Фототок в чем измеряется
Физика. 11 класс
Конспект урока
Урок 22. Фотоэффект
Перечень вопросов, рассматриваемых на уроке:
Фотоэффект – это вырывание электронов из вещества под действием света.
Работа выхода – это минимальная энергия, которую надо сообщить электрону, чтобы он покинул металл. которую нужно сообщить электрону, для того чтобы он мог преодолеть силы, удерживающие его внутри металла.
Красная граница фотоэффекта – это минимальная частота или максимальная длина волны света излучения, при которой еще возможен внешний фотоэффект.
Основная и дополнительная литература по теме урока:
1. Мякишев Г. Я., Буховцев Б. Б., Чаругин В. М. Физика. 11 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. – С. 259 – 267.
2. Рымкевич А. П. Сборник задач по физике. 10-11 класс.- М.:Дрофа,2009. – С. 153 – 158.
4. Тульчинский М. Е. Качественные задачи по физике в средней школе. Пособие для учителей. Изд. 4-е, переработ. и доп. М. «Просвещение», 1972. С. 157.
Теоретический материал для самостоятельного изучения
В начале 20-го века в физике произошла величайшая революция. Попытки объяснить наблюдаемые на опытах закономерности распределения энергии в спектрах теплового излучения оказались несостоятельными. Законы электромагнетизма Максвелла неожиданно «забастовали». Противоречия между опытом и практикой были разрешены немецким физиком Максом Планком.
Гипотеза Макса Планка: атомы испускают электромагнитную энергию не непрерывно, а отдельными порциями – квантами. Энергия Е каждой порции прямо пропорциональна частоте ν излучения света: E = hν.
Коэффициент пропорциональности получил название постоянной Планка, и она равна:
После открытия Планка начала развиваться самая современная и глубокая физическая теория – квантовая физика.
Поведение всех микрочастиц подчиняется квантовым законам. Но впервые квантовые свойства материи были обнаружены именно при исследовании излучения и поглощения света.
В 1886 году немецкий физик Густав Людвиг Герц обнаружил явление электризации металлов при их освещении.
Явление вырывания электронов из вещества под действием света называется внешним фотоэлектрическим эффектом.
Законы фотоэффекта были установлены в 1888 году профессором московского университета Александром Григорьевичем Столетовым.
Схема установки для изучения законов фотоэффекта
Зависимость силы тока от приложенного напряжения
Увеличение интенсивности света означает увеличение числа падающих фотонов, которые выбивают с поверхности металла больше электронов.
Второй закон фотоэффекта: максимальная кинетическая энергия фотоэлектронов не зависит от интенсивности падающего излучения и линейно возрастает с увеличением частоты падающего излучения.
Третий закон фотоэффекта: для каждого вещества существует граничная частота такая, что излучение меньшей частоты не вызывает фотоэффекта, какой бы ни была интенсивность падающего излучения. Эта минимальная частота излучения называется красной границей фотоэффекта.
где Ав – работа выхода электронов;
h – постоянная Планка;
λкр – длина волны, соответствующая красной границе.
Фотоэффект практически безынерционен: фототок возникает одновременно с освещением катода с точностью до одной миллиардной доли секунды.
Работа выхода – это минимальная энергия, которую надо сообщить электрону, чтобы он покинул металл.
Для большинства веществ фотоэффект возникает только под действием ультрафиолетового облучения. Однако некоторые металлы, например, литий, натрий и калий, испускают электроны и при облучении видимым светом.
Известно, что фототоком можно управлять, подавая на металлические пластины различные напряжения. Если на систему подать небольшое напряжение обратной полярности, «затрудняющее» вылет электронов, то ток уменьшится, так как фотоэлектронам, кроме работы выхода, придется совершать дополнительную работу против сил электрического поля.
Максимальная кинетическая энергия электронов выражается через задерживающее напряжение:
где — максимальная кинетическая энергия электронов;
Е – заряд электрона;
– задерживающее напряжение.
Теорию фотоэффекта разработал Альберт Эйнштейн. На основе квантовых представлений Эйнштейн объяснил фотоэффект. Электрон внутри металла после поглощения одного фотона получает порцию энергии и стремится вылететь за пределы кристаллической решетки, т.е. покинуть поверхность твердого тела. При этом часть полученной энергии он израсходует на совершение работы по преодолению сил, удерживающих его внутри вещества. Остаток энергии будет равен кинетической энергии:
В 1921 году Альберт Эйнштейн стал обладателем Нобелевской премии, которая, согласно официальной формулировке, была вручена «за заслуги перед теоретической физикой и особенно за открытие закона фотоэлектрического эффекта».
