулы вещества утрамбовываются плотнее — следовательно, плотность больше. А рост температуры, как правило, приводит к увеличению расстояний между молекулами вещества — плотность понижается.
Ниже представлены значения плотностей для разных веществ. В дальнейшем это поможет при решении задач.
Слово «масса» мы ежедневно используем в своей жизни.
Все вещества состоят из мельчайших частичек: атомов и молекул. В разных веществах масса этих частичек разная, она зависит от параметров еще более мелких частиц, составляющих атомы и молекулы. В результате исследований было доказано, что чем плотнее атомы или молекулы расположены друг к другу, тем выше масса тела.
На сегодняшний день различают некоторые свойства вещества, с помощью которых характеризует массу тел:
Численно величина массы остается одинаковой, независимо от того, какое именно свойство рассматривается.
Инертность
Различают две разновидности массы: инертную и гравитационную.
Инертностью называется способность тела сопротивляться при попытке изменения его скорости. При этом тела разной инертной массы с разной силой оказывают такое сопротивление. Тела с разной массой, находящиеся под одинаковым воздействием внешних сил, изменяют свою скорость по-разному.
Сложно разобраться самому?
Попробуй обратиться за помощью к преподавателям
Инертность зависит от параметров массы тела. Чем больше масса тела, тем медленнее оно будет менять скорость. Меру инертности определяет инертная масса тела. Если тела взаимодействуют между собой, то оба они изменяют свою скорость. Данный процесс сопровождается появлением ускорений у этих тел.
Отношение ускорений взаимодействующих тел равняется обратному отношению масс данных тел.
В международной системе измерений единицей измерения массы является килограмм (кг).
Свойства массы
Масса имеет определенные характеристики:
Для определения значения массы существует международный эталон. Он называется килограммом, находится во Франции и выглядит как металлический цилиндр, высотой и диаметром по 39 мм.
В международной системе измерений массу обозначают латинской маленькой буквой m. Масса – величина скалярная.
Массу тела можно определить различными способами. В основном на практике пользуются весами. Весы показывают гравитационную массу и бывают различного исполнения: пружинные, рычажные и электронные.
Для определения массы весами пользовались еще около 4 тысяч лет назад древние египтяне. К нашему времени конфигурация весов конечно же изменилась, и на сегодняшний день весы бывают различных размеров и конструкций. Существуют весы для определения массы очень маленьких по размеру тел, а также крупногабаритных объектов. Например, в химических лабораториях применяются сверхточные весы для определения небольших масс навесок, а для взвешивания автомобилей применяются крупногабаритные весы с большей погрешностью измерений.
Плотность вещества
Плотность вещества будет тем большей, чем больше плотность расположения атомов и молекул. При различных агрегатных состояниях вещества изменяется его плотность.
Не нашли что искали?
Просто напиши и мы поможем
Если вещество находится в твердом агрегатном состоянии, то степень его плотности выше, так как атомы при этом расположены плотнее. Если то же самое вещество пребывает в жидком агрегатном состоянии, его плотность уменьшается, но её значение очень близко к значению плотности в твёрдом состоянии. В газообразном агрегатном состоянии молекулы и атомы расположены на большом расстоянии друг от друга, поэтому плотность их расположения достаточно низкая. Соответственно плотность того же вещества будет иметь меньшее значение.
У веществ есть три агрегатных состояния — твердое, жидкое и газообразное.
Их характеристики — в таблице:
Агрегатные состояния
Свойства
Расположение молекул
Расстояние между молекулами
Движение молекулы
Твердое
сохраняет форму и объем
в кристаллической решетке
соотносится с размером молекул
колеблется около положения в кристаллической решетке
Жидкое
близко друг к другу
молекулы малоподвижны, при нагревании скорость движения увеличивается
Газообразное
занимает предоставленный объем
больше размеров молекул
хаотичное и непрерывное
В жизни мы встречаем вещества в газообразном состоянии, когда чувствуем запахи. Запах очень легко распространяется, потому что газ не имеет ни формы, ни объема (занимает весь предоставленный объем) и состоит из хаотично движущихся молекул, расстояние между которыми больше, чем размеры молекул.
Агрегатных состояний точно три?
На самом деле есть еще четвертое — плазма. Звучит как что-то из научной фантастики, но это просто ионизированный газ — газ, в котором, помимо нейтральных частиц, есть еще и заряженные. Ионизаторы воздуха как раз строятся на принципе перехода из газообразного вещества в плазму.
Модель идеального газа
В физике есть такое понятие, как модель. Модель — это что-то идеализированное, она нужна в случаях, когда можно пренебречь некоторыми параметрами объекта или процесса.
Идеальный газ — это модель реального газа. Молекулы идеального газа представляют собой материальные точки, которые не взаимодействуют друг с другом на расстоянии, но взаимодействуют при столкновениях друг с другом или со стенками сосуда. При работе с идеальным газом можно пренебречь потенциальной энергией молекул (но не кинетической).
