Формат пикселей amd что это
Формат пикселей, размер пикселей или соотношение пикселей
Всем доброго времени суток, дорогие друзья, знакомые, читатели, почитатели и всякие такие прочие-личности.
Никогда не слышали? Повод прочитать и знать. Слышали, но не знаете где это? Повод прочитать и использовать. Зачем оно нужно и как может быть применимо? Ну Вы поняли.. 🙂
Вводная
Формата изображения, мол: » Кино «, » ПК » и тп, что, думаю, многие видели и наверняка заметили ни раз, когда при переключении меняется яркость, резкость, цветопередача и тп.
Давайте разбираться почему так.
Формат цветовой и немного кодирование
Если говорить проще и точнее, то это скорее способы цветового кодирования, которые по разному этот самый цвет.. Ну не то чтобы отображают, а смешивают (интерпретируют) и результат сего вы потом наблюдаете на экрана своего дисплея. Или кодируют-раскодируют, так сказать.
Формат RGB
Считается основным форматом для ПК и в общем и целом. Каждый желающий может легко проверить это смешав любые два (или все три) где-нибудь в цветовой палитре с акварелью.
Формат YCbCr
Более «извращенное представление». Так же пишется как, Y′CbCr, или Y Pb/Cb Pr/Cr, Y’CBCR или YCBCR. Чаще всего используется при передачи передачи цветных изображений в компонентном видео и цифровой фотографии.
Такая вот страшновывернутая штука:
Если Вы уже всё поняли, то отлично, если ничего не поняли, то можете попробовать доломать себе мозг на Википедии в этой статье, либо перейти к выводам из текущего материала.
И что всё еще с этим делать?
На данный момент мы с Вами пришли к тому, что в зависимости от исходного содержимого и разрешения вывода каждый формат может иметь небольшую разницу в качестве изображения. Как это получается кратко мы попробовали рассказать выше по тексту, где дали ссылки для тех, кто любит читать детальнее.
Всё из того же текста статьи (и даже скриншота) можно понять, что настройки AMD Radeon поддерживают следующие форматы отображения HDMI :
Формат RGB содержит ограниченные ( 16-235 бит ) и полные ( 0-255 бит ) параметры, которые представляют диапазон уровней белого и черного, которые могут отображаться.
Всё это конечно замечательно, много интересного написано, но всё еще ни черта не ясно, что же представляет из себя на практике и что с этим делать.
Формат пикселей на практике
На практике Вы покупаете дисплей, включаете в него проводки и радостно определяете, что с ним будете делать (играть, например), после чего его включаете. Дальше у вас несколько вариантов (следите за руками):
Итого Вы перепробовали 4 формата пикселей и 8 настроек под каждый (заводские и Ваши, т.к всё это всегда выглядит иначе во всех 8 случаях). Если здесь Вы еще не выкинули монитор, то Вы:
Послесловие
Если Вы адепт светого света, цветного цвета и черт знает чего еще, то Вам не в эту статью, ибо её, её комментариев, всех статей автора, книг, уроков, да и просто всего интернета явно не хватит, что кому-то что-то доказать по этой теме. Всё.
Как и всегда, если есть разумные вопросы, адекватные мысли, здравые дополнения и всё такое прочее, то разумных людей жду в комментариях.
Наслаждайтесь миллиардами цветов с 10-битным HEVC
Человеческий глаз способен видеть намного больше цветов, чем показывают ему современные видео дисплеи. Каким бы навороченным не был компьютер, он все равно может воспроизвести лишь конечное количество цветов. В этой статье мы расскажем об использовании 10-битной глубины цвета в сравнении с 8-битной, исходя из функционала процессоров Intel Core седьмого поколения и оптимизирующих возможностей Intel Software Tools. В статье вы также найдете ссылку на пример программы, реализующей 10-битное HEVC кодирование.
