Чем выше относительная влажность воздуха тем выше интенсивность транспирации

Влияние условий на процесс транспирации

Внешние условия не только регулируют степень открытости устьиц, но и оказывают влияние непосредственно на процесс транспирации. Зависимость интенсивности испарения от условий среды подчиняется уравнению Дальтона. Транспирация также подчиняется этой формуле, правда, с отклонениями. Чем больше дефицит влажности воздуха, тем ниже (более отрицателен) его водный потенциал и тем быстрее идет испарение. Это в целом справедливо и для транспирации. Однако надо учесть, что при недостатке воды в листе вступает в силу устьичная и внеустьичная регулировка, благодаря чему влияние внешних условий сказывается в смягченном виде и транспирация начинает возрастать медленнее, чем это следовало бы, исходя из формулы Дальтона. Несмотря на это, общая закономерность зависимости транспирации от насыщенности водой атмосферы остается справедливой. Чем меньше относительная влажность воздуха, тем выше интенсивность транспирации. Следующим фактором среды, оказывающим влияние на процесс транспирации, является температура. Влияние температуры можно проследить также исходя из уравнения Дальтона. С повышением температуры значительно увеличивается количество паров воды, которое насыщает данное пространство. Возрастание упругости паров воды приводит к повышению дефицита влажности. В связи с этим с повышением температуры транспирация увеличивается.

Сильное влияние на транспирацию оказывает свет. Если влияние влажности атмосферы и температуры с большей силой сказывается на испарении со свободной водной поверхности, то свет сильнее влияет именно на транспирацию.

1. На свету, благодаря тому, что зеленые листья поглощают определенные участки солнечного спектра, повышается температура листа, и это вызывает усиление процесса транспирации. В связи с этим действие света на транспирацию проявляется тем сильнее, чем выше содержание хлорофилла. У зеленых растений даже рассеянный свет повышает транспирацию на 30—40%.

2. Под влиянием света устьица раскрываются.

3. Увеличивается проницаемость цитоплазмы для воды, что также, естественно, увеличивает скорость ее испарения. Все это в целом приводит к тому, что на свету транспирация идет во много раз интенсивнее, чем в темноте.

П.Л. Генкель и Н.И. Антипов считают, что постепенное снижение интенсивности транспирации в процессе онтогенеза как органа, так и растения в целом может служить подтверждением биогенетического закона (онтогенез повторяет филогенез). Действительно, имеется соответствие между тем, как шло приспособление растений к наземному образу жизни в филогенезе и к лучшему сохранению влаги в онтогенезе (рекапитуляция).

Смена дня и ночи, изменение условий в течение суток наложили отпечаток и на процесс транспирации. Как устьичные движения, так и транспирация имеют свой определенный суточный ход. Английский исследователь Д. Лофтфельд разделил все растения в отношении суточного хода устьичных движений на три группы:

1. Растения, у которых ночью устьица всегда закрыты. Утром устьица открываются, и их дальнейшее поведение в течение дня зависит от условий среды. Мало воды — они закрываются, достаточно воды — открываются. К этой группе относятся в первую очередь хлебные злаки.

2. Растения, у которых ночное поведение устьиц зависит от дневного. Если днем устьица были закрыты, то ночью они открываются, если днем были открыты, то ночью закрываются. К этой группе принадлежат растения с тонкими листьями — люцерна, горох, клевер, свекла, подсолнечник.

3. Растения с более толстыми листьями, у которых ночью устьица всегда открыты, а днем, как и у всех остальных групп растений, открыты или закрыты в зависимости от условий (картофель, капуста).

Что касается суточного хода транспирации, то в ночной период суток транспирация резко сокращается. Это связано как с изменением внешних факторов (повышение влажности воздуха, снижение температуры, отсутствие света), так и с внутренними особенностями (закрытие устьиц). Измерения показывают, что ночная транспирация составляет всего 3—5% от дневной. Дневной ход транспирации обычно следует за изменением напряженности основных метеорологических факторов (освещенности, температуры, влажности воздуха). Наиболее интенсивно транспирация происходит в 12—13 ч. Ведущим в этом комплексе внешних воздействий будет напряженность солнечной инсоляции. Интересно, что растения с разным расположением листьев несколько различаются по суточному ходу транспирационного процесса. На листья, повернутые ребром к горизонту, солнечные лучи начинают падать раньше. В связи с этим подъем транспирации у таких растений в утренние часы также начинается несколько раньше. В случае недостатка влаги кривая суточного хода транспирационного процесса из одновершинной превращается в двухвершинную, в полуденные часы интенсивность транспирации сокращается благодаря закрытию устьиц. Это позволяет растению восполнить недостаток воды, и тогда к вечеру транспирация снова возрастает. При частом измерении транспирации можно заметить, что этому процессу свойственно ритмичное увеличение и уменьшение интенсивности. По-видимому, это связано главным образом с колебанием содержания воды в растении. Увеличение транспирации приводит к уменьшению содержания воды, что, в свою очередь, сокращает интенсивность транспирации. Как следствие, содержание воды растет, и транспирация также возрастает, и так непрерывно. Напряженность транспирации, а также ее связь с другими процессами, в частности с фотосинтезом, принято выражать в следующих единицах.

