Чем выше токсичность ксенобиотика тем избирательность действия
Что такое ксенобиотики?
Это вещества, которые организм не может использовать ни для производства энергии, ни для построения каких-либо тканей, но они вполне могут навредить человеку, особенно если у него аллергия.
Ксенобиотики разделяют на 3 группы:
К сожалению, разрешенные в пищевой промышленности, пищевые добавки —красители, консерванты, стабилизатора и др. тоже относятся к ксенобиотикам.
Эти вещества с достаточно высокой молекулярной массой, сами могут обладать свойствами аллергенов и, кроме того, они резко повышают агрессивность «обычных» аллергенов (пищевых, пыльцевых, бытовых).
В зависимости от особенностей генома люди по разному реагируют на ксенобиотики. Существуют гены, которые несут ответственность за синтез белков, инактивирующих ксенобиотики, поступающие в организм. Эти белки находятся в основном в ЖКТ, дыхательных путях.
Другими словами, генетически запрограммированная система обезвреживания ксенобиотиков делает уникальным каждого человека в отношении его устойчивости или чувствительности к повреждающим внешним факторам (пищевые добавки, лекарства и др.).
Отсюда и разнообразие реакций организма на распространенные, разрешенные к употреблению в пищу вещества.
Исходя из всего вышесказанного общими правилами для людей, склонных к аллергическим и псевдоаллергическим реакциям являются:
Надеюсь вопросов не осталось по поводу того, что когда вы приходите на прием вашему ребенку или вам назначают гипоаллергенную диету, исключая самые любимые продукты (пицу, мороженое, шоколад и др.)
Биотрансформация ксенобиотиков и загрязняющих окружающую среду веществ»
Классификация ксенобиотиков. Пути поступления ксенобиотиков в организм человека. Влияние пищевых продуктов на всасывание ксенобиотиков. Характеристика метаболизма ксенобиотиков. Связывание, транспорт и выведение ксенобиотиков. Индукция защитных систем.
Рубрика | Производство и технологии |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 14.04.2020 |
Размер файла | 1,5 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Федеральное государственное бюджетное образовательное учреждение высшего образования
«ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ» (ПензГТУ)
Кафедра «Биотехнологии и техносферная безопасность»
Дисциплина «Методологические основы исследований в биотехнологии»
на тему: «Биотрансформация ксенобиотиков и загрязняющих окружающую среду веществ»
ПензГТУ 3.19.04.01.002 ПЗ
Выполнил: студент группы 19БТ1м
Проверил: доцент каф. БТБ, к. б. н.
Работа защищена с оценкой:
на курсовую работу
по дисциплине «Методологические основы исследований в биотехнологии»
Студенту Епифановой Юлии Абдулхаковне Группа 19БТ1м
Тема работы: Биотрансформация ксенобиотиков и загрязняющих окружающую среду веществ
1. Ксенобиотики. Общая характеристика;
2. Биологическая активность ксенобиотиков;
3. Биотрансформация ксенобиотиков.
Руководитель Кузьмин А. А.
Студент Епифанова Ю. А.
Пояснительная записка курсовой работы содержит 27 стр., 6 рисунков, 9 библиографических источников.
КСЕНОБИОТИКИ, БИОТРАНСФОРМАЦИЯ, ХИМИЧЕСКИЕ СОЕДИНЕНИЯ, ДНК, ТОКСИЧНОСТЬ, БИОЛОГИЧЕСКАЯ АКТИВНОСТЬ, МИКРОСОМАЛЬНАЯ СИСТЕМА МЕТАБОЛИЗМА.
Цель курсовой работы: изучить основные характеристики ксенобиотиков, а также их биотрансформацию, рассмотреть их классификацию и пути поступления в организм, проанализировать биологическую активность ксенобиотиков.
Стремительные темпы развития промышленного производства, химизация народного хозяйства ведут к появлению во внешней среде большого количества разнообразных химических соединений, постоянно загрязняющих биосферу и пагубно влияющих на живую природу.
В силу различных причин многие химические вещества, поступающие в организм и ранее не встречающиеся в нем, получили название чужеродных или ксенобиотиков. К таким веществам относятся синтетические и природные лекарственные препараты, пестициды, промышленные яды, отходы производств, пищевые добавки, косметические средства и прочие.
Актуальность проблем, рассматриваемых в ксенобиологии все возрастает. Это обусловлено тем, что ежегодно на Земле синтезируются десятки тысяч новых соединений. Ряд из них вовлекаются в круговорот веществ в природе. Чем шире масштабы производства химических соединений, тем больше влияние они оказывают на биологические процессы в почве, водоемах и на суше, тем сильнее проявляются побочные и отдаленные последствия их действия на живые системы.
Воздействие ксенобиотиков на живой мир, и на человека в частности происходит, в самых различных комбинациях этих соединений не только друг с другом, но и с фактором окружающей среды. Поэтому многие из ксенобиотиков, вошедших в сегодняшнюю практику могут являться носителями опасного биологического действия.