Глубина цвета
Глубина цвета, известная также как битовая глубина — это количество битов, используемое для отображения цвета отдельного пикселя. Одно и то же изображение или кадр с различной глубиной цвета выглядят различно, поскольку количество цветов в пикселе зависит от глубины цвета.
Количество битов в изображении включает в себя набор битов на канал для каждого типа цвета в пикселе. Количество цветовых каналов в пикселе зависит от используемого цветового пространства. Например, цветовые каналы в цветовом пространстве RGBA — красный ( R), зеленый (G), синий (B) и альфа (A). Каждый дополнительный бит удваивает количество информации, которое мы можем хранить для каждого цвета. В 8-битном изображении общее количество доступных цветов пикселя равняется 256. В Таблице 1 показано возможное количество доступных цветов для каждой соответствующей глубины цвета.
| Глубина канала | Оттенков на канал на пиксель | Общее количество возможных оттенков |
|---|---|---|
| 8-бит | 256 | 16.78 миллионов |
| 10-бит | 1024 | 1.07 миллиарда |
| 12-бит | 4096 | 68.68 миллиардов |
Большинство мониторов и телевизоров способны отображать лишь 8-битный контент, 10-битные изображения в них преобразуются в 8-битные. Однако преимущества 10-битной глубины имеют место уже сейчас:
Эффект цветовых полос
При захвате изображения иногда случается так, что сенсор не может распознать минимальное различие между двумя двумя соседними цветами, и возникает проблема некорректного отображения цветов. Как результат, область рисунка закрашивается одним цветом за неимением более подходящего другого. Таким образом, на рисунке появляются цветные полосы вместо плавного перехода из одного цвета в другой.
Возможные варианты решения проблемы цветовых полос:

Рисунок 1. Сравнение 8-битного (слева) и 10-битного (справа) изображения. Слева виден эффект полос.
Рисунок 1 показывает разницу между 8-битным и 10-битным изображениями применительно к эффекту цветовых полос. На левом изображении необходимая цветовая детализация не была передана сенсором, что привело у меньшему, чем надо, количеству цветов и цветовым полосам. На правом фото цветовой информации достаточно и переход между цветами получился плавным. Для обеспечения плавности цветовых переходов необходим более широкий цветовой диапазон, описанный в стандарте BT2020.
Стандарт BT. 2020
Седьмое поколение процессоров Intel Xeon и Core поддерживает стандарт BT. 2020 (известный также как Rec. 2020) в таких случаях как создание/воспроизведение 4K Ultra-high definition (UHD) контента, использование HDR с поддержкой 10 битов и т.д. UHD-мониторы имеют разрешение 3840*2160 при различной диагонали. Поддержка стандарта BT.2020 улучшает качество картинки при столь высоком разрешении.

Рисунок 2. Сравнение цветовых пространств BT.2020 и BT.709
Рекомендации The International Telecommunications Union (ITU) BT.2020 представляют значительно больший диапазон цветов, чем ранее используемые BT.709. Сравнение соответствующих цветовых пространств показано на Рисунке 2, представляющим диаграмму цветности CIE 1931. Оси X и Y показывают относительные координаты цветности с длинами волн соответствующих цветовых пространств (синий шрифт). Желтый треугольник покрывает цветовое пространство по стандарту BT. 709. Черный треугольник показывает цветовое пространство BT. 2020, значительно большее по размеру и, следовательно, содержащее большее количество цветов для плавных переходов. BT. 2020 также определяет различные аспекты UHD TV такие как разрешение дисплея, частоту кадров, цветовую субдискретизацию и глубину цвета в добавление к цветовому пространству.
Процессоры Intel 7 поколения поддерживают профили HEVC Main 10 profile, VP9 Profile 2 и High Dynamic Range (HDR) видео рендеринг с использованием стандарта BT.2020.
Профиль HEVC Main 10
High Efficiency Video Coding (HEVC), также известный как H.265 — стандарт видео сжатия, наследник хорошо известного стандарта H.264/AVC. По сравнению с предшественниками, HEVC использует более сложные алгоритмы сжатия. Больше информации о стандарте можно узнать здесь. Профиль Main 10 позволяет использовать 8-битный или 10-битный цвет с цветовой субдискретизацией 4:2:0.