Интенсивность транспирации — это количество воды, испаряемой растением (в г) за единицу времени (ч) единицей поверхности листа (в дм 2 ). Эта величина колеблется в пределах 0,15—1,47 г/дм 2 x ч.

Транспирационный коэффициент—количество воды (в г), испаряемой растением при накоплении им 1 г сухого вещества. Транспирационные коэффициенты заметно колеблются у одного и того же растения в зависимости от условий среды. Все же в некоторой степени они могут служить показателем требований растений к влаге. Так, если транспирационный коэффициент пшеницы, в зависимости от условий, колеблется от 217 до 755 г Н20/г сухого вещества, то для проса эти величины значительно ниже и составляют 162—447. Значительно более экономное расходование воды растениями проса является одной из причин большой устойчивости этого растения к засухе. Особенно важно подчеркнуть, что транспирационный коэффициент резко падает на фоне достаточного снабжения питательными элементами. Так, по данным И.С. Шатилова, транспирационные коэффициенты на фоне удобрений снизились для озимой пшеницы с 417 до 241, для овса с 257 до 177. Эти данные хорошо подчеркивают значение удобрений как фактора, влияющего на более экономное расходование растениями воды.

Продуктивность транспирации — величина, обратная транспирационному коэффициенту,— это количество сухого вещества (в г), накопленного растением за период, когда оно испаряет 1 кг воды. Относительная транспирация — отношение воды, испаряемой листом, к воде, испаряемой со свободной водной поверхности той же площади за один и тот же промежуток времени. Экономность транспирации — количество испаряемой воды (в мг) на единицу (1 кг) воды, содержащейся в растении. Тонколистные растения расходуют за час больше воды по сравнению с растениями с мясистыми листьями, которые испаряют 8—20% от общего количества содержащейся в них воды.

Источник

Влияние условий на процесс транспирации

1. Движения устьиц регулируются гормонами растений (фитогормонами).

2. Чем меньше относительная влажность воздуха, тем выше интенсивность транспирации.

3. С повышением температуры транспирация увеличивается. При температуре ниже 0°С устьица не открываются. Повышение температуры выше 30°С вызывает закрытие устьиц.

4. Свет оказывает сильное влияние на транспирацию. На свету, благодаря тому, что зеленые листья поглощают определенные участки солнечного спектра, повышается температура листа, и это вызывает усиление процесса транспирации.

5. Чем выше содержание хлорофилла, тем интенсивнее процесс транспирации.

6. С уменьшением влажности почвы транспирация уменьшается. Чем меньше воды в почве, тем меньше ее в растении.

7. Уменьшение содержания воды в растительном организме автоматически снижает процесс транспирации в силу устьичной и внеустьичной регулировки.

8. Ветер, перемешивая слои воздуха, очень сильно увеличивает скорость испарения. Усиливается, прежде всего, кутикулярная транспирация.

9. Уменьшение содержания воды в растении уменьшает интенсивность транспирации. Чем концентрированнее клеточный сок, тем слабее транспирация.

10. Интенсивность транспирации зависит от эластичности (способности к обратимому растяжению) клеточных стенок.

11. Транспирация изменяется в зависимости от величины листовой поверхности, а также при изменении соотношения корни/побеги. Чем больше развита листовая поверхность, больше побеги, тем значительнее общая потеря воды. Однако в процессе естественного отбора у растений выработалась компенсирующая способность к меньшему испарению с единицы поверхности листа (меньшая интенсивность транспирации) при увеличении листовой поверхности.

Так, в опытах с сахарной свеклой было показано, что при возрастании поверхности листьев в 5 раз потеря воды в процессе транспирации увеличилась всего в 3 раза.

12. С увеличением отношения корни/побеги интенсивность транспирации возрастает.

13. Интенсивность транспирации зависит от фазы развития. С увеличением возраста растений транспирация падает. Высокая интенсивность испарения у молодых листьев может происходить за счет усиления кутикулярной транспирации, кутикула в этот период еще слабо развита.

Все растения в отношении суточного хода устьичных движений делятся на три группы

1. Растения, у которых ночью устьица всегда закрыты. Утром устьица открываются, и их дальнейшее поведение в течение дня зависит от условий среды. Мало воды — они закрываются, достаточно воды — открываются. К этой группе относятся в первую очередь хлебные злаки.

2. Растения, у которых ночное поведение устьиц зависит от дневного. Если днем устьица были закрыты, то ночью они открываются, если днем были открыты, то ночью закрываются. К этой группе принадлежат растения с тонкими листьями — люцерна, горох, клевер, свекла, подсолнечник.

