Чем больше острый угол прямоугольного треугольника тем больше
Прямоугольный треугольник
Прямоугольный треугольник – треугольник, в котором один угол прямой (то есть равен 90˚).
Сторона, противоположная прямому углу, называется гипотенузой прямоугольного треугольника.
Признаки равенства прямоугольных треугольников
Если катеты одного прямоугольного треугольника соответственно равны катетам другого прямоугольного треугольника, то такие треугольники равны ( по двум катетам ).
Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого прямоугольного треугольника, то такие треугольники равны ( по катету и острому углу ).
Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны ( по гипотенузе и острому углу ).
Если гипотенуза и катет одного прямоугольного треугольника равны гипотенузе и катету другого прямоугольного треугольника, то такие треугольники равны ( по гипотенузе и катету ).
Свойства прямоугольного треугольника
1. Сумма острых углов прямоугольного треугольника равна 90˚.
2. Катет, противолежащий углу в 30˚, равен половине гипотенузы.
И обратно, если в треугольнике катет вдвое меньше гипотенузы, то напротив него лежит угол в 30˚.
3. Теорема Пифагора:
, где
– катеты,
– гипотенуза. Видеодоказательство
4. Площадь прямоугольного треугольника с катетами
:
5. Высота прямоугольного треугольника, проведенная к гипотенузе выражается через катеты
и гипотенузу
следующим образом:
6. Центр описанной окружности – есть середина гипотенузы.
7. Радиус описанной окружности есть половина гипотенузы
:
8. Медиана, проведенная к гипотенузе, равна ее половине
9. Радиус вписанной окружности выражается через катеты
и гипотенузу
следующим образом:
Тригонометрические соотношения в прямоугольном треугольнике смотрите здесь.
Прямоугольные треугольники
Катетами называются две стороны треугольника, которые образуют прямой угол. Гипотенузой называется сторона, лежащая напротив прямого угла.
Некоторые свойства прямоугольного треугольника:
7. Медиана прямоугольного треугольника, проведенная к его гипотенузе, делит треугольник на два равнобедренных треугольника, основаниями, которых являются катеты данного треугольника.
В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.
Соотношение между сторонами и углами в прямоугольном треугольнике:
5. В прямоугольном треугольнике синус одного острого угла равен косинусу другого острого угла.
6. Синусы, косинусы, тангенсы и котангенсы острых равных углов равны.
7. Синусы смежных углов равны, а косинусы, тангенсы и котангенсы отличаются знаками: для острых углов положительные значения, для тупых углов отрицательные значения.
Значения тригонометрических функций некоторых углов:
Площадь прямоугольного треугольника равна половине произведения его катетов
Подставим найденное значение в формулу косинуса
Квадрат высоты, проведенной к гипотенузе, равен произведению отрезков, на которые высота поделила гипотенузу.
В прямоугольном треугольнике : квадрат катета равен произведению гипотенузы на проекцию этого катета на гипотенузу.
Произведение катетов прямоугольного треугольника равно произведению его гипотенузы на высоту, проведенную к гипотенузе.
Прямоугольный треугольник, свойства, признаки и формулы
Прямоугольный треугольник, свойства, признаки и формулы.
Прямоугольный треугольник – это треугольник, в котором один угол прямой (то есть составляет 90°).
Прямоугольный треугольник (понятие, определение):
Прямоугольный треугольник – это треугольник, в котором один угол прямой (то есть составляет 90°).
Сторона, противоположная прямому углу, называется гипотенузой. Гипотенуза (с греч. ὑποτείνουσα – «натянутая») – это самая длинная сторона прямоугольного треугольника, противоположная прямому углу.
Для непрямоугольного треугольника гипотенуза и катеты не существуют.
Рис. 1. Прямоугольный треугольник
АВ, АС – катеты прямоугольного треугольника, ВС – гипотенуза прямоугольного треугольника, ∠ ВАС = 90°
Равнобедренный прямоугольный треугольник — это треугольник, являющийся одновременно равнобедренным и прямоугольным. В этом треугольнике каждый острый угол равен 45°.
Признаки равенства прямоугольных треугольников:
Признаки равенства прямоугольных треугольников основаны и вытекают из общих признаков равенства треугольников.
1. Равенство по двум катетам.
Если катеты одного прямоугольного треугольника соответственно равны катетам другого прямоугольного треугольника, то такие треугольники равны.
Рис. 2. Равенство прямоугольных треугольников по двум катетам
2. Равенство по катету и прилежащему острому углу.
Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого прямоугольного треугольника, то такие треугольники равны.