Примеры и разбор решения заданий
1. Монохроматический свет с длиной волны λ падает на поверхность металла, вызывая фотоэффект. Фотоэлектроны тормозятся электрическим полем. Как изменятся работа выхода электронов с поверхности металла и запирающее напряжение, если уменьшить длину волны падающего света?
Для каждой величины определите соответствующий характер изменения:
Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.
Следовательно, при уменьшении длины волны падающего света, запирающее напряжение увеличивается.
2. Красная граница фотоэффекта для вещества фотокатода λ0 = 290 нм. При облучении катода светом с длиной волны λ фототок прекращается при напряжении между анодом и катодом U = 1,5 В. Определите длину волны λ.
Запишем уравнение для фотоэффекта через длину волны:
Условие связи красной границы фотоэффекта и работы выхода:
Запишем выражение для запирающего напряжения – условие равенства максимальной кинетической энергии электрона и изменения его потенциальной энергии при перемещении в электростатическом поле:
Решая систему уравнений (1), (2), (3), получаем формулу для вычисления длины волны λ:
Подставляя численные значения, получаем: λ ≈ 215 нм.
Фототок
Содержание
Внешний фотоэффект
Внешним фотоэффектом (фотоэлектронной эмиссией) называется испускание электронов веществом под действием электромагнитных излучений. Электроны, вылетающие из вещества при внешнем фотоэффекте, называются фотоэлектронами, а электрический ток, образуемый ими при упорядоченном движении во внешнем электрическом поле, называется фототоком.
Фотокатод — электрод вакуумного электронного прибора, непосредственно подвергающийся воздействию электромагнитных излучений и эмитирующий электроны под действием этого излучения.
Фототок насыщения — максимальный ток выбитых электронов, ток между фотокатодом и анодом, при котором все выбитые электроны собираются на аноде.
Спектральная характеристика фотокатода — зависимость спектральной чувствительности от частоты или длины волны электромагнитного излучения.
История открытия
Томсон в 1898 году экспериментально установил, что поток электрического заряда, выходящий из металла при внешнем фотоэффекте, представляет собой поток открытых им ранее частиц (позже названных электронами). Поэтому увеличение фототока с ростом освещённости следует понимать как увеличение числа выбитых электронов с ростом освещённости.
Исследования фотоэффекта Филиппом Ленардом в 1900—1902 годах показали, что, вопреки классической электродинамике, энергия вылетающего электрона всегда строго связана с частотой падающего излучения и практически не зависит от интенсивности облучения.
Фотоэффект был объяснён в 1905 году Альбертом Эйнштейном (за что в 1921 году он, благодаря номинации шведского физика Карла Вильгельма Озеена, получил Нобелевскую премию) на основе гипотезы Макса Планка о квантовой природе света. В работе Эйнштейна содержалась важная новая гипотеза — если Планк в 1900 году предположил, что свет излучается только квантованными порциями, то Эйнштейн уже считал, что свет и существует только в виде квантованных порций. Из закона сохранения энергии, при представлении света в виде частиц (фотонов), следует формула Эйнштейна для фотоэффекта:
Из этой формулы следует существование красной границы фотоэффекта при T = 0 K, то есть существование наименьшей частоты ( h ν min = ϕ <\displaystyle ), ниже которой энергии фотона уже недостаточно для того, чтобы «выбить» электрон из металла.
В 1906—1915 годах фотоэффект обрабатывал Роберт Милликен. Он смог установить точную зависимость запирающего напряжения от частоты (действительно оказавшуюся линейной) и на его основании смог вычислить постоянную Планка. «Я потратил десять лет моей жизни на проверку этого эйнштейновского уравнения 1905 г., — писал Милликен, — и вопреки всем моим ожиданиям я вынужден был в 1915 г. безоговорочно признать, что оно экспериментально подтверждено, несмотря на его несуразность, так как казалось, что оно противоречит всему, что мы знаем об интерференции света». В 1923 году Милликен был удостоен Нобелевской премии в области физики «за работы по определению элементарного электрического заряда и фотоэлектрического эффекта».
Исследования фотоэффекта были одними из самых первых квантовомеханических исследований.
Законы внешнего фотоэффекта
Законы внешнего фотоэффекта:
на первой стадии происходит возбуждение электрона атома в возбужденное состояние, на второй стадии под действием тянущего электрического поля электрон достигает поверхности, на третьей стадии если энергия электрона достаточна для преодоления потенциального барьера на поверхности, то он вылетает из твердого тела. В общем виде можно записать:
h ν = E b + E l + E k i n + ϕ <\displaystyle h\nu =E_+E_
Теория Фаулера
Плотность фототока определяется формулой Фаулера:
Квантовый выход
Важной количественной характеристикой фотоэффекта является квантовый выход Y — число эмитированных электронов в расчёте на один фотон, падающий на поверхность тела. Величина Y определяется свойствами вещества, состоянием его поверхности и энергией фотонов.
