Формула увеличения телескопа в чем измеряется
astro-talks
форум для любителей астрономии
Важные характеристики телескопов
Модератор: Ernest
Важные характеристики телескопов
Сообщение Ernest » 31 авг 2011, 12:04
Что такое увеличение телескопа?
Что такое апертура телескопа?
Что такое апертурная лихорадка?
Это естественное следствие из кардинального свойства апертуры ограничивать проницание и разрешение телескопа. Владелец менее апертурного телескопа, войдя во вкус наблюдательной астрономии, хочет сменить его на более апертурный (с большим диаметром линз/зеркала), чтобы иметь возможность увидеть больше. По ряду соображений, имеет смысл переходить на размер апертуры примерно в полтора раза больший, чем предыдущая. В некоторых случаях этот естественный ход событий приобретает клиническую форму, когда смена апертуры на большую происходит задолго до исчерпания возможностей наличного инструмента – просто как погоня за дюймами, не взирая на те трудности, с которыми придется столкнуться используя габаритный и тяжелый инструмент. Что и называют апертурной лихорадкой.
Что важнее увеличение телескопа или его апертура?
С каким максимальным увеличением я смогу наблюдать?
Обычно отвечают, что для этого надо умножить диаметр апертуры телескопа, измеренный в миллиметрах, на полтора или 40 апертур выраженных в дюймах. То есть для 10” инструмента (диаметр апертуры 254 мм) максимальное разумное составит около 400 крат.
Но тут надо отметить ряд обстоятельств. Это число не догма – обычно телескоп используется с меньшим увеличением подобранным для наблюдений того или иного класса объектов. Кроме того, при больших остаточных аберрациях объектива телескопа, плохой юстировке, неудачном климате места наблюдений (турбулентная атмосфера), тусклых объектах наблюдений, отсутствии часового ведения телескопа увеличения придется ограничивать меньшим, чем предельное, значением увеличением. При ярких объектах наблюдений, при проведении некоторым технических наблюдений (связанных с юстировкой телескопа или разрешением тонкой дифракционной структуры двойных звезд) неважной остроте зрения наблюдателя и надежном часовым двигателе монтировки, который отрабатывает компенсацию вращения Земли, вполне может оказаться полезным использование и несколько больших значений увеличений. Чем больше увеличение, тем меньше яркость изображения, меньше поле зрения телескопа, заметнее проявления дефектов оптики телескопа. И наоборот чем увеличение меньше, тем больше поле зрения телескопа, больше яркость изображения, оно выглядит более контрастным и резким.
см. также статью из ЧАВО «Какое максимальное увеличение имеет смысл для телескопа?»
Что такое разрешение телескопа?
Что такое проницание телескопа?
Что такое поле зрения телескопа?
Важна ли светосила для объектива телескопа?
Светосила объектива телескопа или его относительное отверстие (отношение диаметра апертуры к фокусному расстоянию) – важная характеристика для астрографа, телескопа используемого для производства фоторабот. Этот параметр (наряду со временем выдержки) определяет экспозицию при получении одного кадра. Чем светосила больше, тем меньшее время требуется для достижения той же экспозиции – того же уровня полезного сигнала на фотоматериале. Длительность выдержек при фотографировании широких звездных полей и туманностей обеспечивается довольно сложными системами слежения за суточным вращением неба, компенсацией несовершенства механики монтировки и поэтому для астрографа в ряде случаев важно уменьшить время выдержки и максимально увеличить светосилу объектива (без потерь в качестве изображения).
При визуальных наблюдениях в первом приближении светосила объектива телескопа не столь существенна. То насколько ярким глаз увидит изображения в телескоп, определяется не светосилой объектива, а размером выходного зрачка телескопа. Диаметр выходного зрачка равен диаметру апертуры объектива деленному на увеличение. То есть, чем больше увеличение, тем меньше выходной зрачок и тем меньше яркость изображения.
Светосила объектива телескопа косвенно определяет размер поля зрения. Чем светосильнее объектив телескопа – тем большее поле зрения возможно получить в пределах его окулярного тубуса или зафиксированном размере фотоприемника (кадра камеры). Кроме того как у визуального так и у фотографического астрономического телескопа (рефлектора или рефрактора) продольный размер трубы, обычно, тем меньше, чем больше относительное отверстие его объектива.