3. Растения с более толстыми листьями, у которых ночью устьица всегда открыты, а днем, как и у всех остальных групп растений, открыты или закрыты в зависимости от условий (картофель, капуста). Наиболее интенсивно транспирация происходит в 12—13 ч.

Интенсивность транспирации — это количество воды, испаряемой растением (в г) за единицу времени (ч) единицей поверхности листа (в дм 2 ).

Транспирационный коэффициент—количество воды (в г), испаряемой растением при накоплении им 1 г сухого вещества.

Продуктивность транспирации — величина, обратная транспирационному коэффициенту,— это количество сухого вещества (в г), накопленного растением за период, когда оно испаряет 1 кг воды.

Тонколистные растения расходуют за час больше воды по сравнению с растениями с мясистыми листьями, которые испаряют 8—20% от общего количества содержащейся в них воды.

Обмен веществ

Организмы представляют собой открытые энергетические системы, непрерывно обменивающиеся с окружающей средой веществом и энергией. Метаболизм, или обмен веществ лежит в основе всех проявлений жизни. Различают внешний обмен – поглощение и выделение ве­ществ, и внутренний обмен – химическое превращение этих веществ в клетке. Об­мен веществ и поддержание целостности структуры любой живой системы тре­буют затраты определенной энергии и, следовательно, ее поступления извне.

Первичным источником энергии у автотрофных организмов служит либо свет (у фототрофов), либо различные химические реакции (у хемотрофов). Существование большинства живых организмов на Земле невозможно без использования запасенной энергии. Такая энергия накапливается в виде энергии химических связей углеводов, жиров и белков. Передатчиками энергии при ее поступлении и расходовании служат высокоэнергетические соединения типа АТФ (аденозинтрифосфата).

Тело растений строится в процессе обмена веществ. Превращение чуже­родных веществ в вещества собственного тела получило название ассимиляции. Ассимиляция всегда сопряжена с расходованием энергии.

Распад веществ, образующих организм, до более простых соединений называется диссимиляцией. При диссимиляции энергия высвобождается. Ассимиляция и диссимиляция представляют собой взаимосвязанные процессы обмена веществ и энергии в живых системах.

Помимо обмена веществ, происходящих в клетках, сами клетки обмениваются веществами с окружающей средой. Этот обмен происходит либо в виде свободного (пассивного) транспорта за счет энергии передвигающихся частиц в ходе диффузии и осмоса, либо в виде активного транспорта, при котором затрачивается определенная часть энергии, образующейся при диссимиляции. Другая ее часть расходуется на синтез структурных компонентов клетки и поддержание ее гомеостаза. Главнейшую роль в регуляции обмена веществ между клеткой и средой играет цитоплазматическая мембрана (плазмалемма), а в пределах клетки – эндоплазматическая сеть.

Основное количество используемой организмом энергии высвобождается в результате диссимиляции. В про­цесс диссимиляции вовлекаются запасные вещества клетки и всего организма.

Известно 2 основных процесса дисси­миляции: брожение и дыхание.

1. Брожение эволюционно более древний и энергетически менее выгодный процесс. В ходе брожения различные энергетически богатые субстраты (чаще всего углеводы) расщепляются до менее богатых соединений (спирта, масляной, молочной, уксусной кислот). Брожение характерно для многих прокариот и некоторых грибов. Например, процесс спиртового брожения суммарно можно выразить уравнением:

Из этого уравнения видно, что при сбраживании 1 молекулы сахара (глюкозы) образуется только 2 молекулы АТФ.

2. Дыхание энергетически более совер­шенно. В основе дыхания лежит биологи­ческое окисление в так называемой цепи дыхания, содержащей специальные фер­менты – оксиредуктазы. При полном окислении молекулы глюкозы до воды и диоксида углерода образуется 38 молекул АТФ:

Энергетически богатые субстраты в процессе дыхания окисляются до крайне бедных энергией соединений – воды и диоксида углерода.

У большинства организмов в окислитель­но-восстановительных процессах активно используется кислород. Важнейшие этапы процесса дыхания у эукариотических ор­ганизмов осуществляются в митохон­дриях.

Интенсивность дыхания меняется в ходе развития растения. Сухие покоя­щиеся семена дышат слабо. При набуха­нии и последующем прорастании семян интенсивность дыхания усиливается в сотни и тысячи раз. Самой высокой ин­тенсивностью дыхания отличаются бы­стро растущие органы и ткани. С оконча­нием периода активного роста растений дыхание их тканей ослабевает, что свя­зано с процессами старения прото­пласта.

Существует две формы ассимиляции: автотрофная и гетеротрофная.

Автотрофная ассимиляция имеет огромное значение для живых существ, поскольку создает первичную продукцию, являю­щуюся основой всех цепей питания в эко­системах. При автотрофной ассимиляции неорганические вещества превращаются в органические. Этот процесс наиболее сложен.