Квантовый выход фотоэффекта из металлов в видимой и ближней УФ-областях Y 10 эВ.
Векториальный фотоэффект
Внутренний фотоэффект
Фотопроводимостью называется увеличение электрической проводимости вещества под действием излучения.
История открытия
Вентильный фотоэффект
Вентильный фотоэффект или фотоэффект в запирающем слое — явление, при котором фотоэлектроны покидают пределы тела, переходя через поверхность раздела в другое твёрдое тело (полупроводник) или жидкость (электролит).
Фотовольтаический эффект
Сенсибилизированный фотоэффект
Фотопьезоэлектрический эффект
Фотомагнитный эффект
Ядерный фотоэффект
Многофотонный фотоэффект
Современные исследования
Фототок — это электрический ток, возникающий в фотоэлементе при воздействии света.
Фотоэффект и его виды.
ФОТОЭЛЕКТРИЧЕСКИЙ ЭФФЕКТ, явление испускания электронов веществом под действием света.
Фотоэффект был объяснён в 1905 году Альбертом Эйнштейном (за что в 1921 году он, благодаря номинации шведского физика Карла Вильгельма Озеена, получил Нобелевскую премию) на основе гипотезы Макса Планка о квантовой природе света. В работеЭйнштейна содержалась важная новая гипотеза — если Планк в 1900 году предположил, что свет излучается только квантованными порциями, то Эйнштейн уже считал, что свет и существует только в виде квантованных порций. Из закона сохранения энергии, при представлении света в виде частиц (фотонов), следует формула Эйнштейна для фотоэффекта:
где φ — т. н. работа выхода (минимальная энергия, необходимая для удаления электрона из вещества),
— максимальнаякинетическая энергия вылетающего электрона,
— частота падающего фотона с энергией
, h — постоянная Планка. Из этой формулы следует существование красной границы фотоэффекта, то есть существование наименьшей частоты (
), ниже которой энергии фотона уже недостаточно для того, чтобы «выбить» электрон из металла. Суть формулы заключается в том, что энергия фотона расходуется на ионизацию атома вещества и на работу, необходимую для «вырывания» электрона, а остаток переходит в кинетическую энергию электрона.
Исследования фотоэффекта были одними из самых первых квантовомеханических исследований.
Внешним фотоэффектом называется испускание электронов веществом под действием электромагнитного излучения. Внешний фотоэффект наблюдается в твердых телах (металлах, полупроводниках, диэлектриках), а также в газах на отдельных атомах и молекулах (фотоионизация).
Электроны, вылетающие из вещества при внешнем фотоэффекте, называются фотоэлектронами, а электрический ток, образуемый ими при упорядоченном движении во внешнем электрическом поле, называется фототоком.
Фотокатод — электрод вакуумного электронного прибора, непосредственно подвергающийся воздействию электромагнитных излучений и эмитирующий электроны под действием этого излучения.
Зависимость спектральной чувствительности от частоты или длины волны электромагнитного излучения называют спектральной характеристикой фотокатода.
Законы внешнего фотоэффекта
1.Закон Столетова: при неизменном спектральном составе электромагнитных излучений, падающих на фотокатод, фототок насыщения пропорционален энергетической освещённости катода (иначе: число фотоэлектронов, выбиваемых из катода за 1 с, прямо пропорционально интенсивности излучения): и
2.Максимальная начальная скорость фотоэлектронов не зависит от интенсивности падающего света, а определяется только его частотой.
3.Для каждого вещества существует красная граница фотоэффекта, то есть минимальная частота света (зависящая от химической природы вещества и состояния поверхности), ниже которой фотоэффект невозможен.
Теория Фаулера
Основные закономерности внешнего фотоэффекта для металлов хорошо описываются теорией Фаулера. Согласно ей, после поглощения в металле фотона его энергия переходит электронам проводимости, в результате чего электронный газ в металле состоит из смеси газов с нормальным распределением Ферми — Дирака и возбуждённым (сдвинутым на ) распределением по энергиям. Плотность фототока определяется формулой Фаулера:
где ,
,
— постоянные коэффициенты, зависящие от свойств облучаемого металла. Формула справедлива при энергиях возбуждения фотоэмиссии, не превышающих значения работы выхода металла более чем на несколько электронвольт. Теория Фаулера верна только в случае падения света по нормали к поверхности.