В повседневной жизни идеальный газ, конечно, не встречается. Но реальный газ может вести себя почти как идеальный. Такое случается, если среднее расстояние между молекулами во много раз больше их размеров, то есть если газ очень разреженный.
Свойства идеального газа
Среднеквадратичная скорость
Потенциальной энергией молекул газа пренебречь можно, а вот кинетической — никак нельзя. Потому что кинетическая энергия — это энергия движения, а мы не можем пренебрегать скоростью движения молекул.
На графике показано распределение Максвелла — то, как молекулы распределяются по скоростям. Судя по графику, большинство молекул движутся со средним значением скорости. Хотя есть и быстрые, и медленные молекулы, просто их значительно меньше.
Но наш газ идеальный, а в идеальном газе случаются чудеса. Одно из таких чудес — то, что все молекулы идеального газа двигаются с одинаковой скоростью. Эта скорость называется средней квадратичной.
Средняя квадратичная скорость
v1, v2, vn — скорости разных молекул [м/с]
N — количество молекул [-]
Давление идеального газа
Молекулы газа беспорядочно движутся. Во время движения они сталкиваются друг с другом, а также со стенками сосуда, в котором этот газ находится. Поскольку молекул много, ударов тоже много.
Например, в комнате, в которой вы сейчас находитесь, за одну секунду на каждый квадратный сантиметр молекулы воздуха наносят столько ударов, что их количество выражается двадцатитрехзначным числом.
Хотя сила удара отдельной молекулы мала, действие всех молекул на стенки сосуда приводит к значительному давлению. Представьте, что комар пытается толкать машину — она не сдвинется с места. Но если за работу возьмется пара сотен миллионов комаров, то машину получится сдвинуть.
Эксперимент
Чтобы смоделировать давление газа, возьмите песок и лист бумаги, зажатый между двумя книгами. Песчинки будут выступать в роли молекул газа, а лист — в роли сосуда, в котором этот газ находится. Когда вы начинаете сыпать песок на лист бумаги, бумага отклоняется под воздействием множества песчинок. Так же и молекулы газа оказывают давление на стенки сосуда, в котором находятся.
Зависимость давления от других величин
Зависимость давления от объема
В механике есть формула давления, которая показывает, что давление прямо пропорционально силе и обратно пропорционально площади, на которую эта сила оказывается.
Давление
p = F/S
F — сила [Н]
S — площадь [м2]
То есть если наши двести миллионов комаров будут толкать легковую машину, они распределятся по меньшей площади, чем если бы толкали грузовой автомобиль, — просто потому, что легковушка меньше грузовика. Из формулы давления следует, что давление на легковой автомобиль будет больше из-за его меньшей площади.
Рассмотрим аналогичный пример с двумя сосудами разной площади.
Давление в левом сосуде будет больше, чем во втором, потому что его площадь меньше. А раз меньше площадь сосуда, то меньше и его объем. Значит, давление зависит от объема следующим образом: чем больше объем, тем меньше давление, и наоборот.
При этом зависимость будет не линейная, а примет вот такой вид (при условии, что температура постоянна):
Зависимость давления от объема называется законом Бойля-Мариотта. Она экспериментально проверяется с помощью такой установки:
Объем шприца увеличивают с помощью насоса, а манометр измеряет давление. Эксперимент показывает, что при увеличении объема давление действительно уменьшается.
Зависимость давления от температуры
Рассмотрим зависимость давления газа от температуры при условии неизменного объема определенной массы газа. Исследования в этой области впервые провел французский изобретатель Жак Шарль в XVIII веке.
В ходе эксперимента газ нагревали в большой колбе, соединенной с ртутным манометром в виде узкой изогнутой трубки. Незначительным увеличением объема колбы при нагревании можно пренебречь, как и столь же незначительным изменением объема при смещении ртути в узкой манометрической трубке. Таким образом, объем газа можно считать неизменным.
Подогревая воду в сосуде, окружающем колбу, ученый измерял температуру газа термометром, а давление — манометром.
Эксперимент показал, что давление газа увеличивается с увеличением температуры. Это связано с тем, что при нагревании молекулы газа движутся быстрее, из-за чего чаще ударяются о стенки сосуда.
С температурой все проще. Зависимость давления от температуры при постоянных объеме и массе будет линейной:
Эта зависимость называется законом Шарля в честь ученого, открывшего ее.
Основное уравнение МКТ
Основная задача молекулярно-кинетической теории газа заключается в том, чтобы установить соотношение между давлением газа и его микроскопическими параметрами: массой молекул, их средней скоростью и концентрацией. Это соотношение называется основным уравнением молекулярно-кинетической теории газа или кратко — основным уравнением МКТ.