1 КСЕНОБИОТИКИ. ОБЩАЯ ХАРАКТЕРИСТИКА
1. Изменять метаболизм в клетках или тканях. В результате нарушаются естественные процессы в организме, проявляется определенная симптоматика.
2. Воздействовать на клеточную ДНК, изменять генетическую информацию. В результате происходит злокачественная трансформация.
3. Подражать действию естественных соединений, к примеру, гормонов. Это обуславливает нарушение нормального роста, развития тканей, органов, иммунной, нервной систем.
4. Изменять активность защиты организма. В этом случае негативное воздействие проявляется в иммунной модуляции, выражающейся в развитии гиперчувствительности, увеличении количества В- или Т-лимфоцитов, стимулировании аутоиммунных процессов.
1. Нарушения репродуктивной функции;
2. Злокачественные образования в половой системе мужчин;
4. Раковые опухоли молочной железы;
5. Угнетение иммунитета;
6. Гипертрофия щитовидки;
7. Расстройство психомоторного развития в детском возрасте.
Воздействие ксенобиотиков может привести к снижению жизнеспособности, плодовитости и вызвать гибель живых организмов, популяций или сообществ. К их числу относятся:
· продукты хозяйственной деятельности человека (промышленность, сельское хозяйство, транспорт);
· вещества бытовой химии (моющие средства, вещества для борьбы с паразитами, косметические средства);
· многие лекарственные препараты.
1.1 Классификация ксенобиотиков
Классификация ксенобиотиков в зависимости от источника происхождения и практического применения:
1. Промышленные ксенобиотики, к которым относятся органические растворители; вещества, применяемые в качестве топлива (метан, пропан, бутан); красители (анилин и его производные; фреоны); химические реагенты, полупродукты органического синтеза и др.;
2. Химические удобрения и средства защиты растений, в том числе пестициды, направленные на уничтожение вредных насекомых, сорных растений, грибов и т. д.;
3. Лекарственные средства и полупродукты фармацевтической промышленности;
4. Бытовые химикаты, используемые в качестве инсектицидов, красителей, лаков, парфюмерно-косметических средств, пищевых добавок, антиоксидантов;
5. Растительные и животные яды;
6. Боевые отравляющие вещества.
Основные причины, вызывающие канцерогенез (мутагенез), под действием ксенобиотиков:
· активирование ферментов, изменение ДНК и нуклеофильных групп;
· ограниченная способность клеток удалять химически модифицированные участки ДНК и восстанавливать ее структуру;
· способность химических веществ активировать ферменты от вида клетки и стадии ее развития (фазы пролиферации), а также от вида организма;
· многоступенчатость процесса канцерогенеза и обуславливающие факторы, которые частично зависят от «микроокружения» раковой клетки;
· способность мутагенных химических соединений выступать в качестве промоторов появления опухолей; мутации лишь в определенных условиях приводят к образованию опухолей;
Таблица 1. Токсикологическая классификация ксенобиотиков
Общий характер токсического воздействия
Характерные представители токсических веществ
Нервно-паралитическое действие (бронхоспазм, удушье, судороги и параличи)
Фосфорорганические инсектициды (хлорофос, карбофос и пр.), никотин, анабазин, БОВ («Ви-Икс», зарин)
Дихлорэтан, гексахлоран, БОВ (иприт, люизит), уксусная эссенция, мышьяк и его соединения, ртуть (сулема)
Общетоксическое действие (гипоксические судороги, кома, отек мозга, параличи)
Синильная кислота и ее производные, угарный газ, алкоголь и его суррогаты, БОВ (хлорциан)
Удушающее действие (токсический отек легких
Окислы азота, БОВ (фосген, дифосген)
Слезоточивое и раздражающее действие (раздражение наружных слизистых оболочек)
Хлорпикрин, БОВ («Си-Эс», адамсит и пр.), пары крепких кислот и щелочей
Таблица 2. Классификация ксенобиотиков по избирательности действия
Характер «избирательной токсичности
Характерные представители токсических веществ
Сердечные гликозиды (дигиталис, дигоксин, лантозид и пр.); трициклические антидепрессанты (имипрамин, амитриптилин);растительные яды (аконит, чемерица заманиха,хинин и пр.); животные яды (тетродоксин); соли бария, калия
Психофармакологические средства (наркотики, транквилизаторы, снотворные); фосфорорганические соединения; угарный газ; производные изониазида (тубазид, фтивазид); алкоголь и его суррогаты
Нефротоксическое действие- токсическая нефропатия
Соединения тяжелых металлов; этиленгликоль; щавелевая кислота
Анилин и его производные4 нитриты; мышьяковистый водород
Крепкие кислоты и щелочи; соединения тяжелых металлов и мышьяка
Ключевой особенностью этих веществ является их способность оказывать продолжительное влияние. При этом их концентрации могут быть незначительными. К примеру, серьезные изменения в детском организме могут обуславливаться минимальным содержанием гормоноподобных соединений во внутриутробный период. Большинство ксенобиотиков обладают липофильностью (гидрофобностью).