При фотоработах по широким полям (звездные поля, туманности, галактики и т.п.) относительное отверстие (отношение диаметра входной апертуры к фокусному расстоянию) выбирают побольше, чтобы получить лучшую проработку тусклых объектов (см. выше про важность светосилы). Но при стремлении к наивысшему проницанию по звездам требуется согласовывать относительное отверстие объектива и сумму его остаточных аберраций с размером пиксела фотоприемника. Вполне может статься, что меньшая светосила объектива даст лучшее проницание.
А вот для визуальных инструментов большее относительное отверстие объектива интересно постольку, поскольку позволяет получить большее поле зрения при том же размере фокусера (полевой диафрагмы обзорного окуляра).
При этом надо иметь ввиду, что большая светосила объектива обычно сопровождается большими остаточными аберрациями (как расчетными, так и ошибками производства, разюстирокой). Так что при желании достичь предельного разрешения (например, по планетам) лучше предпочесть телескопы с нефорсированным (небольшим) относительным отверстием объектива. Кроме того, в зеркальных системах большее относительное отверстие влечет за собой большее центральное экранирование, что также не добавляет контраста изображению на предельных увеличениях.
Фокусное расстояние телескопа
В окулярную трубку фокусера (фокусировщика) телескопа вставляют окуляры и проч. узлы. Двухдюймовый фокусер в любом случае лучше, хотя бы потому, что переходники для посадки 1.25″ окуляров и проч. аксессуаров в 2-дюймовый фокусер есть, а обратных переходников (во всяком случае без потерь в поле зрения) – нет. 2-дюймовый фокусер предоставляет больше свободы в выборе окулярных аксессуаров. Особенно важно иметь больший диаметр окулярной трубки фокусера в астрографе. Но 2″ аксессуары дороже и габаритнее.
см. также статью из ЧАВО «2» или 1.25″?»
В телескоп все видно вверх ногами?!
Среди астро-товаров, как и в мире всех прочих гаджетов, есть особенно дорогие, в том числе с карбоновыми трубами. Первоисточник этого карбона – стремление создать трубу астрографа минимально подверженную уходу фокуса из-за температурного дрейфа в процессе съемки. Масляная иммерсия между линзами апохромата позволяет увеличить размер «склейки» против допустимых при традиционном способе склеивания и получить все преимущества склеенного блока – минимальные возможности для разъюстировки, потерь света и т.п.
Это возможность сочетать быструю перефокусировку с точной высокочувствительной подстройкой фокуса на больших увеличениях, что особенно актуально для светосильных телескопов.
Что ограничивает мобильность телескопа?
Обычная схема астрономических наблюдений с выездом за город – вынос из дома к автомобилю частей телескопа (труба, монтировка, тренога), сумки или чемоданчика с аксессуарами (окуляры, фильтры, карты, фонарь), расфасовка всего этого добра по салону и в багажник, а по прибытии на место наблюдения вдали от городских огней сборка телескопа.
При таком подходе мобильность ограничена только весом и габаритом самой тяжелой и габаритной из частей телескопа, размерами дверных проемов, дверей в лифте, объемом багажного отделения (а то и прицепа) автомобиля, силой и количеством рук наблюдателя и его помощников, трудоемкость сборки/разборки телескопа на части.
Можно ли будет перевозить телескоп на автомобиле?
Да – это наиболее обычный способ доставить телескоп к месту наблюдений для жителей больших городов.
Каковы примерные размеры телескопов?
Как правильно выбрать телескоп?
В этом разделе мы постарались собрать воедино ту обрывочную информацию, которую можно найти в Интернете. Информации много, но она не систематизирована и разрознена. Мы же, руководствуюясь многолетним опытом, систематизировали наши знания для того, чтобы упростить выбор начинающим любителям астрономии.
Основные характеристики телескопов:
Телескоп — это более универсальный оптический прибор чем зрительная труба. Ему доступен больший диапазон кратностей. Максимально доступная кратность определяется фокусным расстоянием (чем больше фокусное расстояние, тем больше кратность).