Гетеротрофная ассимиляция от­носительно проще, поскольку здесь про­исходит превращение одних органических веществ в другие. Она типична для боль­шинства животных, грибов и части про­кариот.

Поскольку органические вещества представляют собой соединения углеро­да, решающее значение при создании первичной продукции имеет ассимиляция СО2. Это процесс восстановления, ко­торый ведет от максимально окисленного исходного вещества СО2 к менее окис­ленным продуктам, таким, как углеводы (СН2О)n. У растений и цианобактерий донором электронов, необходимых для восстановления углерода, служит вода, которая при отнятии электрона окисляет­ся до кислорода. Такое преобразование энергии света называется аэробным (кислородным) фотосинтезом.

Реже, у фотобактерий, донором электронов выступают молекулярная сера или сероводород, водород или некоторые органические вещества. Кислород при таком процессе не выделяется. Такое преобразование энергии света в хи­мическую энергию получило название анаэробного (бескислородного) фотосинтеза.

Относительно редко донорами элек­тронов при автотрофной ассимиляции выступают различные неорганические со­единения, например водород в метанообразующих бактериях, а энергия посту­пает в результате окисления сероводоро­да (Н2S), аммиака (NН3). Это процессы хемосинтеза. Солнечный свет для существования хемосинтезирующих организмов не нужен и все процессы мо­гут протекать анаэробно.

Источник

Зависимость интенсивности испарения от площади поверхности листа

Муниципальное бюджетное общеобразовательное учреждение

средняя общеобразовательная школа № 75/42

Зависимость интенсивности испарения

от площади поверхности листа

Черенкова Светлана Валерьевна,

1 квалификационной категории

ГЛАВА 1. Общие сведения о транспирации в растениях……………….

1. 1. Характеристика процесса транспирации………..………………….

1.2. Общая характеристика листа и его функции………………………..

1.3. Лист как орган транспирации……………………………………..….

1.4. Влияние условий на процесс транспирации…………………………

ГЛАВА 2. Практическая часть ………………………………………….

2.2. Результаты исследования …………………………………………….

Лист является важнейшим органом растений, и выполняет разные функции: фотосинтез – образование органических веществ из неорганических на свету, запасание веществ, газообмен, вегетативное размножение, испарение.

Транспирация спасает растение от перегрева, который ему грозит на прямом солнечном свете. Температура сильно транспирирующего листа может примерно на 7°С быть ниже температуры листа завядающего, нетранспирирующего. Это особенно важно в связи с тем, что, перегрев, разрушая хлоропласты, резко снижает процесс фотосинтеза (оптимальная температура для процесса фотосинтеза около 30-33°С). Именно благодаря высокой транспирирующей способности многие растения хорошо переносят повышенную температуру. Большая поверхность листьев имеет огромное значение для питания растений и для испарения большого количества воды.

В данной работе мы рассматриваем только оду из функций – испарение воды листьями, что защищает растение от перегревания, удаляет избыток воды и ненужных веществ.

Выбранную тему исследовательской работы считаю актуальной, так как данные, полученные по результатам работы, можно использовать при ведении огорода, в садоводстве, в комнатном цветоводстве.

Все перечисленное выше и обусловило выбор и актуальность темы настоящей работы.

Цель: изучить зависимость площади листа и интенсивности испарения.

В связи с этим были поставлены следующие задачи:

Рассмотреть механизм процесса транспирации

Изучить строение листа и его функции

Определить зависимость скорости испарения от площади листа

Объект исследования : листья разной площади.

Предмет исследования : процесс испарения.

Гипотеза исследования : площадь листа влияет на скорость испарения.

ГЛАВА I . ОБЩИЕ СВЕДЕНИЯ О ТРАНСПИРАЦИИ В РАСТЕНИЯХ

Характеристика процесса транспирации

В основе расходования воды растительным организмом лежит процесс испарения – переход воды из жидкого в парообразное состояние, происходящий при соприкосновении органов растения с ненасыщенной водой атмосферой. Однако этот процесс осложнен физиологическими и анатомическими особенностями растения, и его называют транспирацией [3].

Количество воды, испаряемой растением, во много раз превосходит объем содержащейся в нем воды. Экономный расход воды составляет одну из важнейших проблем сельскохозяйственной практики. К.А. Тимирязев назвал транспирацию в том объеме, в каком она идет, «необходимым физиологическим злом». Действительно, в обычно протекающих размерах транспирация не является необходимой. Так, если выращивать растения в условиях высокой и низкой влажности воздуха, то, естественно, в первом случае транспирация будет идти со значительно меньшей интенсивностью. Однако рост растений будет одинаков или даже лучше там, где влажность воздуха выше, а транспирация меньше. Вместе с тем транспирация в определенном объеме полезна растительному организму:

1. Транспирация спасает растение от перегрева, который ему грозит на прямом солнечном свете. Температура сильно транспирирующего листа может примерно на 7°С быть ниже температуры листа завядающего, нетранспирирующего. Это особенно важно в связи с тем, что, перегрев, разрушая хлоропласты, резко снижает процесс фотосинтеза (оптимальная температура для процесса фотосинтеза 20-25°С). Именно благодаря высокой транспирирующей способности многие растения хорошо переносят повышенную температуру.