1.2 Пути поступления ксенобиотиков в организм человека
Пути поступления ксенобиотиков в организм могут быть различными (рис. 2): через легкие, кожу и пищеварительный тракт.
Проникновение веществ через кожу осуществляется через эпидермис, сальные и потовые железы и через волосяные фолликулы. Через кожу хорошо проникают низкомолекулярные и липофильные соединения. Скорость и возможность проникновения ксенобиотиков через кожу зависят от состояния кожного покрова: повреждение рогового слоя и жировой смазки кожи приводит к увеличению всасывания.
Всасывание многих веществ происходит через слизистую оболочку полости рта путем простой диффузии и оттуда, минуя печеночный барьер, в кровеносную систему. Жирорастворимые соединения достаточно легко проникают через слизистую оболочку желудка в кровь. На протяжении желудочно-кишечного тракта существующие градиенты pHопределяют скорость всасывания токсических веществ. На их всасывание также влияет кровоснабжение стенки желудка и кишечника, моторика желудочно-кишечного тракта. Из пустого желудка вещества всасываются лучше, чем из наполненного. Если ксенобиотик поступает в желудок с пищей, то возможно взаимодействие с ее компонентами: растворение в жирах и воде, абсорбция белками и т.д., что уменьшает их контакт со слизистой.
1.3 Влияние пищевых продуктов на всасывание ксенобиотиков
Пищевые продукты, которые влияют на всасывание ксенобиотиков:
· молоко и молочные продукты на 20-80% снижают всасывание тетрациклиновых антибиотиков;
· молоко увеличивает скорость всасывания нестероидных противовоспалительных средств (бутадион, вольтарен, индометацин и других), препаратов гормонов коры надпочечников (преднизолон, дексаметазон и других);
· алкогольные напитки, раздражая слизистую желудка, стимулируют секрецию соляной кислоты, задерживают эвакуацию содержимого желудка, что может облегчать всасывание ксенобиотиков и повышать их токсичность.
Для уменьшения негативного влияния токсических веществ на слизистую желудка утром на завтрак полезно употреблять овсяную или рисовую крупу, которая при отваривании образует большое количество слизистого отвара. Кроме этого слизистый отвар образуют корень лопуха, ятрышник и другие диетические легкие каши, являясь эффективным средством защиты слизистой желудка от раздражающего действия токсических веществ.
· состояние иммунной системы;
· генетически обусловленная активность ферментов;
· наличие соматических заболеваний и другие.
2 БИОЛОГИЧЕСКАЯ АКТИВНОСТЬ КСЕНОБИОТИКОВ
Биологической активностью ксенобиотика называют его способность изменять функциональные возможности либо компонентов организма (in vitro или in vivo), либо живого организма в целом, либо сообщества организмов.
Разнообразие видов биологической активности определяется факторами:
· множеством биологических объектов, их состояний и протекающих в них реакций. Поскольку любой живой организм индивидуален, можно говорить об индивидуальной реакции на данный ксенобиотик;
· способом попадания в организм (доза, физическая форма вещества, временной режим введения, место введения и т. д.);
· наличием или отсутствием дополнительных воздействий, которые предшествуют, сопутствуют или следуют за введением химического соединения. Такими воздействиями могут быть другие вещества или их комбинации, другие искусственные или естественные факторы (физическиэлектромагнитные, гравитационные поля, температура, давление и т. д.; биологические, обусловленные влиянием, например, других организмов). Одновременное действие нескольких ксенобиотиков может изменить биологические эффекты каждого из них;
· способом, временем наблюдения, принципом подбора биообъекта, анализом информации и т.д.
Цели определения биологической активности:
· выявление соединений, обладающих полезными для человеческого организма свойствами, например, для профилактики и лечения болезней, расширения физиологических и интеллектуальных возможностей человека;
· обнаружение вредных для человеческого организма биологических активностей у испытуемых ксенобиотиков. Особую опасность представляют такие простые виды биологической активности химических соединений, как мутагенная, канцерогенная, эмбриотоксическая и т. п.;
· нахождение ксенобиотиков, влияющих на продуктивность и биологическое равновесие естественных и искусственных экосистем. Такого рода вещества очень нужны сельскому хозяйству, микробиологической промышленности, лесному, рыбному хозяйству;
· установление таких биологических активностей у испытуемых чужеродных соединений, которые могут вызвать неконтролируемое опасное или недостаточно прогнозируемое нарушение биологического равновесия природных экосистем. Например, способность соединений резко увеличивать вероятность гибридизации вирусов гриппа или какой-либо другой группы вирусов или микроорганизмов;
3 БИОТРАНСФОРМАЦИЯ КСЕНОБИОТИКОВ
В XXІ веке происходят всевозрастающее загрязнение ксенобиотиками внешней среды и увеличивающееся их поступление в организм человека. Это серьезно угрожает здоровью и даже жизни всех живых существ, включая человека, так как повреждает клетки и вызывает мутации, ведущие к злокачественным процессам или наследственным заболеваниям.
