Фотосинтез что поглощается и выделяется
Фотосинтез в биологии — определение, сущность процесса кратко и понятно
Фотосинтез — один из жизненно важных биологических процессов, которые протекают в природе и создают благоприятные условия для жизнедеятельности большинства живых организмов. Его основным результатом является выделение органических веществ и кислорода. Основная химическая реакция проходит между водой и углекислым газом, но для ее успешного протекания обязательно требуется участие света.
История проведения научных исследований по фотосинтезу
В процессе изучения растений и животных было сделано ряд важнейших экспериментов, которые привели ученых к открытию фотосинтеза. Произошло это еще несколько столетий назад. В 1600 году бельгийский биолог Ян Ван Гельмонт провел достаточно простой, но очень значимый эксперимент. Он поместил в горшок с землей небольшую ивовую веточку. Несколько лет растение получало в качестве полива дождевую воду, что привело к увеличению его массы на 60 кг. При этом вес земли в горшке уменьшился всего на 50 грамм.

Важно! Джозеф Пристли большую часть жизни посвятил службе священнослужителем в английской церкви, но вошел в историю человечества в роли выдающегося ученого.
В 1782 году швейцарец Жан Сенебье привел научные доказательства химического распада углекислого газа под длительным влиянием солнечного света. Этот процесс беспрерывно происходит внутри зеленых органоидов практически всех растений. В 1787 году француз Жак Бусенго обнаружил, что растительность поглощает воду в процессе синтеза необходимых для ее жизнедеятельности органических веществ. А уже в 1864 году, немецкий биолог Юлиус Сакса сделал научный прорыв в исследовании процессов фотосинтеза и практически завершил цепочку открытий. Именно этот ученый смог доказать, что соотношение углекислого газа, потребляемого растениями, и вырабатываемого кислорода составляет пропорцию 1:1.
Особенности прохождения процессов фотосинтеза
Фотосинтез может происходить в зеленых растениях, водорослях и многочисленных бактериях, которые составляют флору нашей планеты. Для полноценного прохождения этой химической реакции необходимо присутствие следующих обязательных условий:
В процессе фотосинтеза высших растений участвуют хлоропласты. Эти полуавтономные органеллы имеют овальную форму и содержат зеленый пигмент — хлорофилл. Именно за счет его наличия часть растительности также характеризуется зеленоватым оттенком.

Важно! В результате фотосинтеза выделяющийся кислород поступает в атмосферу. Он необходим для дыхания всех растений и животный. Поднимаясь же в верхние слои атмосферы, кислород участвует в образовании озонового слоя, защищающего поверхность планеты от чрезмерного воздействия ультрафиолетовых лучей.
Как выполняется процесс фотосинтеза?
Фотосинтез проходит в следующей последовательности:
Важно! Эта химическая реакция также приводит к выработке кислорода. Важно! Оптимальным условием для фотосинтеза является наличие солнечных лучей, однако для некоторых фотосинтезирующих растений достаточно присутствия и искусственно созданного освещения.

Основные фазы
Фотосинтез — достаточно сложный природный процесс, который включает в себя световую и темновую фазы.
Особенности световой фазы
Этот этап фотосинтеза осуществляется непосредственно на мембранах тилакоидов, расположенных с внутренней стороны хлоропласта. Процесс состоит из нескольких шагов, проходящих в следующем порядке:
Световая фаза может проходить лишь при участии солнечного света или искусственного освещения.
Особенности темновой фазы
Этот процесс осуществляется в стромах хлоропластов, обеспечивая выделение растениями кислорода и синтез глюкозы. Для синтезирования моносахаридов из углекислого газа активно используются вещества и энергия, которые были запасены в результате химических реакций под влиянием солнца. К примеру, для получения 1 молекулы глюкозы растению необходимо израсходовать 12 НАДФН и 18 АТФ. Рассматриваемая фаза проходит круглосуточно, ведь для ее успешного осуществления не требуется расхода световой энергии. Стоит заметить, что, несмотря на определенные энергетические потери во время темновой фазы фотосинтеза, общий КПД биологического процесса остается достаточно высоким.

Значимость фотосинтеза для человека
В процессе фотосинтеза каждый листочек зеленого растения выполняет роль небольшой лаборатории, отвечающей за образование кислорода и органических веществ. Именно результат этой химической реакции обеспечивает органическую жизнь планеты необходимыми ресурсами. Поэтому крайне важно следить за жизнеспособностью флоры, охранять экологию и избегать чрезмерной вырубки лесов. Однако в мало засаженных растениями областях, например, пустынях или мегаполисах, человек также может продолжать свою жизнедеятельность.