Чтобы демонстрировать четкое и детализированное изображение на большой кратности, телескоп должен обладать объективом большого диаметра (апертуры). Чем больше, тем лучше. Большой объектив увеличивает светосилу телесокопа и позволяет рассматривать удаленные объекты слабой светимости. Но с увеличением диаметра объектива, увеличиваются и габариты телескопа, поэтому важно понимать в каких условия и для наблюдения каких объектов Вы хотите его использовать.
Как рассчитать кратность (увеличение) телескопа?
Смена кратности в телескопе достигается использованием окуляров с разным фокусным расстоянием. Чтобы рассчитать кратность, нужно фокусное расстояние телескопа разделить на фокусное расстояние окуляра (например телескоп Sky-Watcher BK 707AZ2 c 10 мм окуляром даст кратность 70x).
Распространенные ошибки при выборе телескопа
Часто задаваемые вопросы
Основные критерии при выборе телескопа
Оптическая схема. Телескопы бывают зеркальные (рефлекторы), линзовые (рефракторы) и зеркально-линзовые. |
Диаметр объектива (апертура). Чем больше диаметр, тем больше светосила телескопа и его разрешающая способность. Тем более далекие и тусклые объекты в него можно увидеть. С другой стороны, диаметр очень сильно влияет на габариты и вес телескопа (особенно линзового). Важно помнить, что максимальное полезное увеличение телескопа физически не может превышать 1.4 его диаметров. Т.е. при диаметре 70 мм максимальное полезное увеличении такого телескопа будет |
Плюсы и минусы оптических схем
Длиннофокусные рефракторы-ахроматы (линзовая оптическая система)
Короткофокусные рефракторы-ахроматы (линзовая оптическая система)
Длиннофокусные рефлекторы (зеркальная оптическая система)
Короткофокусные рефлекторы (зеркальная оптическая система)
Зеркально-линзовая оптическая система (катадиоптрик)
Шмидт-Кассегрен (разновидность зеркально-линзовой оптической схемы)
Максутов-Кассегрен (разновидность зеркально-линзовой оптической схемы)
Что можно увидеть в телескоп?
Апертура 60-80 мм
Лунные кратеры от 7 км в диаметре, звездные скопления, яркие туманности.
Апертура 80-90 мм
Фазы Меркурия, лунные борозды 5,5 км в диаметре, кольца и спутники Сатурна.
Апертура 100-125 мм
Лунные кратеры от 3 км изучать облачности Марса, сотни звёздных галактик, ближайших планет.
Апертура 200 мм
Лунные кратеры 1,8 км, пылевые бури на Марсе.
Апертура 250 мм
Спутники Марса, детали лунной поверхности 1,5 км, тысячи созвездий и галактик с возможностью изучения их структуры.
Основные производители телескопов
Celestron (Селестрон)
|
Страна: США
Гарантия: до 3 лет
Sky-Watcher (Скай-Вочер)
|
Страна: Канада
Гарантия: до 3 лет
Levenhuk (Левенгук)
|
Предлагает широкую линейку серийных телескопов. Компания позиционирует себя как американская, хотя это не так. Это отечественный бренд, производящийся в Китае. Стоимость их в среднем выше чем у аналогов, но взамен Levenhuk предоставляет пожизненную гарантию на свою продукцию и расширенную комплектацию телескопов.
Страна: Россия
Гарантия: Пожизненная
Meade (Мид)
|
Всемирно-известный производитель высококачественных телескопов. В линейке только уникальные для данного производителя модели для людей, серьезно занимающихся астрономией.
Страна: США
Гарантия: до 2 лет
Veber (Вебер)
|
Отечественный бренд, созданный на базе Ленинградского оптико-механического объединения. Отличается доступной ценой и интересными недорогими моделями, отсутствующими в линейках других производителей.
Страна: Россия
Гарантия: до 1 года
Sturman (Штурман)
|
Предлагает как самые недорогие базовые модели для детей, так и более продвинутые телескопы для наблюдения дальнего космоса.