Конечно, в первую очередь надо заботиться об экологии. Но если загрязнение все же происходит, то мы не беззащитны: в каждой клетке происходят метаболизм, связывание и выведение ксенобиотиков, что в большинстве случаев приводит к снижению их токсичности. Это позволяет выживать даже на сильно загрязненных территориях, хотя, к сожалению, не исключает риска заболеваний.
3.1 Общая характеристика метаболизма ксенобиотиков
В метаболизме ксенобиотиков участвуют около 30 ферментов. В нем различают две фазы:
1) модификация, создающая или освобождающая функциональные группы;
Первая фаза метаболизма. В этой фазе наиболее важной является локализованная в основном в мембранах эндоплазматической сети (ЭПС) система цитохрома Р-450, называемая также микросомальной системой метаболизма или монооксигеназной системой (рис. 3).
Однако этой системе присущи и серьезные ограничения и даже недостатки:
1) слабость или отсутствие во многих жизненно важных органах (сердце, головной мозг);
2) меньшая защита организма при других путях проникновения (слизистые, раны, инъекции);
3) токсификация некоторых веществ.
Вторая фаза метаболизма. Основные функции этой фазы те же, что и первой: увеличение гидрофильности и снижение токсичности ксенобиотиков. Наиболее важные ферменты второй фазы относятся к классу трансфераз.
Биологическое действие ксенобиотиков
Особенности биотрансформации, поступления и выведения ксенобиотиков у разных организмов. Описание, отличительные черты трофических цепей и экологических пирамид. Экологическая и токсикологическая характеристика пестицидов, удобрений и биогенных элементов.
Рубрика | Биология и естествознание |
Вид | шпаргалка |
Язык | русский |
Дата добавления | 26.01.2016 |
Размер файла | 313,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
1. Основные представления о БА и скрининге ксенобиотиков. Примеры скрининга
Свойство живых систем быть реакционно способным по отношению к любому ксенобиотику приводит к тому, что все химические соединения обладают биологической активностью.
Принцип «попадание-реакция» означает, что любое проявление биологической активности ксенобиотика связано с его способностью пройти путь от внешней среды до мишени, связаться с ней и вызвать ее реакцию.
Биологической активностью ксенобиотика называют его способность изменять функциональные возможности либо компонентов организма (in vitro или in vivo), либо живого организма в целом, либо сообщества организмов.
В практику должны вводиться только те соединения, которые подверглись биологическим испытаниям и только в соответствии с результатами этих испытаний. Таким образом, биологическим испытаниям должны подвергаться все синтезируемые ксенобиотики, т. е. необходимо создать производительную систему их испытаний на разные виды биологической активности.
Проверка большого массива ксенобиотиков на один или несколько видов биологической активности получила название скрининга.
В ХХ в. тотальная проверка большого массива химических соединений или природных объектов, направленная на выявление потенциальных лекарств, получила свое развитие как один из основных методов поиска новых лекарств и вообще химических соединений с заданным типом биологической активности.
Традиционный путь поиска, например, лекарственных средств (точнее, активных субстанций будущих лекарств) в современной фармакологии в довольно схематическом виде выглядит следующим образом. На фармакологических тестах организменного уровня определяют биологическую активность ряда химических соединений, затем улучшают их свойства путем химической модификации в соответствующих рядах соединений. После этого проводят новые испытания модифицированных веществ, снова их улучшают и т.д.; это делается до тех пор, пока указанная процедура не приведет к созданию наиболее эффективного в данном ряду соединения.
Однако эти реальные подходы ограничиваются одним или несколькими видами биологической активности и сравнительно малой выборкой ксенобиотиков из массива.
2. Особенности биотрансформации, поступления и выведения ксенобиотиков у разных организмов
Проникая через биологические мембраны в сосудистое русло, ксенобиотик далее попадает в ткани к клеточным мишеням. Ряд гидрофильных ксенобиотиков выводится из организма человека в неизменном виде, но большая часть выделяется только после метаболических превращений.
Существенным фактором, влияющим на распределение ксенобиотиков и их способность к дальнейшей биотрансформации и экскреции является растворимость в липидах (коэффициент распределения).
У растений нет специализированных путей поступления и выведения ксенобиотиков. Поступление чужеродных веществ в растения происходит главным образом через корни и листья.