В основе молекулярно-кинетической теории лежат три положения.
Молекулы химического вещества могут быть простыми и сложными, то есть состоять из одного или нескольких атомов. Молекулы и атомы представляют собой электрически нейтральные частицы. При определенных условиях молекулы и атомы могут приобретать дополнительный электрический заряд и превращаться в положительные или отрицательные ионы.
Мы уже выяснили, что причина давления газа на стенки — это удары молекул. Давление напрямую зависит от количества молекул — чем их больше, тем больше ударов о стенки и тем больше давление. А количество молекул в единице объема — это концентрация. Значит, давление газа зависит от концентрации.
Также давление пропорционально квадрату скорости, так как чем больше скорость молекулы, тем чаще она бьется о стенку сосуда. Расчеты показывают, что основное уравнение молекулярно-кинетической теории для идеального газа имеет следующий вид.
Основное уравнение МКТ
p = nkT
p — давление газа [Па]
T — температура газа [К]
m 0 — масса одной молекулы [кг]
v — средняя квадратичная скорость [м/с]
Коэффициент 1/3 обусловлен трехмерностью пространства: во время хаотического движения молекул все три направления равноправны.
Важный нюанс: средняя квадратичная скорость сама по себе не в квадрате! Ее формула указана выше, а в основном уравнении МКТ (да и не только в нем) она возведена в квадрат. Это значит, что формулу средней квадратичной скорости нужно подставлять не вместо v2, а вместо v— и потом уже возводить эту формулу в квадрат. Это часто провоцирует путаницу.
Мы знаем, что кинетическая энергия вычисляется по следующей формуле:
Кинетическая энергия
Ек = mv 2 /2
Ек — кинетическая энергия [Дж]
m — масса тела [кг]
v — скорость [м/с]
Для молекулы газа формула примет вид:
Средняя кинетическая энергия поступательного движения молекулы
Ек — средняя кинетическая энергия поступательного движения молекулы [Дж]
m0 — масса молекулы [кг]
v — скорость молекулы [м/с]
Из этой формулы можно выразить m0v 2 и подставить в основное уравнение МКТ. Подставим и получим, что давление идеального газа пропорционально произведению концентрации молекул на среднюю кинетическую энергию поступательного движения молекулы.
Основное уравнение МКТ
p — давление газа [Па]
n — концентрация [м-3]
E — средняя кинетическая энергия поступательного движения молекулы [Дж]
Хранение и транспортировка газов
Если нужно перевезти значительное количество газа из одного места в другое или если газ необходимо длительно хранить, его помещают в специальные прочные металлические сосуды. Из-за того, что при уменьшении объема увеличивается давление, газ можно закачать в небольшой баллон, но он должен быть очень прочным.
Сосуды, предназначенные для транспортировки газов, выдерживают высокие давления. Поэтому с помощью специальных насосов (компрессоров) туда можно закачать значительные массы газа, которые в обычных условиях занимали бы в сотни раз больший объем.
Поскольку давление газов в баллонах даже при комнатной температуре очень велико, их ни в коем случае нельзя нагревать. Например, держать под прямыми лучами солнца или пытаться сделать в них отверстие — даже после использования.
Известно, что масса тела зависит не только от его размеров, но и от вещества, из которого это тело состоит. Например, если изготовить цилиндр точно таких же размеров из алюминия, то его масса будет меньше массы эталона.
И наоборот, можно найти тела одинаковой массы, но это вовсе не будет означать, что их объемы будут равны.
Плотность позволяет узнать, чему равна масса данного вещества объемом в один кубический метр. Например, 1 м 3 чугуна имеет массу 7 т (то есть, 7 000 кг). А 1 м 3 древесины дуба имеет массу 7 ц (то есть, 700 кг).
Итак, в твердом состоянии вещества наиболее плотные, при переходе в жидкое состояние их плотность уменьшается, ну а при переходе в газообразное состояние плотность уменьшается в сотни и тысячи раз.
Приведем еще один интересный пример: это плотность планет Солнечной системы. Это Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран и Нептун. Юпитер, Сатурн, Уран и Нептун называют планетами-гигантами. Действительно, эти планеты в сотни раз превосходят размеры Земли. Но вот их плотность довольно мала, потому что они в основном состоят из водорода и гелия, находящихся в газообразном и жидком состоянии. Например, плотность Сатурна меньше плотности воды. Поэтому, если бы существовал достаточно большой океан, то Сатурн мог бы в нем плавать.
Другие четыре планеты – Меркурий, Венера, Земля и Марс называются планетами земной группы. Эти планеты состоят из твердых веществ, поэтому, их плотность в пять-шесть раз превышает плотность планет гигантов.