2. Транспирация создает непрерывный ток воды из корневой системы к листьям, который связывает все органы растения в единое целое.

3. С транспирационным током передвигаются растворимые минеральные и частично органические питательные вещества, при этом, чем интенсивнее транспирация, тем быстрее идет этот процесс [5].

1.2. Общая характеристика листа и его функции

Лист один из основных органов высших растений, занимающий боковое положение на стебле.

защита растения (чешуи, колючки, прикрепление к опоре усиками);

1.3. Лист как орган транспирации

Основным транспирирующим органом является лист. Средняя толщина листа составляет 100-200 мкм. Паренхимные клетки листа расположены рыхло, между ними имеется система межклетников, которые занимают от 15 до 25% объемалиста. Эпидермис – покровная ткань листа, состоит из компактно расположенных клеток, наружные стенки которых утолщены. Кроме того, листья большинства растений покрыты кутикулой. Кутикула варьирует как по составу, так и по толщине. Более развитой кутикулой характеризуются листья светолюбивых растений по сравнению с теневыносливыми и засухоустойчивых по сравнению с влаголюбивыми. Кутикула вместе с клетками эпидермиса образует как бы барьер на пути испарения паров воды. Удаление кутикулы во много раз повышает интенсивность испарения. Все эти особенности выработались в процессе эволюции как приспособление к сокращению испарения.

Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Смотреть фото Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Смотреть картинку Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Картинка про Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Фото Чем выше относительная влажность воздуха тем выше интенсивность транспирации

Рисунок 1. Структура устьиц у двудольных растений

Основная часть воды испаряется через устьица. Процесс транспирации можно разделить на ряд этапов.

Первый этап это переход воды из клеточных оболочек, где она находится в капельножидком состоянии, в межклетники (парообразное состояние). Это собственно процесс испарения, отрыв молекул воды с поверхности клеточных стенок. Важно подчеркнуть, что уже на этом этапе растение обладает способностью регулировать процесс транспирации (внеустьичная регулировка). Так, если в растении недостаток воды, то в сосудах корня и стебля создается сильное натяжение, которое делает их водный потенциал более отрицательным, что оказывает сопротивление передвижению воды в клетку и уменьшает интенсивность испарения. Надо учитывать также, что между всеми частями клетки существует водное равновесие. Чем меньше воды в клетке, тем выше становится концентрация клеточного сока. А это, в свою очередь, уменьшает содержание свободной воды в протопласте и клеточной оболочке. Соотношение свободной воды к связанной падает, водоудерживающая сила растет, интенсивность испарения уменьшается. Второй этап – это выход паров воды из межклетников или через кутикулу, или, главным образом, через устьичные щели. Поверхность всех клеточных стенок, соприкасающихся с межклетными пространствами, превышает поверхность листа примерно в 10-30 раз. Все же если устьица закрыты, то все это пространство быстро насыщается парами воды и переход воды из жидкого в парообразное состояние прекращается. Иная картина наблюдается при открытых усть­ицах. Как только часть паров воды выйдет из межклетников через устьичные щели, так сейчас же этот недостаток восполняется за счет испарения воды с поверхности клеток. Поскольку устьичная транспирация составляет 80-90% от всего испарения листа, то степень открытости устьиц является основным механизмом, регулирующим интенсивность транспирации. При открытых устьицах общая поверхность устьичных щелей составляет всего 1-2% от площади листа.

Третий этап транспирации – это диффузия паров воды от поверхности листа в более далекие слои атмосферы. Этот этап регулируется лишь условиями внешней среды [2].

Источник

Факторы, влияющие на скорость испарения воды

Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Смотреть фото Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Смотреть картинку Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Картинка про Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Фото Чем выше относительная влажность воздуха тем выше интенсивность транспирации

«Московская городская педагогическая гимназия-лаборатория»

Факторы, влияющие на скорость испарения воды

Определение испарения. Цель работы. Актуальность работы Описание структуры работы.

Механизм испарения на молекулярном уровне. Факторы, влияющие на скорость испарения.

2.1 Влияние на скорость испарения температуры воды.

2.1.1 Неравномерность прогрева воды.

2.1.2 Конвекция. Ламинарный и турбулентный режим. Число Рэлея. Зависимость типа режима перемешивания жидкости со скоростью передачи энергии.

2.1.3 Температура воздуха и ее влияние на температуру воды. Числа Рэлея в воздухе и тип режима перемешивания воздуха.

2.2 Влияние влажности воздуха.

2.2.1 Связь влажности воздуха у поверхности воды с влажностью воздуха «на бесконечности».

2.2.2 Связь влажности воздуха у поверхности воды со скоростью испарения.

2.2.3 Связь влажности воздуха у поверхности воды со скоростью оттока водяных паров от поверхности.