Ксенобиотик проникает в ткань листа через устьица или кутикулу. Через кутикулу соединения диффундируют медленнее, чем через устьица.В последующем распределении ксенобиотиков в тканях и органах растений большую роль играют сосуды ксилемы и флоэмы. Ксенобиотики, переносимые по сосудам ксилемы (например, ряд гербицидов), поступая в корни растений, быстро создают фототоксические концентрации в наземных органах растений. В то же время очень редко отмечается аккумуляция флоэмнобильных ксенобиотиков в корнях при поступлении их через листья. Такая ситуация обусловлена главным образом экскрецией чужеродных веществ в ризосферу.Растения не имеют системы выделения, сравнимой с системой выделения животных, но их защитный механизм может включать связывание посторонних веществ некоторыми молекулами углеводов и накопление их в местах, лишенных метаболической активности (например, в вакуолях). Микроорганизмы способны разлагать многие сложные органические соединения на диоксид углерода и воду.
Микроорганизмы обычно содержат большое число ферментов, участвующих в процессах трансформации ксенобиотиков. Между микроорганизмами, обитающими во внешней среде и живущими внутри организма, существуют значительные различия в метаболизме ксенобиотиков. Так, многие микроорганизмы внешней среды, в отличие от кишечной микрофлоры, способны к более глубокой деградации ксенобиотиков (разрыву ароматических ядер и гетероциклических колец). Продукты расщепления служат для микроорганизмов единственным источником углерода.
Среди микроорганизмов чаще всего встречаются штаммы, осуществляющие неполную деградацию ксенобиотиков. Поэтому полное разрушение, например, пестицидов требует, как правило, совместного действия нескольких организмов и абиотических факторов.
Очень важен тот факт, что генетическая способность некоторых штаммов бактерий разрушать тот или иной ксенобиотик зависит от наличия в клетках плазмид.
3. Влияние ксенобиотиков на физико-химические свойства цитоплазмы, проницаемость биологических мембран и метаболические процессы в клетке
Вязкость. цитозоль, заполняющее пространство между клеточными органеллами, содержит систему микрофиламентов. Коллоидный раствор может быть золем (невязким) или гелем (вязким). Внешние слои цитоплазмы по своей конституции ближе к гелям.
Движение цитоплазмы. Движение цитоплазмы в животных и растительных клетках довольно распространенное явление, которое играет важную роль в осуществлении обмена и распределении веществ внутри клетки, а также характеризует уровень жизнедеятельности клетки.Скорость движения цитоплазмы (СДЦ) зависит от света, температуры, рН, ксенобиотиков.
4. Общие представления об избирательном действии ксенобиотиков. Определение понятия избирательности. Роль физико-химических свойств ксенобиотиков в процессах избирательности
Избирательность действия, обусловленная преимущественным накоплением и распределением вещества, может быть вызвана морфологическими особенностями.Этот тип избирательности основывается на различии в распределении и накоплении. Агент, токсический как для полезных, так и для вредных клеток, накапливается только в последних. Примеры: избирательное действие серной кислоты на посевы; йод, избирательно накапливающийся в щитовидной железе и т.д.
Избирательность, обусловленная биохимическими различиями. Избирательность действия ксенобиотиков определяется различиями в процессах их биотрансформации, а также зависит от его влияния на какой-либо важный биохимический процесс, который у чувствительного организма имеется, а у устойчивого или отсутствует, или не столь чувствителен к данному веществу. Примеры.Одним из избирательных эффектов ДДТ, проявляющихся у птиц, является наблюдаемое под его действием нарушение кальциевого обмена, вследствие чего яичная скорлупа оказывается более тонкой. Такие яйца при насиживании раздавливаются, и птицы не выводят птенцов.
Цитологические различия как основа избирательного действия. Известно, что строение клеток у животных и растений различно. Клетки состоят из отдельных компонентов (клеточных органелл, компартментов и др.), у которых видовые особенности выражены очень четко. Различаются между собой даже клетки одного организма, но разных тканей.Примеры.У растений нет нервной системы и мышечных клеток. Поэтому фосфорорганические соединения, блокируя проведение нервного импульса, поражают насекомых и не приносят заметного вреда растениям. На этом явлении основана весьма эффективная система химической защиты растений от насекомых.Уникальность такой структуры, как хлоропласта, представляет возможность, например, для уничтожения растений (сорняков), не причиняя вреда пчелам и др.
Свойства самого ксенобиотика оказывают большое влияние на избирательность действия и, в частности, степень его ионизации. Ионы не образуют с местами связывания ковалентных связей, а, следовательно, могут легко отрываться. Поэтому для поддержания активного центра в насыщенном состоянии необходимо, чтобы в растворе, окружающем место связывания (рецептор), постоянно находился избыток данных ионов.
5. Тестирование БА ксенобиотиков. Стандартизация и подбор тест-систем. Специфические и неспецифические модели (тест-объекты)
Когда мы говорим о биологической активности ксенобиотиков, то для ее определения, естественно, необходимы тест-объекты, на которых регистрируются определенные виды биологической реакции (гибель, изменение роста, изменение различных метаболических реакций и т. д.) при их действии; эти реакции часто называются тест-реакциями. В этой связи следует рассмотреть принципы отбора и стандартизации тест-объектов при классификации ксенобиотиков по видам биологической активности.