Поддержка декодирования HEVC 10b появилась начиная с 6 поколения процессоров Intel. Команда ниже показывает, как тестовая утилита sample_decode из набора примеров кода Intel Media SDK может быть использована для получения сырых кадров из простейшего HEVC потока.
Используемый выше входной поток (input.h265) может быть взят здесь. Выходной поток (raw_frames.yuv) должен быть в формате P010, используемом как исходный материал для утилиты sample_encode.
Аппаратная поддержка кодирования/декодирования HEVC 10b внедрена начиная с 7 поколения процессоров Intel. Кодирование 10-битного HEVC реализовано с помощью дополнительного кода modified_sample_encode, специально измененного для этой конкретной функциональности. Данный пример работает с Intel Media SDK 2016 R2. Инструкция по сборке приведена в руководстве по примерам медиа в образцах кода Intel Media SDK.
Ниже показан пример 10-битного кодирования с использованием sample_encode из добавленной modified_sample_encode.
Рисунок 3. Скриншот утилиты Video Quality Caliper, показывающий, показывающий, что кодированный поток имеет 10 бит на пиксель.
Профиль VP9 2
VP9 — формат видео кодирования, разработанный Google как наследник VP8. Платформы Intel седьмого поколения поддерживают аппаратное ускорение декодирования VP9 10-бит, тогда как кодирование пока комбинированное, софтово-хардварное.
Высокий динамический диапазон (High Dynamic Range, HDR)
Динамический диапазон — это отношение значения самой светлой к самой темной точке на изображении. Видео высокого динамического диапазона (HDR) позволяет получить лучший динамический диапазон, чем обычное (SDR) видео, использующее нелинейные операции для кодирования и декодирования уровня освещенности.
Видео контент HDR поддерживается при использовании кодека HEVC Main 10 или VP9.2, аппаратно ускоренных начиная с 7 поколения процессоров Intel. Для передачи контента HDR, система должна быть оснащена портом DisplayPort 1.4 или HDMI 2.0a. Данная функциональность пока находится на стадии тестирования и не включена в общедоступные релизы.
Заключение
Как мы выяснили, разработчики сейчас имеют возможность создавать красивое, реалистичное видео в самых современных форматах, расцвеченных ярками красками 10-битного цвета, идеальным для HD/UHD дисплеев. Используя процессоры Intel седьмого поколения для создания контента стандарта BT.2020, а также возможности оптимизации Intel Media SDK, мы уже сейчас можем заглянуть за пределы разрешения 4K UHD и стандартной на сегодня кадровой скорости. В дальнейшем область применения современных аппаратно-ускоренных видео кодеков будет расширяться.
В этой статье упоминались следующие программные средства (со ссылками для скачивания):
AMD поддерживает только 8-битный HDR через HDMI 2.0 вместо 10-битного
Тема HDR обещает стать довольно горячей в будущем, что связано не только с тем, что все больше контента и игр будут выпускаться с поддержкой высокого динамического диапазона, но и с отсутствием общепринятых стандартов, как со стороны производителей контента, так и производителей «железа». Это касается и максимальной яркости дисплея, и цветового охвата. Такие спецификации, как P3 Digital Cinema и Rec. 2020 описывают цветовое пространство, но не в стандарте HDR.
Как обнаружили наши коллеги из c’t, AMD использовала ряд трюков при работе с контентом HDR. Например, современные видеокарты Radeon RX на GPU Polaris в играх выводят кадры с 8-битной глубиной цвета вместо 10-битной на цветовой канал при использовании HDMI 2.0. Чтобы компенсировать отсутствующие два бита, используется метод фильтрации с учетом гамма-кривой, так называемой кривой восприятия. Это означает, что визуально пользователь не заметит цветовых градаций, хотя цветовая палитра HDR в данном случае не предоставлена источником, а рассчитана с помощью движка.