Внутренний фотоэффект – это вызванные электромагнитным излучением переходы электронов внутри полупроводника или диэлектрика из связанных состояний в свободные без вылета наружу. В результате концентрация носителей тока внутри тела увеличивается, что приводит к возникновению фотопроводимости (повышению электропроводности полупроводника или диэлектрика при его освещении) или к возникновению электродвижущей силы (ЭДС).
Вентильный фотоэффект является разновидностью внутреннего фотоэффекта, – это возникновение ЭДС (фото ЭДС) при освещении контакта двух разных полупроводников или полупроводника и металла (при отсутствии внешнего электрического поля). Вентильный фотоэффект открывает пути для прямого преобразования солнечной энергии в электрическую.
Многофотонный фотоэффект возможен, если интенсивность света очень большая (например, при использовании лазерных пучков). При этом электрон, испускаемый металлом, может одновременно получить энергию не от одного, а от нескольких фотонов.
Сенсибилизированным фотоэффектом называется фотоэффект, сопровождающийся явлением сенсибилизации, то есть изменением величины и спектра фоточувствительности в широкозонных фотопроводниках органической и неорганической природы в зависимости от структуры молекулярных соединений.
Многофотонный фотоэффект.В сильном электомагнитном поле с атомом в элементарном акте фотоэффекта могут взаимодействовать несколько фотонов. В этом случае ионизация атома возможна с помощью излучения с энергией квантов . Зарегистрирована шести- и семи- фотонная ионизация инертных газов.
Формулировка 1-го закона фотоэффекта: количество электронов, вырываемых светом с поверхности металла за единицу времени на данной частоте, прямо пропорционально световому потоку, освещающему металл.
Согласно 2-ому закону фотоэффекта, максимальная кинетическая энергия вырываемых светом электронов линейно возрастает с частотой света и не зависит от его интенсивности.
3-ий закон фотоэффекта: для каждого вещества существует красная граница фотоэффекта, то есть минимальная частота света ν0 (или максимальная длина волны λ0), при которой ещё возможен фотоэффект, и если ν
Открытый урок «Фотоэффект. Исследование законов фотоэффекта»
Разделы: Физика
Цели:
Дидактическая: | Выяснить причины появления фотоэффекта, сформулировать определение фотоэффекта, изучить законы фотоэффекта, показать, что законы фотоэффекта являются следствием уравнения Эйнштейна. |
Воспитательная: | Убедить учащихся в познаваемости мира и объективности наших знаний о нем. |
Развивающая: | Объяснить учащимся физический смысл корпускулярно-волновых свойств света, продолжать развивать логическое мышление, анализировать результаты эксперимента. |
Тип урока: изложение нового материала.
Вид урока: беседа, рассказ.
Оборудование: осветитель «Кварц», электрометр, цинковая и медная пластины, штатив, палочки из стекла и эбонита, мех и бумага, секундомер, к/ф «Фотоэффект», cd-2 «Открытая физика» – модель исследование фотоэффекта.
План урока:
Этапы урока
Деятельность учителя
Деятельность ученика
В 1865 году Максвелл показал теоретически, что свет представляет собой электромагнитные волны порядка 400-800 нм. Теория Максвелла, подтвержденная опытами Генриха Герца, связывает оптические, электрические и магнитные свойства вещества.
Однако по мере развития физики стали накапливаться и такие факты, которые не согласовывались не с классической теорией излучения, ни с волновыми представлениями о природе света.
Чтобы достигнуть согласия между теорией и опытом, надо было принять, что свет излучается и поглощается отдельными порциями (квантами). Это означало, что свет обладает свойствами не только волн, но и частиц.
Квантовая теория света была выдвинута Максом Планком 14 декабря 1900 года на собрании Немецкого физического общества, где он высказал мысль о том, что энергия излучения состоит из отдельных малых и неделимых частей – квантов или фотонов.
Согласно квантовой теории каждый фотон (квант) имеет энергию:
Явление же фотоэффекта было открыто Генрихом Герцем. Однако в России исследованием этого явления занимался Александр Григорьевич Столетов. Его имя по праву стоит в числе первооткрывателей фотоэффекта.
А теперь давайте выясним на опытах в чем суть этого явления.
Опыт №1. Цинковую пластину зарядили отрицательно от эбонитовой палочки. Засечь время разрядки электрометра и занести данные в таблицу.
Опыт №2. Цинковую пластину зарядить положительно от стеклянной палочки. При облучении светом пластинки, стрелка электрометра не подвижна.