Предлагается подбирать тест-объекты по следующим критериям: по молекулярным рецепторам, являющимся мишенями для веществ с данными видами активности; по принципу надмолекулярной организации и молекулярному составу (близость по структуре); по функциональному сходству; по органному или тканевому происхождению; по близости патологического состояния тест-объекта и реального объекта.
Существует ряд методических подходов для стандартизации, подбора, приготовления тест-объектов, например: стандартизация условий содержания животных; выбор наиболее щадящих условий выделения и инкубации; использование дополнительных воздействий, переводящих тест-объект в заданное состояние и т. д.
В конечном итоге для каждого тест-объекта клеточно-тканевой природы можно создать формализованный стандарт в виде набора количественных параметров, характеризующих стационарные и кинетические показатели тест-объектов.
Необходимо отметить, что следует различать специфические и неспецифические модели тест-объектов. Первые как раз и имеют четко выраженные молекулярные мишени-рецепторы (вспомним первый критерий), реагирующие на определенные химические соединения, т.е. на определенные виды биологической активности.
Однако неспецифическая модель является обязательным компонентом для классификации ксенобиотиков. С одной стороны, оказывается возможным различать химические соединения, обладающие разными видами активности на полностью неспецифической для этих видов активности модели.
6. Реакции биотрансформации неорганических ксенобиотиков
Реакции метилирования. Недавно было доказано, что микроорганизмы могут использовать реакции метилирования для превращения металлов в металлорганические соединения. Особое значение имеет способность некоторых микроорганизмов превращать ионы ртути в метил- и диметилртуть:
Реакции конъюгации. Неорганический цианид обезвреживается в живых организмах конъюгацией с серой, в результате которой образуется тиоцианит:
Процесс катализирует роданаза. Фермент находится в митохондриях печени различных видов животных и растений. Донорами серы служат тиосульфаты, тиосульфонаты, полисульфиды.
Аденозинфосфосульфат (АФS)-первый продукт в реакции взаимодействия SO4 2- с АТФ. Активированный сульфат (фосфо-АФS) связывается с серосодержащим переносчиком белковой природы (СS) и образуется комплекс C-SO3, который восстанавливается до сульфида (CS- SH) при участии света через ферродоксин (Fdвосст, Fdокисл). При переносе на о-ацетилсерин (AS) образуется цистеин и метионин. В случае высокого содержания сульфаты аккумулируются в виде глутатиона. Если восстанавливающая сила превышает имеющиеся в наличии источники углерода, сера, соединяясь с водородом, образует дисульфид (H2S), который теряется в результате газового обмена.
Эффективность реакций детоксикации ограничена. При продолжительном поглощении SO2 и увеличении кислотности буферная способность цитоплазмы становится недостаточной, уровень сульфитов в хлоропластах увеличивается, и SO2 занимает места связывания СО2 на рибулозодифосфаткарбоксилазе. В результате этого происходит ингибирование вторичных процессов фотосинтеза и разрушение третичной структуры ферментов.
7. Общие представления о стадиях биотрансформации ксенобиотиков. Ферментные системы, основные закономерности действия ферментов. Индукция защитных свойств организма
Все биохимические реакции в живых системах носят ферментативный характер.
Все ферменты имеют белковую макромолекулярную природу и упрощенно могут быть представлены в виде сферических или палочковидных образований, на поверхности которых располагаются активные и регуляторные центры. Как сам фермент, так и его центры состоят из упорядоченно расположенных, создающих определенный пространственный узор полимерных нитей, построенных из аминокислот. Эти аминокислоты последовательно сшиты между собой ковалентными (пептидными) связями. Для каждого фермента характерен свой строго обязательный геометрический узор активного и регуляторного центров, что определяет его высокую специфичность к превращаемым веществам-субстратам.
Реакция начинается после того, как образуется фермент-субстратный комплекс, для чего необходимо строгое геометрическое соответствие их форм (пространственных и зарядовых геометрий).
Есть еще и регуляторные центры. В них не происходят каталитические превращения. В зависимости от избытка или недостатка продуктов ферментативной реакции эти центры замедляют или ускоряют ход процесса. В самом простом случае при избытке продукт присоединяется к центрам и предотвращает наработку новых. Когда продукта мало, регуляторные центры освобождаются и перестают тормозить работу активных центров.
8. Принципы организации системы тестирования БА ксенобиотиков. Биологический эпиморфизм. Основные цели биотестирования
Индустриальные масштабы испытаний и их промышленная организация требуют введения нового принципа, который позволил бы на порядки увеличить производительность системы и обеспечить возможность работы с малым количеством испытуемого вещества.
Испытанию ксенобиотиков на множество видов биологической активности должна предшествовать операция предварительной сортировки на моделях, допускающих создание испытательных систем высокой производительности, т.е. на предварительном этапе на упрощенных (модельных) системах необходимо предсказать вид биологической активности и определить ксенобиотики, которые, по вероятным оценкам, не обладают определенными видами активности (резус) или являются токсичными (исключаются из системы испытаний).