Что мы видим? С ростом размеров куба (зеленая строчка) площадь его поверхности (желтая строчка) постепенно растет (с 6 до 216). И объем куба (синяя строчка) тоже растет (с 1 до 216). Все растут, но объем растет быстрее, чем поверхность. Убедиться в этом можно с помощью красной строчки, которая показывает отношение поверхности к объему: на одну единицу объема у самого маленького кубика приходится шесть единиц поверхности, а у самого большого – только одна.
Как это можно оценить? Представьте, что каждая единица объема – это один «человечек», а единица поверхности – это окошко, через которое человечек может дышать. Тогда
и так далее; вы замечаете, что человечкам все тяжелее и тяжелее дышать?
То же самое для детей, которые не умеют вычислять площадь и поверхность куба
– Нет! Что мы, маленькие? Мы играем в сониплэйстейшен!
– Молодцы дети! Мы взяли кубики не для игры, а для изучения биологии! Представьте, что внутри кубика сидит человечек, а стороны кубика – это окошки, через которые он может проветривать комнату.
– У кубика 6 сторон – значит, у одного человечка 6 окошек и ему не душно. Теперь составьте вместе два кубика. Теперь человечков 2, а окошек осталось 10, то есть на каждого по 5.
– Теперь составьте 4 кубика квадратом. Человечков 4, окошек 16, на каждого по 4. А если поставить второй этаж, т.е. сделать суперкубик 2×2×2, то человечков будет 8, а окошек – 24, на каждого по 3. Вы чуете, что человечкам все труднее проветривать свои комнаты?
К – количество кубиков, С – количество сторон, оставшихся снаружи
Тема эта – сложная и малопонятная. Большинство моих учеников так и не врубается в нее – ни к девятому классу, ни к одинадцатому – а просто запоминают правило: чем больше организм, тем его поверхность относительно меньше, и наоборот. Но лучше все-таки не зубрить, а понять, поэтому настоятельно рекомендую вам взять свои личные кубики (в которые вы до сих пор играете в тайне от всех) и посчитать все самому. Дело того стоит: правило соотношения объема и поверхности очень часто используется в нашем биологическом хозяйстве. Вот вам парочка примеров.
Учение о мегаворобье
Массаптицы – это объем, умноженный на плотность, а площадь крыльев– это поверхность. Отсюда становится ясно, что с увеличением размера птицы её масса (кубическая функция) будет расти быстрее, чем размер крыльев (квадратичная функция). Медленно растущим крыльям будет все тяжелее поднимать быстро растущую массу.
Практическая работа: берем воробья и увеличиваем его длину в 10 раз. Масса птицы при этом увеличится в 1000 раз (10 3 ), а площадь крыльев – только в 100 раз (10 2 ). Получим нелетающего воробья, радость всех хищников района. Чтобы сделать нашего мегаворобья летающим, нужен второй шаг: увеличение площади крыльев еще в 10 раз. Славная получится тварь!
Почему полные потеют
Количество тепла, вырабатываемого организмом, зависит от количества клеток, т.е. от объема. Отдача тепла в окружающую среду происходит через поверхность тела. Следовательно, с увеличением размеров тела теплопродукция (кубическая функция) растет быстрее, чем теплоотдача (квадратичная функция). Поэтому крупным животным тяжело охлаждаться, для них существует опасность перегрева (и наоборот, мелкие звери все время рискуют переохладиться).
Слон со своим большим размером имеет, совершенно ясно, очень большую поверхность. Но относительно объемаего поверхность очень маленькая. Для того, чтобы избавляться от лишнего тепла, слон использует огромные уши. Нужны они совсем не для хорошего слуха (хороший слух, например, у хищников – у них уши небольшие), а для увеличения поверхности тела, через которую происходит теплоотдача.
На этом месте дети спрашивают: «А почему же тогда слон живет на юге – в Индии и Африке – там ведь и так жарко?». Ответ: к сожалению, в наших прохладных широтах слон не смог бы найти себе достаточно пропитания (и куда бы он прятался во время зимы?) Мамонты (родственнники слона, живышие в чуть более прохладных условиях), экономили тепло: они имели нормального размера уши и шерсть (как и положено млекопитающим).
Жена, пока рисовала этот рисунок, несколько раз пожаловалась, что слон – типичный инопланетянин, только посмотрите на него! Действительно, для русских слон – вполне обычный зверь, даже родной, но это исключительно благодаря таланту Корнея Ивановича Чуковского: «И Слониха-щеголиха, стопудовая купчиха, и Жираф – важный граф, вышиною с телеграф». (Чуковский К.И. «Крокодил») Жители других стран, лишенные Чуковского, воспринимают слона совсем по-другому: «Ножищи его были как деревья, ушищи хлопали, как паруса, длинный хобот подъят, будто грозный, готовый наброситься змей, маленькие глазки воспалены». (Скромби С. «Доставка ценных грузов: советы специалиста»)