Рис. 3. Равенство прямоугольных треугольников по катету и прилежащему углу
3. Равенство по гипотенузе и острому углу.
Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны.
Рис. 4. Равенство прямоугольных треугольников по гипотенузе и острому углу
4. Равенство по гипотенузе и катету.
Если гипотенуза и катет одного прямоугольного треугольника соответственно равны гипотенузе и катету другого прямоугольного треугольника, то такие треугольники равны.
Рис. 5. Равенство прямоугольных треугольников по гипотенузе и катету
5. Равенство по катету и противолежащему острому углу.
Если катет и противолежащий острый угол одного прямоугольного треугольника соответственно равны катету и острому углу другого прямоугольного треугольника, то такие треугольники равны.
Рис. 6. Равенство прямоугольных треугольников по катету и противолежащему острому углу
Свойства прямоугольного треугольника:
1. В прямоугольном треугольнике сумма двух острых углов равна 90°.
И наоборот, если в прямоугольном треугольнике катет вдвое меньше гипотенузы, то напротив него лежит угол в 30˚.
Рис. 7. Прямоугольный треугольник с острым углом 30˚
3. Теорема Пифагора:
Сумма квадратов катетов равна квадрату гипотенузы.
где a, b – катеты, c – гипотенуза.
4. В прямоугольном треугольнике центр описанной окружности – есть середина гипотенузы.
И соответственно радиус описанной окружности (R) равен половине гипотенузы.
,
Рис. 9. Прямоугольный треугольник и описанная окружность
5. В прямоугольном треугольнике медиана, падающая на гипотенузу, равна половине гипотенузы.
Рис. 10. Прямоугольный треугольник и медиана, падающая на гипотенузу
АМ – медиана прямоугольного треугольника, падающая на гипотенузу, АМ = ВМ = МС, АМ = ВС/2
6. В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника подобные исходному.
Рис. 11. Прямоугольный треугольник и высота, проведенная из вершины прямого угла
Формулы прямоугольного треугольника:
Пусть a и b – длины катетов прямоугольного треугольника, с – длина гипотенузы прямоугольного треугольника, h – высота прямоугольного треугольника, проведенная к гипотенузе (АН), R – радиус описанной окружности, r – радиус вписанной окружности (см. Рис. 9, 11, 12).
Формулы сторон прямоугольного треугольника (a, b, c) по теореме Пифагора:
a 2 = c 2 – b 2 ,
b 2 = c 2 – a 2 .
Формула радиуса вписанной окружности (r):
.
Рис. 12. Прямоугольный треугольник и вписанная окружность
Формула радиуса описанной окружности (R):
.
Формулы площади (S) прямоугольного треугольника:
.
Формулы высоты (h)прямоугольного треугольника:
.
Геометрия. 7 класс
Конспект урока
Перечень рассматриваемых вопросов:
Остроугольный треугольник – треугольник, у которого все углы острые.
Тупоугольный треугольник – треугольник, у которого два угла острые, а третий – тупой.
Прямоугольный треугольник – треугольник, у которого один угол – прямой, т.е. равный 90°. Сторона прямоугольного треугольника, лежащая напротив прямого угла, называется гипотенузой, а две другие стороны – катетами.
Внешним углом треугольника называется угол, смежный любому углу треугольника. Его градусная мера равна сумме двух углов треугольника, не смежных с ним.
Теоретический материал для самостоятельного изучения.
Давайте рассмотрим виды треугольников. Существуют следующие виды:
Обратите внимание, на рисунке изображён треугольник АВС с прямым углом С, в прямоугольном треугольнике гипотенуза всегда является самой большой стороной.
Рассмотрим свойства прямоугольного треугольника:
Рассмотрим прямоугольный треугольник АВС, в котором ∠А – прямой, ∠В = 30° и, значит, ∠С = 60°.
Докажем, что FC = ½ BC
Достроим к треугольнику АВС равный ему треугольник ABD так, как у нас показано на рисунке. Получим треугольник ВСD, в котором ∠В = ∠D = 60°, поэтому DC = BC (по признаку равнобедренного треугольника). Но АС = ½ DC. Следовательно, АС = ½BC, что и требовалось доказать.
Рассмотрим прямоугольный треугольник АВС, у которого катет АС равен половине гипотенузы ВС. Докажем, что ∠АВС = 30°.
Достроим к треугольнику АВС равный ему треугольник ABD так, как у нас показано на рисунке. Получим равносторонний треугольник BCD. Углы равностороннего треугольника равны друг другу (т.к. сумма углов треугольника равна 180°, а в равностороннем треугольнике все углы равны, следовательно, 180° : 3= 60° – каждый угол равностороннего треугольника). В частности, ∠DВС = 60°. Но ∠DВС= 2∠АВС. Следовательно, ∠АВС = 30°, что и требовалось доказать.