Основная идея предиспытания состоит в том, чтобы реализовать следующий методологический подход. Заменить модели организменного уровня некоторой совокупностью моделей доорганизменного уровня. Таким образом, достигается цель более экономного расхода химического соединения на единичное испытание и реальнее становится автоматизация испытаний с технологической стороны. В этом случае при определении наиболее важных видов биологической активности и перенесении закономерностей на целостный организм подбирается совокупность адекватных моделей на основе принципа биологического эпиморфизма. Вначале исследуются два массива ксенобиотиков: новые и известные. Это связано с тем, что среди известных соединений, не испытывавшихся ранее на биологическую активность, могут быть обнаружены искомые лекарства. Кроме того, для известных тестируемых ксенобиотиков могут быть выявлены новые виды биологической активности. Все это заставляет включить в систему испытаний как вновь синтезируемые, так и уже испытанные на отдельные виды биологической активности ксенобиотики.
При дальнейших испытаниях проводится предварительная оценка безопасности отобранных ксенобиотиков. С учетом полученных результатов по фармакологической активности на более простых моделях последующая проверка ксенобиотиков проводится на животных. Ксенобиотики, у которых обнаружена нужная для практических целей активность, проходят испытания по полной программе, включая тестирование на основные и побочные виды активности.
9. Биоаккумулирование ксенобиотиков. Коэффициент накопления. Одно- и многоразовые дозы
Способность накапливать различные элементы даже при очень низком содержании их в среде называется аккумулированием вещества организмом (кумулятивный эффект).
Способность организмов к накоплению веществ характеризуется таким параметром, как коэффициент накопления.
содержание (концентрация) вещества в организме
содержание (концентрация) в окружающей среде
Разовая доза и период полувыведения из организма. Введение в организм разовой дозы вещества приводит к появлению определенного количества этого вещества в тканях. В процессах метаболизма и экскреции это вещество выводится из организма с определенной скоростью.
Многократное дозирование. В природной среде воздействие вещества на организм редко ограничивается разовой дозой. Если в окружающей среде вещество распределено повсеместно, организм подвергается его воздействию непрерывно.
Важно отметить, что со временем содержание вещества в организме достигает некоторого предельного максимального значения, так как при повышении концентрации в тканях ежедневное его выведение увеличивается и становится равным дозе, вводимой ежедневно.
При увеличении первоначальной вводимой дозы повышается количество выводимого вещества и его содержание в организме, т.е. устанавливается новое равновесие.
Максимальная концентрация вещества в тканях зависит от размера дозы (повышается при ее увеличении) и от периода полувыведения или скорости выведения. Вещества с большим периодом полувыведения накапливаются в больших концентрациях, чем вещества с меньшим периодом полувыведения. Другим важным фактором является время, необходимое для достижения состояния равновесия.
Следует отметить, что организмы, таким образом, накапливают вещество в своих тканях в соответствии со скоростями его введения и выведения. Причем степень накопления вещества в организме изменяется в широких пределах и во многих случаях коррелирует с коэффициентом распределения вещества.
10. Характеристика факторов, влияющих на биоаккумулирование ксенобиотиков. Трофические цепи и экологические пирамиды
Поскольку явление аккумулирования включает взаимодействие вещества с организмом, то факторы, определяющие степень его накопления, должны включать характеристики как самого ксенобиотика, так и организма. Одной из характеристик самого вещества является устойчивость. Для того чтобы ксенобиотик мог накапливаться в организме, его воздействие на организм должно быть достаточно длительным, особенно когда оно осуществляется через цепь питания. Следовательно, любое аккумулирующееся вещество должно быть устойчивым к возможным в данной среде процессам разрушения.
Площадь поверхности. Если процесс аккумулирования включает физические стадии (адсорбция, диффузия), степень накопления чужеродного вещества в большей мере зависит от площади поверхности контакта организма с окружающей средой (адсорбция растениями пестицида из воздуха после опрыскивания).
Величина поверхности на единицу массы или объема повышается при уменьшении размера частицы. Следовательно, если адсорбция в процессе аккумулирования играет значительную роль, то можно ожидать, что более мелкие организмы будут накапливать в единице объема большее количество вещества, чем более крупные.
Распределение. Большинство организмов содержит значительные жировые отложения; в этих тканях накапливаются ксенобиотики с большими значениями коэффициента распределения.
Способность ксенобиотика распределяться в жировых депо организма также может влиять на его период полувыведения. Жировые ткани в процессах метаболического преобразования являются не самыми активными. Следовательно, если вещество распределилось в таких тканях, оно может сохраняться там до тех пор, пока организм не израсходует весь жир.
Устойчивые в окружающей среде ксенобиотики очень плохо растворяются в воде. Следовательно, среда обитания конкретного организма может существенно влиять на его способность аккумулировать ксенобиотики. Организмы, обитающие на дне среди осадков, подвергаются воздействию более высоких концентраций ксенобиотика, чем находящиеся в верхних слоях того же самого участка водоема.