Важно! Наземные растения обеспечивают Земле лишь 20% необходимого для существования живых организмов кислорода. Остальные же 80% синтезируются за счет морских, речных и океанических водорослей. Поэтому мировой океан нередко сравнивают с легкими планеты.
Фотосинтез — сложный биологический процесс, который происходит в зеленых растениях, водорослях и некоторых бактериях. Именно за счет него в атмосферу выделяется кислород, который обеспечивает жизнедеятельность всех организмов. А еще при этом процессе растения выделяют необходимые для собственного питания органические вещества.
Лекция № 12. Фотосинтез. Хемосинтез
Фотосинтез
Фотосинтез — синтез органических веществ из углекислого газа и воды с обязательным использованием энергии света:
У высших растений органом фотосинтеза является лист, органоидами фотосинтеза — хлоропласты (строение хлоропластов — лекция №7). В мембраны тилакоидов хлоропластов встроены фотосинтетические пигменты: хлорофиллы и каротиноиды. Существует несколько разных типов хлорофилла (a, b, c, d), главным является хлорофилл a. В молекуле хлорофилла можно выделить порфириновую «головку» с атомом магния в центре и фитольный «хвост». Порфириновая «головка» представляет собой плоскую структуру, является гидрофильной и поэтому лежит на той поверхности мембраны, которая обращена к водной среде стромы. Фитольный «хвост» — гидрофобный и за счет этого удерживает молекулу хлорофилла в мембране.
Хлорофиллы поглощают красный и сине-фиолетовый свет, отражают зеленый и поэтому придают растениям характерную зеленую окраску. Молекулы хлорофилла в мембранах тилакоидов организованы в фотосистемы. У растений и синезеленых водорослей имеются фотосистема-1 и фотосистема-2, у фотосинтезирующих бактерий — фотосистема-1. Только фотосистема-2 может разлагать воду с выделением кислорода и отбирать электроны у водорода воды.
Фотосинтез — сложный многоступенчатый процесс; реакции фотосинтеза подразделяют на две группы: реакции световой фазы и реакции темновой фазы.
Световая фаза
Эта фаза происходит только в присутствии света в мембранах тилакоидов при участии хлорофилла, белков-переносчиков электронов и фермента — АТФ-синтетазы. Под действием кванта света электроны хлорофилла возбуждаются, покидают молекулу и попадают на внешнюю сторону мембраны тилакоида, которая в итоге заряжается отрицательно. Окисленные молекулы хлорофилла восстанавливаются, отбирая электроны у воды, находящейся во внутритилакоидном пространстве. Это приводит к распаду или фотолизу воды:
Ионы гидроксила отдают свои электроны, превращаясь в реакционноспособные радикалы •ОН:
Радикалы •ОН объединяются, образуя воду и свободный кислород:
Кислород при этом удаляется во внешнюю среду, а протоны накапливаются внутри тилакоида в «протонном резервуаре». В результате мембрана тилакоида с одной стороны за счет Н + заряжается положительно, с другой за счет электронов — отрицательно. Когда разность потенциалов между наружной и внутренней сторонами мембраны тилакоида достигает 200 мВ, протоны проталкиваются через каналы АТФ-синтетазы и происходит фосфорилирование АДФ до АТФ; атомарный водород идет на восстановление специфического переносчика НАДФ + (никотинамидадениндинуклеотидфосфат) до НАДФ·Н2:
2Н + + 2е — + НАДФ → НАДФ·Н2.
Таким образом, в световую фазу происходит фотолиз воды, который сопровождается тремя важнейшими процессами: 1) синтезом АТФ; 2) образованием НАДФ·Н2; 3) образованием кислорода. Кислород диффундирует в атмосферу, АТФ и НАДФ·Н2 транспортируются в строму хлоропласта и участвуют в процессах темновой фазы.
1 — строма хлоропласта; 2 — тилакоид граны.
Темновая фаза
Эта фаза протекает в строме хлоропласта. Для ее реакций не нужна энергия света, поэтому они происходят не только на свету, но и в темноте. Реакции темновой фазы представляют собой цепочку последовательных преобразований углекислого газа (поступает из воздуха), приводящую к образованию глюкозы и других органических веществ.