При передаче через DisplayPort 1.3/1.4 подобной проблемы не существует, но большинство телевизоров используют входы HDMI. DisplayPort обеспечивает достаточно пропускной способности, чтобы передавать кадры 4K HDR с 10-битным цветом, 60 Гц и полноцветным семплированием YCrBr 4:4:4. Что касается HDMI 2.0, то здесь все не так, по крайней мере, на данный момент. Семплирование снижено до 4:2:2 или 4:2:0. В момент объявления Radeon RX 480, первой видеокарты поколения Polaris, AMD говорила о полной поддержке 10-битного HDR с семплированием 4:4:4 и даже 12-битным HDR. Впрочем, не стоит забывать, что насчет поддержки HDR сегодня больше вопросов, чем ответов. Не всегда понятно, связана 8-битная цветовая глубина только с играми HDR или с фильмами HDR.
Как с другими производителями?
Когда секрет AMD со своими видеокартами раскрылся, возникает вопрос, как насчет видеокарт на GPU NVIDIA или приставок? NVIDIA пока не ответила на запрос c’t. В визуальном тесте сравнения редакторы не смогли найти отличий между видеокартами GeForce и Radeon RX. Но производительность видеокарт NVIDIA при активации HDR снижалась, а у видеокарт AMD оставалась стабильной.
Тот же самый вопрос возникает и насчет PlayStation 4 Pro, поскольку здесь используется GPU Polaris от AMD. Можно предполагать, что цвет тоже 8-битный вместо 10-битного. Но подтверждения пока нет.
О размере экрана, пикселя и элемента
Привет, username. Свой первый пост я хочу посвятить актуальной проблеме, связанной с появлением большого количества новых форматов дисплеев и непрекращающейся гонкой за плотностью пикселей. В свете появления таких устройств, как очки дополненной реальности, смартчасов, 4к-мониторов и еще более широкого спектра планшетов и ноутбуков, возникает вопрос: какой размер графического элемента/текста следует считать оптимальным и в чем его измерять. Android-разработчики, несомненно, тут же воскликнут: «Да, конечно, в dp!». Но практика показывает, что дела обстоят несколько сложнее.
Проблема
Одна из ключевых задач дизайнера интерфейса заключается в том, чтобы создать оптимальный баланс элементов, который позволяет реализовать бизнес-цели продукта комфортно для пользователя. Методов дифференциации элементов помимо положения не так уж и много:
Синопсис
Подобие стандарта на ppi (pixels per inch) появилось в середине 1980-х, когда Apple выпустила свои первые компьютеры серии Macintosh. У этих компьютеров была 9-дюймовая диагональ экрана с 72 пикселями на каждый квадратный дюйм. Уже тогда Apple заняла позицию создания собственной экосистемы, поэтому в диапазоне технологических возможностей того времени было выбрано ppi ровно в два раза меньше dpi (dots per inch) эппловского принтера ImageWriter, что давало гарантию, что размер элементов на экране будет точно соответствовать размеру на бумаге. Однако это касалось только компьютеров фирмы Apple, так как другие производители использовали самые разные ppi, следуя своим возможностям и законам рынка. Этот рудимент видения компьютера как приставки к принтеру привел к появлению в Photoshop галочки Resample Image, при снятии которой разрешение изображения не влияет на его размер, но влияет на качество печати.
Тем временем разрешение и диагональ мониторов начали расти как на дрожжах. Если Mac 128k имел разрешение 512×342 пикселя, то к 1996 году эта же компания выпустила Apple Multiple Scan 15 Display с диагональю 13.3 дюйма и потрясающим для тех времен разрешением 1024х768px. Это значение, вне зависимости от диагонали, оставалось самым популярным разрешением экранов еще 12 лет.