Почему пластинка не теряет заряд под действием света?
Опыт 3. Медную пластинку зарядим отрицательно. Записать время разрядки электрометра в таблицу. Давайте сравним результаты.
Почему время не одинаковое, в чём может быть причина?
И на основе данных выводов можно дать определение фотоэффекта.
Фотоэффект – явление вырывания электронов из вещества под действием света.
Во времена первых исследований фотоэффекта его природа была не известной, так как сами электроны в то время ещё не были открыты. Потерю заряда при этом пытались объяснить вырыванием светом мельчайших металлических частичек.
Однако в 1987 г. Томсон открыл электрон и через 2 года в 1989 году немецкий физик Филипп Ленард доказал, что мельчайшие металлические частички вырванные светом и есть электроны.
И cразу давайте обратимся к рисунку 244 на странице 314 в учебнике. На рисунки изображена схема установки для исследования фотоэффекта.
В баллон, из которого откачен воздух, помешены электроды. Поток света падает на электрод 1 и вырывает из него электроны. Часть этих электронов попадает на электрод 2, в результате между анодом и катодом возникает ток, который называется фототоком.
Прежде чем дать определение фототоку, давайте вспомним, что называют электрически током?
Электрический ток – это упорядоченное движение заряженных частиц. Соответственно, что называют фототоком?
Фототок – движение вырванных светом из катода электронов.
Силу фототока измеряют миллиампером или гальванометром; напряжение между электродами измеряется вольтметром.
С помощью такой установки можно измерить число ежесекундно вырванных светом электронов, а так же максимальную кинетическую энергию вырванных электронов.
Исследуя зависимость фототока от приложенного напряжения, А.Г. Столетов установил, что он не подчиняется закону Ома. На рисунки 244 б изображен график зависимости фототока от напряжения между электродами при неизменном освещении пластинки.
Из графика видно, что фототок сначала растёт, а затем при сравнительно не большом напряжении перестаёт расти.
Максимальное значение фототока называют фототоком насыщения.
Еcли изменить полярность источника напряжения, то сила тока уменьшится и при не котором задерживающем напряжении она станет равной нулю. В этом случае электрический ток тормозит фотоэлектроны до полной остановки, а затем возвращает их на катод.
Фотоэлектрон – электрон, вырванный светом из вещества.
И еще одно очень важное замечание, на которое я хочу обратить ваше внимание.
Если электроны, вырванные светом, покидают вещество, то такой фотоэффект называют внешним.
Хочу обратить ваше внимание, что в фильме использованы подлинные приборы А.Г.Столетова.
Провести опрос по вопросом и в учебнике на с. 315 прочитать законы вслух и записать их в тетрадь.
Объяснение законов фотоэффекта дал в 1905 году Альберт Эйнштейн на основе гипотезы Планка.
1905 г. Эйнштейн – объяснил законы фотоэффекта
Исходя из закона сохранения и превращения энергии, Эйнштейн математически записал уравнение для энергетического баланса при внешнем фотоэффекте:
– энергия фотона, которая идет на работу выхода А электрона из металла и сообщение ему кинетической энергии.
Работа выхода – минимальная работа, которую нужно совершить для выхода электрона из вещества.
За уравнение для фотоэффекта в 1921 году Эйнштейну была присуждена Нобелевская премия.
Квантовая теория дает следующие объяснения законам фотоэффекта.
При увеличении интенсивности монохрамотического излучения растет число поглащенных металлом квантов, а следовательно и число вылетающих из него электронов, поэтому фототок прямо пропорционален интенсивности излучения (1 закон).
Что называют фототоком?
Что называют фототоком насыщения?
Из уравнения Эйнштейна видно, что кинетическая энергия вылетающих электронов зависит только от рода металла, состояния его поверхности и частоты (или длины волны) излучения, то есть величины энергии квантов и не зависит от интенсивности излучения (2 закон).
Что называют фотоэлектроном?
Если величина энергии квантов меньше работы выхода, то при любой интенсивности излучения электроны вылетать не будут (3 закон).
Что называют работой выхода?
Красной границей фотоэффекта называют минимальную частоту света, ниже которой фотоэффект не наблюдается:
Эта граница для разных веществ различна, так как работа выхода зависит от рода вещества. При этом кинетическая энергия электронов равна нулю.
А теперь вы выступите в роли А.Г.Столетова и самостоятельно исследуете законы фотоэффекта, использую компьютерную модель. По ходу выполнения работы вы должны будете заполнить бланк, который я сейчас вам дам. После окончания работы, свои бланки вы сдаете мне на стол.