2.2.4 Связь влажности воздуха у поверхности с геометрией поверхности.

Испарение – процесс перехода вещества из жидкого состояния в газообразное, происходящий с поглощением тепла.

Цель данной работы: выявить факторы, влияющие на скорость испарения воды.

1. При испарении расходуется большое количество теплоты, следовательно, этот процесс можно использовать для охлаждения.

2. Интенсивность испарения существенно влияет на влажность воздуха, которая является определяющей во многих процессах.

3. Изучение механизмов испарения позволит построить более правдоподобные модели распределения температуры и влажности, т. е. позволит более точно предсказывать различные климатические процессы. Для расчета таких моделей используются современные вычислительные системы, но для их правильной работы необходимо детальное понимание всех процессов, влияющих на формирование погоды.

В данной работе мы рассмотрим факторы, влияющие на скорость испарения воды и их взаимосвязь.

На испарение влияет много факторов, но наиболее значимые из них температура поверхности воды и влажность воздуха над поверхностью воды. На каждый из этих факторов влияет ряд других:

1. Температура воды. На нее влияет температура окружающего воздуха. Теплообмен от воздуха к воде и обратно осуществляется теплопередачей (непосредственной передачей тепла без перемешивания) и конвекцией. Конвекция в свою очередь может проходить в разных режимах: ламинарном и турбулентном. Ламинарный – это режим, при котором жидкость перемещается стационарными струями без перемешивания. Турбулентный – это режим, при котором жидкость беспорядочно перемешивается из-за большой разности температур.

2. Влажность воздуха над поверхностью воды. На нее влияет интенсивность испарения воды (чем больше пара вышло из воды, тем больше его в воздухе), площадь поверхности (чем больше площадь поверхности, тем больше пара выходит из воды), ветер или другие формы конвекции в воздухе (насколько быстро удаляются водяные пары от поверхности воды).

Далее эти факторы будут рассматриваться более подробно.

Механизм испарения на молекулярном уровне.

Молекулы воды, которые имеют достаточную кинетическую энергию и находятся близко к поверхности, способны оторваться от остальных молекул воды, т. е. происходит испарение. Если быстрые молекулы находятся в толще воды, а не на поверхности, то, ударяясь о другие молекулы, совершают над ними работу и теряют свою энергию. Быстрые молекулы воды, которые оторвались от поверхности воды, уносят энергию с собой, поэтому внутренняя энергия воды понижается, и она охлаждается.

Некоторые молекулы водяного пара, двигаясь хаотически, возвращаются в жидкость. Этот процесс называется конденсацией. Скорость конденсации зависит от концентрации молекул водяного пара.

2. Факторы, влияющие на скорость испарения.

2.1. Влияние на скорость испарения температуры воды.

На скорость испарения влияют многие факторы, но главный из них – температура поверхности воды. Чем больше температура, тем больше средняя скорость молекул, и, следовательно, больше молекул с большими скоростями, которые способны вылететь с поверхности. Вода не имеет одинаковую температуру во всей толще, для изучения испарения важна температура именно на поверхности. В свою очередь на эту температуру влияет целый ряд факторов:

1. Температура в толще воды. Количество теплоты из толщи воды к поверхности может переноситься двумя способами: теплопередачей или конвекцией. Конвекция начинается тогда, когда жидкость имеет большую температуру на глубине, в этом случае расширяясь при большей температуре, она начинает подниматься вверх. В воде при испарении необходимое для конвекции распределение температур происходит из-за того, что на поверхности вода, испаряясь, становится холоднее.

2. Температура воздуха обычно больше, чем температура на поверхности воды, потому что на поверхности происходит испарение и вода охлаждается. Поэтому, как правило, происходит подвод тепла из воздуха к поверхности. В случае если температура воздуха меньше, то тепловой поток идет в обратную сторону, причем скорость теплоотвода зависит от конвекции воздуха над поверхностью воды.

3. Интенсивность испарения влияет на температуру воды на поверхности. Чем больше интенсивность испарения, тем больше энергии унесли молекулы, и тем меньше температура поверхности. Чем меньше температура, тем меньше энергии в воде, и тем меньше интенсивность испарения.

Мы видим, что все указанные факторы тесно взаимосвязаны между собой: если увеличивается скорость испарения, температура поверхности жидкости уменьшается, следовательно, увеличивается теплообмен между поверхностью и толщей воды, с другой стороны, увеличивается теплообмен между поверхностью воды и воздухом, а также конвекционный поток над водой.

Безусловно, полностью учесть все эти факторы может только компьютерная модель.

2.1.1 Неравномерность прогрева воды.

Рассмотрим более детально процесс передачи тепла в толще воды. Практически всегда в не идеализированных условиях температура в разных местах жидкости неодинакова: вода испаряется только сверху, следовательно, охлаждается только сверху. Нагрев воды также происходит обычно неравномерно. Например, солнечные лучи проникают в толщу воды и по-разному нагревают их в зависимости от прозрачности воды. Любой другой источник более высокой или низкой температуры также передает тепло неравномерно, например рука держащего сосуд человека.