Страна: Россия
Гарантия: до 1 года
Рекомендуемые Телескопы
На основании нашего опыта продаж наблюдательной оптики мы отобрали наиболее интересные телескопы с точки зрения соотношения цена/качества.
Вы можете увидеть, что на сайте магазина рекомендуемые телескопы помечены вот таким образом: Рекомендуем
Выбираем диаметр и кратность лупы (линзы) для телескопа
Если вы обратились к этой статье, скорее всего, вы начинающий любитель астрономии. Это хорошо, ведь впереди вас ждет много новых открытий. И первое, о чем стоит знать, – спрашивать о диаметре и кратности лупы для телескопа не совсем правильно. Во-первых, в телескопе нет луп, только линзы. Во-вторых, для определения увеличения оптического прибора нужно знать не только диаметр линзы, но также фокусные расстояния телескопа и окуляра. Только зная все эти параметры, можно определить, как сильно приближает оптический прибор. Давайте научимся это делать.
Как рассчитать кратность телескопа
Кратность телескопа – расчетная величина, которая показывает, во сколько раз увеличивает его оптика. Формула расчета в общем виде выглядит так: фокусное расстояние объектива разделить на фокусное расстояние окуляра. То есть замена окуляра влияет на кратность любого телескопа. Чем больше у вас разнофокусных окуляров, тем больше у вас выбор кратности. Казалось бы, бери самый короткофокусный окуляр и получишь максимальное увеличение. Но есть нюансы, о которых стоит знать, прежде чем радоваться, что ваш телескоп стал приближать, например, в 500 крат. Это всего лишь теоретическое увеличение. Но что будет на практике?
Поговорим о самом важном моменте, который нужно учитывать при оценке увеличения телескопа. Оптика – это раздел физики, и она подчиняется строгим физическим законам. У каждой оптической системы есть предел увеличения, после которого качество картинки начинает ухудшаться. До этого предела на любом увеличении можно достичь четкости, когда каждая точка объекта видна отдельно. А после его преодоления точки начинают расползаться и накладываться друг на друга, и в итоге получается большое и размытое пятно. Радости от его лицезрения не будет никакой. Этот предел называется «максимально полезным увеличением» и рассчитывается по формуле: диаметр объектива умножить на два. То есть телескоп с диаметром объектива в 70 мм, будет четко показывать все детали только до увеличения в 140х, дальнейшие улучшения оптики не приведут к хорошему результату. Как ни меняй окуляры, 140 крат – предел возможностей этой оптической системы.
Но не стоит расстраиваться. В астрономических наблюдениях нет правила «чем выше кратность увеличения телескопа, тем лучше картинка». Нет, нужно учитывать предмет наблюдений. Большое увеличение хорошо использовать только при изучении планет и Луны. Это довольно крупные, яркие и близкие к нам астрономические объекты, поэтому высокократный телескоп покажет много деталей. А вот туманности и галактики – тусклые и сильно удаленные. При их изучении большее значение имеет светосила, зависящая от диаметра объектива телескопа, а кратность уже не так важна.
Выше мы привели две формулы для определения увеличения телескопа, и ими прекрасно можно пользоваться. Но рассчитать кратность телескопа можно и при помощи нашего калькулятора. Просто укажите основные технические параметры, и калькулятор быстро покажет вам все значения увеличений.
Наш интернет-магазин предлагает большой выбор телескопов с разным увеличением и разной комплектацией. В ассортименте представлены также и окуляры, и линзы Барлоу, которые позволяют изменить кратность оптической системы. Обращайтесь к нашим консультантам за помощью в выборе – мы отвечаем по телефону и по электронной почте.
Использование материала полностью для общедоступной публикации на носителях информации и любых форматов запрещено. Разрешено упоминание статьи с активной ссылкой на сайт www.4glaza.ru.
Производитель оставляет за собой право вносить любые изменения в стоимость, модельный ряд и технические характеристики или прекращать производство изделия без предварительного уведомления.
Другие обзоры и статьи о телескопах и астрономии:
Обзоры оптической техники и аксессуаров:
Статьи о телескопах. Как выбрать, настроить и провести первые наблюдения:
Все об основах астрономии и «космических» объектах:
Формулы для расчёта телескопа
Основные формулы, показывающие на что примерно способен телескоп.