На процесс аккумулирования может влиять и размер частиц, проглатываемых организмами. Поскольку на более мелких частицах, как уже отмечалось, адсорбированное на их поверхности чужеродное вещество содержится в более высоких концентрациях, организмы, проглатывающие такие частицы, будут подвергаться воздействию более высокого содержания ксенобиотика.
Важным фактором является и количество потребляемой пищи. Организмы, нуждающиеся в относительно большом количестве пищи, могут аккумулировать чужеродное вещество из окружающей среды в большей степени при условии, что процесс накопления ксенобиотика не компенсируется более активным процессом его выведения.
Установлено, что по мере движения ксенобиотика по пищевой цепи к следующему консументу, в организме которого он метаболизируется в незначительной степени, происходит существенное увеличение концентрации чужеродного вещества.
Для лучшего понимания закономерностей движения по пищевым цепям продуктов питания, а также попавших в биоценозы ксенобиотиков строятся так называемые экологические пирамиды. В экологических пирамидах схематически учитывают плотности популяций (число особей на 1 м 2 ), биомассы (грамм сухого или влажного вещества на 1 м 2 ) или продуктивность в энергетических эквивалентах (джоулей на 1 м 2 в год) для всех членов каждого трофического уровня в данном биоценозе.
В условиях поступления в организм чужеродных химических веществ, которые не могут быстро метаболизироваться и полностью экскретироваться во внешнюю среду, начинается накопление этих веществ по ходу пищевой цепи. При этом, поскольку организмы-потребители, стоящие на более высоких уровнях экологической пирамиды, обладают меньшей суммарной биомассой по сравнению с организмами предыдущего уровня, происходит последовательная биоконцентрация токсикантов, достигающая максимальных значений у конечных консументов, которыми могут являться люди.
Итак, в результате процессов абсорбции, распределения и биоконцентрации, зависящих как от физико-химических свойств ксенобиотиков, так и от экологических взаимоотношений в пищевых цепях, в организмах человека, животных и растений происходит аккумулирование ксенобиотиков, сопровождающееся в ряде случаев их специфическим токсическим действием.
11. Разнообразные виды БА, причины ее обуславливающие. Системы классификации биологического действия ксенобиотиков
Достаточно общее определение биологической активности ксенобиотиков, большое число потенциальных мишеней приложения чужеродных соединений приводят к огромному разнообразию видов биологической активности, которое определяется факторами:
множеством биологических объектов, их состояний и протекающих в них реакций. Поскольку любой живой организм индивидуален, можно говорить об индивидуальной реакции на данный ксенобиотик;
способом попадания в организм (доза, физическая форма вещества, временной режим введения, место введения и т.д.);
наличием или отсутствием дополнительных воздействий, которые предшествуют, сопутствуют или следуют за введением химического соединения. Такими воздействиями могут быть другие вещества или их комбинации, другие искусственные или естественные факторы (физически-электромагнитные, гравитационные поля, температура, давление и т.д.; биологические, обусловленные влиянием, например, других организмов). Одновременное действие нескольких ксенобиотиков может изменить биологические эффекты каждого из них;
способом, временем наблюдения, принципом подбора биообъекта, анализом информации и т.д.
В более широком плане, кроме токсичности и опасности, всякое влияние ксенобиотика на объект можно охарактеризовать некоторыми элементами проявления его биологического действия, на основании которых возможно создать систему классификации наблюдаемых явлений, используя различные критерии:
1. По типу биологического действия на мишень (мембранотропные вещества, разобщители дыхания, ингибиторы биосинтеза ДНК, РНК и др.).
2. По видам токсичности и опасности (эмбриональная, мутагенная, канцерогенная).
3. По избирательности действия ксенобиотиков: вещества могут быть токсичными по отношению к разным организмам.
4. По концентрационным пределам (пороговым значениям) токсического и/или опасного действия.
5. По характеру фармакологического действия (снотворные, нейролептики, гормональные и т. д.).
12. Система оценки первичной безопасности ксенобиотиков: характеристика тест-объектов и тест-реакций.
Первая подсистема производит автоматизированный сбор, обработку полученных теоретических экспериментальных данных и формирует итоговый документ о биологической активности испытуемого ксенобиотика. Управляющая подсистема в соответствии с целями и задачами производит работы по последовательному переключению испытаний на соответствующую тест-систему, осуществляет смену и дозировку экспериментальных растворов, поддерживает заданный (временной) режим испытаний и т.д. Основные события по выявлению биологической активности ксенобиотика разыгрываются в экспериментальной подсистеме, базирующейся на многоуровневом подборе тест-объектов, позволяющих провести оценку токсических, мутагенных, канцерогенных и других эффектов.
Примерный перечень тест-объектов и тест-реакций, используемых в системе первичной оценки безопасности ксенобиотиков