Признаки равенства прямоугольных треугольников.
Так как в прямоугольном треугольнике угол между двумя катетами прямой, а любые два прямых угла равны, то из первого признака равенства треугольников следует:
если катеты одного прямоугольного треугольника соответственно равны катетам другого, то такие треугольники равны.
Далее из второго признака равенства треугольников следует:
если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему другого, то такие треугольники равны.
Рассмотрим ещё два признака равенства прямоугольных треугольников.
Теорема. Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого, то такие треугольники равны.
Дано: ∆АВС и ∆НМХ, ∠С = ∠Х = 90°, АВ = НМ, ∠А = ∠Н.
Доказать: ∆АВС и ∆НМХ
Доказательство. Из первого свойства прямоугольных треугольников мы можем сделать вывод, что в таких треугольниках два других острых угла также равны, поэтому треугольники равны по второму признаку равенства треугольников (по стороне и двум прилежащим к ней углам). Теорема доказана.
Разбор заданий тренировочного модуля.
№ 1.Найдите острые углы прямоугольного равнобедренного треугольника.
Объяснение. Мы знаем, что сумма двух острых углов в прямоугольном треугольнике равна 90°, а в равнобедренном треугольнике углы при основании равны, следовательно, можно вычислить градусную меру острого угла прямоугольного равнобедренного треугольника: 90° : 2= 45°.
Ответ: острый угол прямоугольного равнобедренного треугольника равен 45°.
№ 2.Опираясь на рисунок, укажите, по какому признаку равны треугольники.
Объяснение. На рисунке указано равенство катетов МС и ВС, углы МСН и ВСА вертикальны, значит, они равны. Следовательно, треугольники АВС и НСМ равны по катету и прилежащему к нему острому углу, подходит ответ 1.
Ответ: 1. по катету и прилежащему к нему острому углу.
Свойства прямоугольного треугольника
В данной публикации мы рассмотрим определение и свойства прямоугольного треугольника. Также разберем пример решения задачи для закрепления изложенного материала.
Определение прямоугольного треугольника
Прямоугольным называют треугольник, в котором один из трех углов является прямым, т.е. равным 90°.
Прямоугольный треугольник может быть равнобедренным – когда оба катета равны, а угол между каждым из них и гипотенузой составляет 45°.
Свойства прямоугольного треугольника
Свойство 1
Сумма двух острых углов прямоугольного треугольника равняется 90°.
α + β = 90°
Сумма всех углов любого треугольника составляет 180°. Т.к. один угол равен 90°, на два других, также, остается 90°.
Свойство 2
Катет прямоугольного треугольника, расположенный напротив угла в 30°, равняется половине его гипотенузы.
В нашем случае, катет AB лежит напротив ∠ACB = 30°. Следовательно:
Если длина одного из катетов прямоугольного треугольника в два раза меньше длины его гипотенузы, значит угол напротив этого катета равняется 30°.
Свойство 3
Терему Пифагора можно, также, отнести к свойствам прямоугольного треугольника. Согласно ее формулировке, сумма квадратов катетов (a и b) равняется квадрату гипотенузы (c).
Таким образом, гипотенуза прямоугольного треугольника больше любого из его катетов.
Свойство 4
Медиана, опущенная на гипотенузу прямоугольного треугольника (проведенная из вершины прямого угла), равняется половине гипотенузы.
Свойство 5
Середина гипотенузы прямоугольного треугольника – это центр описанной вокруг него окружности.
Согласно свойству 4, рассмотренному выше, медиана BO равняется половине гипотенузы AC и, одновременно, радиусу окружности, описанной вокруг △ABC.
Пример задачи
В качестве примера давайте рассмотрим второе свойство, представленное выше. Допустим у нас имеется прямоугольный треугольник ABC с прямым углом в вершине C. Катет BC расположен напротив угла в 30°. Нужно доказать, что BC в два раза меньше гипотенузы AB.
Решение
Нарисуем чертеж по условиям задачи, и зеркально отразим получившийся треугольник.
Получаем △ABD, в котором ∠BAD равен 60° (30° + 30°). Т.к. все три угла данного треугольника равны, он является равносторонним. Следовательно, AD = AB = BD.
Отрезки BC и CD равны между собой (зеркально отраженные), и каждый из них составляет половину BD. Как мы уже выяснили, BD равняется AB.
Таким образом, BC в два раза меньше AB (или AB = 2BC).