Не забывайте только, что это теория, на деле всё сильно зависит от качества изделия, правильности настройки и состояния атмосферы.
Кратность или увеличение телескопа (Г)
Максимальное увеличение (Г max)
Светосила
Светосила телескопа определяется в виде отношения D:F. Если не особо заморачиваться, то чем меньше это отношение, тем лучше телескоп подходит для наблюдения галактик и туманностей (например 1:5). А более длиннофокусный телескоп с соотношением вроде 1:12 лучше подходит для наблюдения Луны.
Разрешающая способность (b)
Из сказанного выше видно, что в обычных условиях минимальная разрешающая способность в 1″ достигается при апертуре 150мм у рефлекторов и около 125мм у планетников-рефракторов. Более апертуристые телескопы дают более чёткое изображение только в теории, ну или высоко в горах, где чистая атмосфера, либо в те редкие дни, когда «с погодой везёт».
Однако, не забывайте, что чем больше телескоп, тем ярче изображение, тем виднее более тусклые детали и объекты. Поэтому, с точки зрения обычного наблюдателя, изображение у больших телескопов всё равно оказывается лучше, чем у маленьких.
Вдобавок, в короткие промежутки времени атмосфера над вами может успокоиться настолько, что большой телескоп покажет картинку более чёткую, чем при том самом пределе в 1″, а вот маленький телескоп упрётся в это ограничение и будет очень обидно.
Так что, нет особого смысла ограничиваться 150-ю миллиметрами 😉
Предельная звёздная величина (m)
Приведу для справки таблицу соответствия апертуры телескопа D и предельной звёздной величины:
D, мм | m | D, мм | m |
---|---|---|---|
32 | 9,6 | 132 | 12.7 |
50 | 10,6 | 150 | 13 |
60 | 11 | 200 | 13,6 |
70 | 11,3 | 250 | 14,1 |
80 | 11,6 | 300 | 14,5 |
90 | 11,9 | 350 | 14,8 |
114 | 12,4 | 400 | 15,1 |
125 | 12,6 | 500 | 15,6 |
Выходной зрачок
Поле зрения телескопа
Поле зрения телескопа = поле зрения окуляра / Г
Поле зрения окуляра указано в его паспорте, а увеличение Г телескопа с данным окуляром мы уже знаем как расчитать: Г=F/f.
Чем полезно знание поля зрения телескопа?
Чем больше поле зрения телескопа, тем больший кусок неба виден, но тем мельче объекты.
Зная какое поле (угол) захватит ваш телескоп при заданном увеличении, и зная уговые размеры искомого объекта, можно прикинуть какую часть поля зрения займёт этот объект, то есть прикинуть общий вид того, что вы увидите в окуляре.
Если вы ищете объект не по координатам, а по картам, то полезно сделать из проволоки колечки, которые соответствуют на карте угловым полям зрения ваших окуляров в составе данного телескопа. Тогда гораздо легче ориентироваться: двигая телескоп от звезды к звезде и одновременно перемещая колечко на карте, вы легко можете сверять оба изображения.
Теперь, когда примерно ясна взаимосвязь характеристик телескопа, можно другими глазами посмотреть на то, что можно увидеть в телескопы разных размеров.
Владимир, 19 июля 2020 г.
Владимир, юмор оценил, разработками шпионского оборудования не занимаюсь 🙂
Николай, 19 July, 2020
Как решить эту задачу,не понимаю.
Фотоаппаратом с фокусным расстоянием объектива 9 см фотографировали далекие предметы на максимально близком для данного аппарата расстоянии 81 см. Определить, на сколько при этом пришлось выдвинуть вперед объектив.
Матвей, 25 июня 2020 г.
В таком виде я тоже условие не понимаю. Но, если предположить, что в задаче пропущено, что сначала просто фоткали далёкие предметы, а потом на максимально близком для данного фотоаппарата, то это похоже на задачу на формулу тонкой линзы:
1/f2 = 1/F-1/d2 = 1/9-1/81 = 9/81-1/81 = 8/81;
f2 = 81/8 = 10.125 см
f2-f1= 10.125-9 = 1.125см
Если что, я не виноват 🙂
Николай, 26 June, 2020
Как определить (по какой формуле) диапазон телескопа, если он необходим для наблюдения за звездами с атмосферной температурой, например, 10000:К?