Несмотря на попытки выработать какой-то стандарт, к середине 2000-х в потребительском секторе было несколько сотен вариаций разрешения и диагонали экранов. Что касается профессионального рынка, где, казалось бы, должна была соблюдаться какая-то стандартизация, то там ситуация была еще хуже. Производители создавали для специалистов мониторы весьма экзотических параметров, которые стоили как паровоз и имели свойство устаревать в течение года.
В 2008 году я купил ноутбук Lenovo Y710-200, имевший диагональ 17 дюймов и разрешение 1920х1200px. К сожалению, на тот момент ни у меня, ни, видимо, у Lenovo не было представления о том, какое это было сильное преимущество для ноутбука: 132ppi! Даже у профессиональных мониторов ppi было ниже, а выше можно было наблюдать уже в совсем специфической технике, вроде медицинских мониторов или мониторов космических устройств, хотя именно в этом году Kopin Corporation представила продукт пика технологических исследований — устройство с 2272ppi. Для меня лично дело кончилось тем, что я приучился смотреть видео только HD качества (1920х1080), поскольку на этом экране видео 720p или 480p было очень маленьким. Эта же ситуация подтолкнула меня, как начинающего дизайнера, к самостоятельному осознанию независимости размера элемента от устройства. Кстати, удивительно, но Windows Vista справлялась с масштабированием вполне неплохо.
В 2010 году Стив Джобс представил дисплей повышенной четкости, названный Retina (“сетчатка”, англ.). При этом в своей презентации он заявил, что ppi ретины превышает таковой у человеческого глаза и, следовательно, считается идеальным.
Как опытный презентатор, Джобс произвел впечателение на общественность, однако по мнению специалистов cultofmac.com слукавил приблизительно в 2-3 раза, так как ряд исследователей считает, что разрешающая способность хорошего зрения несколько выше.
Эта картинка (открывать на устройстве с Retina) позволит понять, насколько утверждение Джобса соответствует истине. Человек с нормальным зрением без труда найдет на этом изображении как белые и черные полосы шириной в один пиксель, так и цикл (черная и белая полоса рядом) шириной в 2 пикселя по центру.
Следует также понимать, что, ввиду ограниченного углового разрешения глаза, ppi для экранов разного размера и находящихся от пользователя на разном расстоянии будет отличаться. Например, для iPhone это значение должно быть около 952ppi, а для iPad — 769ppi.
Ситуация
Кстати, Microsoft по умолчанию считает, что dp = 1/96 логического дюйма, dpi которого можно настроить в панели управления. Хочется заметить, что, используя физические значения, лучшей практикой было бы использование миллиметров, как производную от основной единицы СИ.
Это элегантное решение позволяет автоматически выстраивать элементы по модульной сетке с размером ячейки, очевидно, равной значению rem. Тем не менее, несмотря на преимущества для верстки, оно имеет все те же ограничения: непонятно, как задать элементу абсолютный относительно зрительного восприятия размер.
Для того, чтобы разобраться в этой проблеме, нам придется несколько углубиться в физиологию.
Бионика
Зрительный аппарат появился в результате эволюции простейших фоторецепторов, возбуждающихся от яркого света. При этом природа создала аж четыре варианта: глаза моллюсков, формирующиеся из эпителия, обладающие способностью видеть широкий спектр световых волн, глаза млекопитающих, формирующиеся из нервной ткани и изначально предназначенные для нахождения форм и движения объектов, камерные глаза кубомедуз и фасеточные глаза насекомых. Как признак, зрение оказалось весьма полезным инструментом выживания, и поэтому его эволюция у человека (вместе с самим человеком) длилась всего около полумиллиона лет.