Первая реакция в этой цепочке — фиксация углекислого газа; акцептором углекислого газа является пятиуглеродный сахар рибулозобифосфат (РиБФ); катализирует реакцию фермент рибулозобифосфат-карбоксилаза (РиБФ-карбоксилаза). В результате карбоксилирования рибулозобисфосфата образуется неустойчивое шестиуглеродное соединение, которое сразу же распадается на две молекулы фосфоглицериновой кислоты (ФГК). Затем происходит цикл реакций, в которых через ряд промежуточных продуктов фосфоглицериновая кислота преобразуется в глюкозу. В этих реакциях используются энергии АТФ и НАДФ·Н2, образованных в световую фазу; цикл этих реакций получил название «цикл Кальвина»:
Кроме глюкозы, в процессе фотосинтеза образуются другие мономеры сложных органических соединений — аминокислоты, глицерин и жирные кислоты, нуклеотиды. В настоящее время различают два типа фотосинтеза: С3— и С4-фотосинтез.
С3-фотосинтез
Это тип фотосинтеза, при котором первым продуктом являются трехуглеродные (С3) соединения. С3-фотосинтез был открыт раньше С4-фотосинтеза (М. Кальвин). Именно С3-фотосинтез описан выше, в рубрике «Темновая фаза». Характерные особенности С3-фотосинтеза: 1) акцептором углекислого газа является РиБФ, 2) реакцию карбоксилирования РиБФ катализирует РиБФ-карбоксилаза, 3) в результате карбоксилирования РиБФ образуется шестиуглеродное соединение, которое распадается на две ФГК. ФГК восстанавливается до триозофосфатов (ТФ). Часть ТФ идет на регенерацию РиБФ, часть превращается в глюкозу.
Фотодыхание
Фотодыхание:
1 — хлоропласт; 2 — пероксисома; 3 — митохондрия.
Это светозависимое поглощение кислорода и выделение углекислого газа. Еще в начале прошлого века было установлено, что кислород подавляет фотосинтез. Как оказалось, для РиБФ-карбоксилазы субстратом может быть не только углекислый газ, но и кислород:
О2 + РиБФ → фосфогликолат (2С) + ФГК (3С).
Фермент при этом называется РиБФ-оксигеназой. Кислород является конкурентным ингибитором фиксации углекислого газа. Фосфатная группа отщепляется, и фосфогликолат становится гликолатом, который растение должно утилизировать. Он поступает в пероксисомы, где окисляется до глицина. Глицин поступает в митохондрии, где окисляется до серина, при этом происходит потеря уже фиксированного углерода в виде СО2. В итоге две молекулы гликолата (2С + 2С) превращаются в одну ФГК (3С) и СО2. Фотодыхание приводит к понижению урожайности С3-растений на 30–40% (С3-растения — растения, для которых характерен С3-фотосинтез).
С4-фотосинтез
С4-фотосинтез — фотосинтез, при котором первым продуктом являются четырехуглеродные (С4) соединения. В 1965 году было установлено, что у некоторых растений (сахарный тростник, кукуруза, сорго, просо) первыми продуктами фотосинтеза являются четырехуглеродные кислоты. Такие растения назвали С4-растениями. В 1966 году австралийские ученые Хэтч и Слэк показали, что у С4-растений практически отсутствует фотодыхание и они гораздо эффективнее поглощают углекислый газ. Путь превращений углерода в С4-растениях стали называть путем Хэтча-Слэка.
Для С4-растений характерно особое анатомическое строение листа. Все проводящие пучки окружены двойным слоем клеток: наружный — клетки мезофилла, внутренний — клетки обкладки. Углекислый газ фиксируется в цитоплазме клеток мезофилла, акцептор — фосфоенолпируват (ФЕП, 3С), в результате карбоксилирования ФЕП образуется оксалоацетат (4С). Процесс катализируется ФЕП-карбоксилазой. В отличие от РиБФ-карбоксилазы ФЕП-карбоксилаза обладает большим сродством к СО2 и, самое главное, не взаимодействует с О2. В хлоропластах мезофилла много гран, где активно идут реакции световой фазы. В хлоропластах клеток обкладки идут реакции темновой фазы.
Оксалоацетат (4С) превращается в малат, который через плазмодесмы транспортируется в клетки обкладки. Здесь он декарбоксилируется и дегидрируется с образованием пирувата, СО2 и НАДФ·Н2.
Пируват возвращается в клетки мезофилла и регенерирует за счет энергии АТФ в ФЕП. СО2 вновь фиксируется РиБФ-карбоксилазой с образованием ФГК. Регенерация ФЕП требует энергии АТФ, поэтому нужно почти вдвое больше энергии, чем при С3-фотосинтезе.