Если температура воды сверху меньше, то начинает происходить конвекция: холодная вода тяжелее горячей, поэтому холодная вода опускается, а горячая – поднимается. Но так как жидкость не перемешивается полностью, а перемещается целыми объемами, температура распределяется неравномерно. В случае возникновения конвекции жидкость начинает двигаться целыми «кусками». Если в этом случае поместить термометр в некоторую точку жидкости, он покажет колебание температуры, которое и будет отражать это движение «кусков» горячей или холодной жидкости.

2.1.2. Конвекция. Ламинарный и турбулентный режим. Число Рэлея. Зависимость типа режима перемешивания жидкости со скоростью передачи энергии.

Как уже говорилось выше, конвекция – это явление, при котором теплообмен происходит путем перемешивания вещества. С ее помощью горячая вода перемещается из толщи к поверхности, а остывшая из-за испарения вода, в свою очередь, перемещается от поверхности ко дну.

Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Смотреть фото Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Смотреть картинку Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Картинка про Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Фото Чем выше относительная влажность воздуха тем выше интенсивность транспирации

Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Смотреть фото Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Смотреть картинку Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Картинка про Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Фото Чем выше относительная влажность воздуха тем выше интенсивность транспирации

Жидкость, при нагревании снизу или охлаждении сверху может перемешиваться в двух режимах: ламинарном и турбулентном.

Ламинарный поток — это поток, при котором жидкость перемещается стационарными струями без перемешивания и беспорядочных быстрых изменений скорости. В случае ламинарных потоков движение жидкости можно изобразить при помощи линий тока: воображаемых линий, вдоль которых перемещаются частицы воды.

Турбулентный поток – это поток, при котором из-за большой разности температур жидкость беспорядочно перемешивается. В этом случае невозможно указать определенную траекторию движения частицы.

В случае турбулентного потока происходит более равномерное перемешивание всей жидкости. Если в случае ламинарного перемешивания перемещаются целые «куски» определенной температуры, то в случае турбулентного режима жидкость имеет почти одинаковую температуру по всему объему.

Вид режима (ламинарный или турбулентный) определяется числом Релея. Число Рэлея – это безразмерная величина, оно считается по формуле

Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Смотреть фото Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Смотреть картинку Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Картинка про Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Фото Чем выше относительная влажность воздуха тем выше интенсивность транспирации, где

g — ускорение свободного падения; измеряется в м/с2.

β — коэффициент теплового расширения жидкости; вычисляется по формуле

Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Смотреть фото Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Смотреть картинку Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Картинка про Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Фото Чем выше относительная влажность воздуха тем выше интенсивность транспирации, где ΔV – изменение объема тела, V – начальный объем тела, ΔT – изменение температуры; измеряется в К-1. [1]

ΔT — разность температур между поверхностью и толщей воды; измеряется в К.

L — определяющий линейный размер поверхности теплообмена; измеряется в м. Это максимальная длина на поверхности сосуда, например для круглого сосуда это диаметр, для прямоугольного – диагональ и т. д.

ν — кинематическая вязкость жидкости; численно равна ν = 0,000183/(ρ(1 + 0,0337t + 0,000221t2)), где t – температура и ρ – плотность жидкости; измеряется в 10-6 м2/с. [2]

χ — температуропроводность жидкости; вычисляется по формуле Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Смотреть фото Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Смотреть картинку Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Картинка про Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Фото Чем выше относительная влажность воздуха тем выше интенсивность транспирации, где Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Смотреть фото Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Смотреть картинку Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Картинка про Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Фото Чем выше относительная влажность воздуха тем выше интенсивность транспирации— теплопроводность, cp — удельная теплоемкость, ρ — плотность; измеряется в м2/с. [3] [4]

Для воды и цилиндрического сосуда высотой 2,2 см и радиусом 12,5 см при комнатной температуре (20Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Смотреть фото Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Смотреть картинку Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Картинка про Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Фото Чем выше относительная влажность воздуха тем выше интенсивность транспирации) ниже приведены данные для расчета числа Рэлея и сами расчеты:

t = 20 Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Смотреть фото Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Смотреть картинку Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Картинка про Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Фото Чем выше относительная влажность воздуха тем выше интенсивность транспирации

Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Смотреть фото Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Смотреть картинку Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Картинка про Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Фото Чем выше относительная влажность воздуха тем выше интенсивность транспирации= 0,6 Вт/(м*К) [9]

χ = Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Смотреть фото Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Смотреть картинку Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Картинка про Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Фото Чем выше относительная влажность воздуха тем выше интенсивность транспирации/(cp*ρ) = 1,437e-7 м2/c

Ra = (g*β*ΔT*L3)/(ν*χ) = 3669

Разность температур 0,2° была рассчитана программой, которая создает модели испаряющейся воды.