Не вдаваясь в подробности, можно сказать, что глаз представляет из себя биологическую линзу, дно которой выстлано слоем рецепторной матрицы из палочек и колбочек — особых клеток, реагирующих на свет и создающих нервные импульсы, идущие дальше в мозг. Однако следует помнить, что, в сетчатке есть например слой амакриновых клеток которые непосредственно учавствуют в первичной переработке информации, отвечая за латеральное торможение: уменьшение количества импульсов в местах яркого диффузного освещения и увеличение в местах резкого перепада освещенности. Система, таким образом, служит для выделения краев тени, падающей на сетчатку или перемещающейся по ней — именно поэтому черный текст на белом фоне читается лучше. Это одна из причин, по которой нейрофизиологи рассматривают сетчатку и зрительный тракт как участников процесса обработки визуальной информации и, следовательно, как часть мозга.
В среднем по вертикали поле зрения человека составляет около 135 градусов, а по горизонтали — 155. При этом бинокулярные и хроматические возможности глаза неоднородны по его площади.
Источник
Для того, чтобы определить остроту зрения (аналог разрешения камеры), используются таблицы Снеллена — ряды букв разного кегля, где размер и ширина знака подбраны так, чтобы стянуть угол в 1 минуту дуги на определенном расстоянии. При этом нормой считается зрение, при котором человек различает буквы в шестой строке с расстояния 6 метров, что равняется 5 минутам дуги. В научных исследованиях принято применять кольца Ландольта, так как это позволяет более объективно оценивать данные, без погрешности на узнаваемость типографических знаков и шрифт. В России кольца Ландольта адаптированы С. Головиным, а таблица Снеллена учеником Головина Д. Сивцевым.
Современные исследования ясности зрения оперируют понятием цикл на градус (под циклом понимается черно-белая пара линий) и предлагают значение 77 циклов на градус, что приблизительно равно 78 циклам на градус дуги. Опять же, ввиду минимальной ширины цикла в 2 пикселя, мы видим схожие 0.39 минут дуги.
Учитывая угловое пространство глаза, путем простого вычисления 100 * 100 * 60 * 60 / (0.3 * 0.3) = 400 мегапикселей мы получаем значение, весьма близкое к общему количеству фоторецепторов в сетчатке.
Следует понимать, что в то время, как область ясного видения дает довольно четкое представление о минимально допустимом размере объектов и их разрешении, механика восприятия в периферической области несколько отличается, так как оно в большей степени отвечает за бессознательное сканирование и приоритезацию. Особенность человеческого глаза иметь максимальное разрешение и когнитивный фокус в области фовеа (так называемое желтое пятно), например, позволяет таким сервисам как Spritz увеличить скорость восприятия текста (помимо сокращения «лага» за счет отсутствия движений глаз), умещая слово в область ясного видения.
Помимо этого, приведенная схема дает нам четкое представление о рекомендуемых размерах элементов. Ясно, что для комфортного ориентирования по интерфейсу интерактивный элемент, на котором в текущем сценарии сфокусировано внимание, не должен превышать область макулы (7°х5.5°), а блок/группа/список, в котором он находится, — область ясного видения (16-20°x12-15°). Именно этот факт косвенно поддерживает предлагаемую в Google гипотезу, что маленький экран не значит меньше информации, так как область когнитивного анализа в принципе довольно мала.
Более детальное представление области ясного зрения. Показано, что отношение между зонами разной рецепторной активности в действительности соответствует золотому сечению.
Оптимум
Формула для расчета размера элемента в зависимости от расстояния:
где
h = искомая высота элемента
d = расстояние в миллиметрах
x = размер элемента выраженный в радианах (минуты дуги в радианы)
Примеры округленных расчетов рекомендуемого размера шрифта (21 минута дуги) в миллиметрах
| Расстояние | Кегль |
| 400 | 2.4 |
| 500 | 3.1 |
| 600 | 3.7 |
| 700 | 4.3 |
Следует отдельно заметить, что устройства вроде Oculus Rift, находящиеся в непосредственной близости от глаза, следуя этой формуле, в идеале должны обладать огромным ppi со значением больше 2000.
Выводы
Исходя из приведенных выше рассуждений, можно прийти к следующим выводам касательно решения проблемы верстки на разных устройствах:
PS В некоторых абзацах, описывающих точные данные, источники были переведены без изменений.