Елена, 22 мая 2020 г.
Николай, 26 May, 2020
Максим, 30 апреля 2020 г.
Николай, 12 May, 2020
А мой телескоп наверное самый такой простой. Levenhuk Skyline 76*700AZ очень обидно то,что я могу посмотреть только окружность звезды я середина её тёмная. почему?ответьте если можно.
Татьяна, 16 февраля 2020 г.
Николай, 16 February, 2020
Елена Александровна, 16 августа 2019 г.
Николай, 16 August, 2019
Большое спасибо за статью и другие статьи вашего сайта, очень понятно и подробно, спасибо.
Александр, 16 августа 2019 г.
Пожалуйста. Спрашивайте, если что 🙂
Николай, 16 August, 2019
Замечательная статья. Благодарю. Celestron 120/1000 OMNI
Андрей, 24 ноября 2018 г.
Очень интересно и подробно всё описано. Для меня это очень нужная статья, т.к. недавно начал заниматься астрономией. Мой телескоп: Sturman HQ1400150EQ. Спасибо вам большое!
Виктор, 9 ноября 2018 г.
Увеличение телескопа
Каждый, кто выбирает свой первый телескоп, обращает внимание на такую характеристику как увеличение телескопа. Как узнать какое увеличение дает телескоп? Какое увеличение нужно, чтобы рассмотреть кратеры на Луне, кольца Сатурна, спутники Юпитера? Что такое максимально полезное увеличение? На все эти важные вопросы мы постараемся ответить в данной статье.
Детали поверхности Марса при одинаковом увеличении с телескопом различных апертур.
Практически каждый начинающий любитель космоса, считает, что увеличение телескопа это его главная характеристика и старается подобрать телескоп с максимально возможным увеличением. Но так ли важно увеличение телескопа? Несомненно, увеличение телескопа является одной из основных характеристик телескопа, но не единственной значимой. Чтобы получить изображение объекта через телескоп не только большим, но максимально детальным, необходимо, чтобы в телескопе использовалась высококачественная стеклянная оптика, в рефракторах — сложные просветленные линзы, а в рефлекторах — параболические зеркала. Также важно и качество окуляров, которые Вы используете.
Как рассчитать увеличение телескопа?
Вид Сатурна при увеличении 200 и 50 крат.
Максимальное полезное увеличение телескопа.
Фокусное расстояние окуляра указано на его корпусе.
В оптике есть такое понятие как максимальное полезное увеличение телескопа. Это значения увеличений, которые позволяет достигнуть оптическая система телескопа без потери качества изображения. Теоретически, при использовании комбинаций короткофокусных окуляров и мощных линз Барлоу даже на небольших телескопах можно получить очень большие значения увеличений, но такие манипуляции не имеют смысла, т. к. оптическая система телескопа ограничена его диаметром и качеством оптики.
Вид Сатурна при недостаточном, оптимальном и чрезмерном увеличении.
Луна при увеличение 50 крат.
Будьте внимательны при изучении параметров телескопа в его описании. Иногда производители заявляют слишком завышенные цифры, например увеличения до 600 крат. Надо понимать, что таких величин можно достигнуть при диаметре апертуры не менее 300 мм, и то скорее всего на таком увеличении Вы столкнетесь с другой проблемой — сильными искажениями от земной атмосферы.
Что можно увидеть в телескоп при различных увеличениях?
Лунный рельеф при увеличение в 350 крат.
Совет:
При выборе телескопа — обращайте внимание на его комплектацию. Необходимо, чтобы в комплекте были различные окуляры, позволяющие достигнуть различных увеличений, в том числе и максимально полезного. Иногда производители экономят на аксессуарах, делая упор на качество самого телескопа. В таком случае, необходимо самостоятельно докупать окуляры. Обычно это бывает у высококлассных моделей с дорогой оптикой, с которыми необходимо использовать окуляры такого же высокого класса.