2.1.3. Температура воздуха и ее влияние на температуру воды. Числа Рэлея в воздухе и тип режима перемешивания воздуха.

На температуру поверхности воды также влияет и температура окружающего воздуха.

Если температура воздуха отличается от температуры воды, происходит теплообмен между водой и воздухом за счет теплопередачи и конвекции.

Конвекция в воздухе также определяется числом Рэлея. Там оно меньше на один-два порядка, потому что вязкость и температуропроводность больше у воздуха, чем у воды.

Ниже приведены данные для расчета числа Рэлея и сами расчеты для воздуха:

t = 20 Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Смотреть фото Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Смотреть картинку Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Картинка про Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Фото Чем выше относительная влажность воздуха тем выше интенсивность транспирации

Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Смотреть фото Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Смотреть картинку Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Картинка про Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Фото Чем выше относительная влажность воздуха тем выше интенсивность транспирации= 0.0257 Вт/(м*К)

χ = Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Смотреть фото Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Смотреть картинку Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Картинка про Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Фото Чем выше относительная влажность воздуха тем выше интенсивность транспирации/(cp*ρ) = 2,122e-5 м2/c

Ra = (g*β*ΔT*L3)/(ν*χ) = 40990,072

Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Смотреть фото Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Смотреть картинку Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Картинка про Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Фото Чем выше относительная влажность воздуха тем выше интенсивность транспирации

Конвекция в воздухе

На конвекцию также влияет влавжность воздуха. Т. к. водяные пары имеют плотность меньше, чем плотность воздуха, влажный воздух легче сухого и начинает подниматься вверх. Таким образом, чем выше скорость испарения, тем выше влажность воздуха, тем интенсивнее конвекция.

2.2. Влияние влажности воздуха.

Как уже говорилось, при увеличении влажности воздуха над поверхностью воды, увеличивается конденсация т. е. уменьшается интенсивность испарения. Поэтому попытаемся разобраться, какие факторы влияют на величину влажности воздуха, для этого сначала сформулируем точное определение влажности.

Абсолютная и относительная влажность.

Абсолютная влажность воздуха – это масса водяного пара, содержащегося в кубическом метре воздуха. Из-за малой величины обычно измеряется в г/м3. Относительная влажность воздуха – это отношение текущей абсолютной влажности к максимально возможной абсолютной влажности при данной температуре. Чем выше температура, тем выше максимально возможная абсолютная влажность.

2.2.1. Связь влажности воздуха у поверхности воды с влажностью воздуха «на бесконечности».

Воздухом «на бесконечности» называется воздух, находящийся на таком удалении от поверхности жидкости, что его влажность не зависит от наличия этой поверхности. Влажность воздуха «на бесконечности» безусловно, влияет на влажность воздуха у поверхности. Пар с поверхности воды вытесняет пар, который уже был в воздухе, тем самым стремиться увеличить влажность «на бесконечности». Чем больше влажность воздуха на бесконечности, тем сложнее вытеснить поднимающемуся пару находящийся на бесконечности» пар, и тем менее интенсивно происходит испарение.

2.2.2 Связь влажности воздуха у поверхности воды со скоростью испарения.

При высокой влажности, по сути, испарение происходит с той же скоростью, но конденсация происходит быстрее, и, следовательно, можно считать, что испарение происходит медленнее. Конденсация – это обратный испарению процесс, то есть переход из газообразного состояния в жидкое.

2.2.3 Связь влажности воздуха у поверхности воды со скоростью оттока водяных паров от поверхности.

Водяные пары, если их влажность отличается от влажности на бесконечности, перемещаются от поверхности воды при помощи двух процессов: диффузии и конвекции.

Диффузия – это процесс выравнивания концентраций веществ в некотором объеме путем проникновения молекул одного вещества в другое. Она зависит от скорости движения молекул, то есть от температуры среды. Диффузия в газах проходит довольно быстро.

Конвекция – это явление передачи тепла путем перемешивания вещества. Вещество перемешивается из-за разности температур, которая может быть вызвана испарением. Конвекция, по сравнению с диффузией происходит медленно.

Можно также отметить, что ветер, уносящий пар от поверхности, влияет на скорость испарения сильнее предыдущих двух факторов.

2.2.4 Связь влажности воздуха у поверхности с геометрией поверхности.

Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Смотреть фото Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Смотреть картинку Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Картинка про Чем выше относительная влажность воздуха тем выше интенсивность транспирации. Фото Чем выше относительная влажность воздуха тем выше интенсивность транспирацииПодведем итог: на скорость испарения влияют главным образом два фактора: температура поверхности воды и влажность воздуха над поверхностью, но на эти два фактора влияют множество других. На диаграмме представлена общая взаимосвязь этих факторов между собой.

В нашей работе мы изучили факторы, влияющие на скорость испарения воды. В результате выяснено, что на скорость испарения влияют главным образом температура на поверхности воды и влажность воздуха над сосудом, но также влияют и площадь поверхности, конвекция, диффузия, влажность «на бесконечности».

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *