Фср это что значит
Фср это что значит
фонд социального развития
Федеральная служба расследований
будет создана в конце 2003 г.
Федерация скаутов России
Словарь: С. Фадеев. Словарь сокращений современного русского языка. — С.-Пб.: Политехника, 1997. — 527 с.
фундаментальная система решений
Федерация сумо России
организация, РФ, спорт
Федерация серфинга России
организация, РФ, спорт
Федерация снайпинга России
организация, РФ, спорт
фонд софинансирования расходов
фонд содействия развитию
Федерация скалолазания России
Федерация самбо России
Полезное
Смотреть что такое «ФСР» в других словарях:
ФСР — ФСР аббревиатура. Может означать: Фундаментальная система решений Федерация скалолазания России Федеральная служба расследований … Википедия
ФСР — Федерация скаутов России … Словарь сокращений русского языка
ФСР и КВП — Федеральная система разведки и контроля воздушного пространства Словарь: Словарь сокращений и аббревиатур армии и спецслужб. Сост. А. А. Щелоков. М.: ООО «Издательство АСТ», ЗАО «Издательский дом Гелеос», 2003. 318 с … Словарь сокращений и аббревиатур
ФСР ЖКХ — Фонд содействия реформированию жилищно коммунального хозяйства; Фонд содействия реформированию ЖКХ государственная корпорация http://www.fondgkh.ru/ организация, РФ Источник: http://www.regnum.ru/news/1288065.html … Словарь сокращений и аббревиатур
ФСР МФП НТС — ФНТС Фонд СРМФП НТС ФРС ФСРМП НТС ФСР МФП НТС Фонд содействия развитию малых форм предприятий в научно технической сфере http://www.fasie.ru/ образование и наука, РФ, техн … Словарь сокращений и аббревиатур
Решение СЛАУ: ФСР — Фундаментальная система решений (ФСР) представляет собой набор линейно независимых решений однородной системы уравнений. Содержание 1 Однородные системы 1.1 Пример 2 Неоднородные системы … Википедия
Решение систем линейных алгебраических уравнений — Фундаментальная система решений (ФСР) представляет собой набор линейно независимых решений однородной системы уравнений. Содержание 1 Однородные системы 1.1 Пример … Википедия
Фундаментальная система решений — (ФСР) представляет собой набор линейно независимых решений однородной системы уравнений. Содержание 1 Однородные системы 1.1 Пример 2 Неоднородные системы … Википедия
Федерация скалолазания России — Climbing Federation of Russia … Википедия
Гигантское магнетосопротивление — Гигантское магнетосопротивление, гигантское магнитосопротивление[1], ГМС (англ. Giant magnetoresistance, GMR) квантовомеханический эффект, наблюдаемый в тонких металлических плёнках, состоящих из чередующихся ферромагнитных и… … Википедия
Фундаментальная система решений СЛАУ
Вы будете перенаправлены на Автор24
Если через длинную черту после матрицы множителей при неизвестных записан столбец свободных членов, то матрицу называют расширенной матрицей системы.
Необходимая терминология
$C= \begin
В зависимости от количеств групп переменных, подходящих для соблюдения всей системы, различают совместные и несовместные СЛАУ. Объединённая в систему группа равенств называется совместной, если она имеет хотя бы одно решение и несовместной, если она не имеет решений.
Готовые работы на аналогичную тему
Среди первого типа существуют определённые СЛАУ, имеющие только одно решение и неопределённые, под такие подпадают все, которые можно решить с получением больше одного ответа.
Однородные и неоднородные системы линейных уравнений
Общее, частное и фундаментальное решения
Фундаментальная система решений частенько представлена как сумма всех возможных решений:
Приведена пример, в котором все свободные члены ненулевые:
$\begin
Ранг всех матриц соответсвует двойке, рассчитаем базисный минор:
Избавимся от двух нижних равенств из примера и получим:
$\begin
Теперь посмотрим, что буде в случае с нулевым столбцом за чертой:
$\begin
Ранг также соответствует двойке, а её решениями будут
Фундаментальное решение системы можно записать так:
Получи деньги за свои студенческие работы
Курсовые, рефераты или другие работы
Автор этой статьи Дата последнего обновления статьи: 17 04 2021
Однородные системы линейных алгебраических уравнений
В рамках уроков метод Гаусса и Несовместные системы/системы с общим решением мы рассматривали неоднородные системы линейных уравнений, где свободный член (который обычно находится справа) хотя бы одного из уравнений был отличен от нуля.
И сейчас, после хорошей разминки с рангом матрицы, мы продолжим шлифовать технику элементарных преобразований на однородной системе линейных уравнений.
По первым абзацам материал может показаться скучным и заурядным, однако данное впечатление обманчиво. Помимо дальнейшей отработки технических приёмов будет много новой информации, поэтому, пожалуйста, постарайтесь не пренебрегать примерами данной статьи.
Что такое однородная система линейных уравнений?
Ответ напрашивается сам собой. Система линейных уравнений является однородной, если свободный член каждого уравнения системы равен нулю. Например:
Совершенно ясно, что однородная система всегда совместна, то есть всегда имеет решение. И, прежде всего, в глаза бросается так называемое тривиальное решение 
Решить однородную систему линейных уравнений
Решение: чтобы решить однородную систему необходимо записать матрицу системы и с помощью элементарных преобразований привести её к ступенчатому виду. Обратите внимание, что здесь отпадает необходимость записывать вертикальную черту и нулевой столбец свободных членов – ведь что ни делай с нулями, они так и останутся нулями:
(1) Ко второй строке прибавили первую строку, умноженную на –2. К третьей строке прибавили первую строку, умноженную на –3.
(2) К третьей строке прибавили вторую строку, умноженную на –1.
Делить третью строку на 3 не имеет особого смысла.
В результате элементарных преобразований получена эквивалентная однородная система 
Ответ:
Сформулируем очевидный критерий: однородная система линейных уравнений имеет только тривиальное решение, если ранг матрицы системы (в данном случае 3) равен количеству переменных (в данном случае 
Разогреваемся и настраиваем свой радиоприёмник на волну элементарных преобразований:
Решить однородную систему линейных уравнений
Из статьи Как найти ранг матрицы? вспоминаем рациональный приём попутного уменьшения чисел матрицы. В противном случае вам придётся разделывать крупную, а частенько и кусачую рыбу. Примерный образец оформления задания в конце урока.
Нули – это хорошо и удобно, однако на практике гораздо более распространен случай, когда строки матрицы системы линейно зависимы. И тогда неизбежно появление общего решения:
Решить однородную систему линейных уравнений
Решение: запишем матрицу системы и с помощью элементарных преобразований приведём её к ступенчатому виду. Первое действие направлено не только на получение единичного значения, но и на уменьшение чисел в первом столбце:
(1) К первой строке прибавили третью строку, умноженную на –1. Ко второй строке прибавили третью строку, умноженную на –2. Слева вверху я получил единицу с «минусом», что зачастую намного удобнее для дальнейших преобразований.
(2) Первые две строки одинаковы, одну из них удалили. Честное слово, не подгонял решение – так получилось. Если выполнять преобразования шаблонно, то линейная зависимость строк обнаружилась бы чуть позже.
(3) К третьей строке прибавили вторую строку, умноженную на 3.
(4) У первой строки сменили знак.
В результате элементарных преобразований получена эквивалентная система:
Алгоритм работает точно так же, как и для неоднородных систем. Переменные 

Выразим базисные переменные через свободную переменную:
Ответ: общее решение:
Тривиальное решение входит в общую формулу, и записывать его отдельно излишне.
Проверка выполняется тоже по обычной схеме: полученное общее решение необходимо подставить в левую часть каждого уравнения системы и получить законный ноль при всех подстановках.
На этом можно было бы тихо-мирно закончить, но решение однородной системы уравнений часто требуется представить в векторной форме с помощью фундаментальной системы решений. Пожалуйста, временно забудьте об аналитической геометрии, поскольку сейчас речь пойдёт о векторах в алгебраическом смысле, который я немного приоткрыл в статье про ранг матрицы и окончательно расписал на уроке о линейных преобразованиях. Терминологии тушеваться не нужно, всё довольно просто:
Фундаментальная система решений однородной системы уравнений
Фундаментальная система решений – это множество линейно независимых векторов 


Количество векторов 
Однако в практических заданиях гораздо удобнее ориентироваться на следующий признак: количество векторов 
Представим общее решение Примера №3 



Координаты вектора 
Ответ следует записать в виде линейной комбинации векторов фундаментальной системы. В нашей ситуации линейная комбинация состоит из одинокого слагаемого. Общее решение однородной системы я буду обозначать через вектор 
Ответ: общее решение: 

Придавая параметру 



Это мы рассмотрели традиционный способ построения фундаментальной системы в так называемом нормальном виде – когда свободным переменным придаются исключительно единичные значения. Но правила хорошего математического тона предписывают избавляться от дробей, если это возможно. Поэтому в данном случае можно взять 

И тогда ответ запишется в эквивалентной форме: 

Оба варианта ответа правильны, однако чайникам я всё-таки рекомендую классику жанра.
Поблагодарим задачник Рябушко за предоставленные примеры и перейдём к более основательным системам:
Решить однородную систему линейных уравнений
Ответ записать с помощью фундаментальной системы решений
Самостоятельно, plz. Примерный образец оформления в конце урока.
Закинем в копилку знаний ещё один полезный факт:
Взаимосвязь решений неоднородной
и соответствующей однородной системы уравнений
Представьте двух близких родственниц: неоднородную систему (у которой хотя бы одно число правой части отлично от нуля) и такую же систему – только справа одни нули (то бишь, однородную систему). Нетрудно предположить, что если системы отличаются лишь столбцом свободных членов, то между их решениями должна существовать тесная связь. И это действительно так! Материал целесообразнее рассмотреть на конкретной задаче, которая, как и все другие, взята из реальной контрольной работы:
Дана система линейных алгебраических уравнений
1) найти общее решение;
2) используя результат предыдущего пункта, найти общее решение соответствующей однородной системы и записать его в векторной форме.
Решение: по условию дана обычная неоднородная система уравнений, и первая часть не отличается новизной:
1) Запишем расширенную матрицу системы (не зеваем нолик в третьей строке) и с помощью элементарных преобразований приведём её к ступенчатому виду:
(1) Ко второй строке прибавили первую строку, умноженную на –1. К третьей строке прибавили первую строку, умноженную на –3. К четвёртой строке прибавили первую строку, умноженную на –4.
(2) Последние три строки одинаковы, две из них удалили.
Обратным ходом метода Гаусса получим общее решение:


Выразим базисные переменные через свободные переменные. Из 2-го уравнения:

Общее решение неоднородной системы обозначим через 
Ответ:
2) Во второй части задания требуется найти общее решение 

Выполнять элементарные преобразования заново, разумеется, не нужно.
Правило: общее решение неоднородной системы 


Откуда легко выражается общее решение нашей однородной системы:
Найдём какое-нибудь частное решение 

Таким образом, общее решение соответствующей однородной системы:
Представим 
Пойдём классическим путём:
Рассмотрим пару значений свободных переменных 

Теперь рассматриваем пару 

И вообще – любая линейная комбинация векторов фундаментальной системы 

Ответ: 
Иными словами, если взять два любых вещественных числа, например, 


Если хотите избежать дробей, то при нахождении вектора 


В этом случае ответ запишется в эквивалентной форме: 
Порядком многих я, наверное, подзапутал, но коль скоро задание не придумано, то его нельзя было обойти стороной.
Более распространённая тема для самостоятельного решения:
Дана однородная система
Найти общее решение и записать ответ с помощью векторов фундаментальной системы. В образце решения завершающим элементарным преобразованием я уже потихоньку начинаю приобщать вас к методу Гаусса-Жордана.
Чтобы окончательно закрепить алгоритм, разберём финальное задание:
Решить однородную систему, ответ записать в векторной форме.
Решение: запишем матрицу системы и с помощью элементарных преобразований приведём её к ступенчатому виду:
(1) У первой строки сменили знак. Ещё раз заостряю внимание на неоднократно встречавшемся приёме, который позволяет существенно упростить следующее действие.
(1) Ко 2-й и 3-й строкам прибавили первую строку. К 4-й строке прибавили первую строку, умноженную на 2.
(3) Последние три строки пропорциональны, две из них удалили.
В результате получена стандартная ступенчатая матрица, и решение продолжается по накатанной колее:


Выразим базисные переменные через свободные переменные. Из 2-го уравнения:

Таким образом, общее решение:
Поскольку в рассматриваемом примере три свободные переменные, то фундаментальная система содержит три вектора.
Подставим тройку значений 

Для тройки значений 
И, наконец, для тройки 
Ответ: 
Желающие избежать дробных значений могут рассмотреть тройки 
К слову о дробях. Посмотрим на полученную в задаче матрицу 


Второй вариант решения:
Идея состоит в том, чтобы попытаться выбрать другие базисные переменные. Посмотрим на матрицу и заметим две единицы в третьем столбце. Так почему бы не получить ноль вверху? Проведём ещё одно элементарное преобразование:
(4) К первой строке прибавили вторую строку, умноженную на –1.
Здесь базисные переменные 

По существу, мы применили метод Гаусса-Жордана, который как раз и направлен на скорейшее получение базисного решения посредством дополнительных элементарных преобразований.
В результате общее решение:
Последовательно выбираем в качестве значений свободных неизвестных тройки 
и подстановкой их в 
Не забываем проверить координаты каждого вектора!
Ответ: общее решение: 

Как видите, второй способ гораздо проще и рациональнее, но для подобных изысков, конечно, необходимо обладать некоторым опытом.
Надеюсь, данная статья окончательно развеяла все страхи перед векторами, и теперь вы с огромным удовольствием откроете учебник по линейной алгебре, чтобы изучить теорию векторных пространств, линейных преобразований и другие не менее интересные вещи.
Пример 2: Решение: запишем матрицу системы и с помощью элементарных преобразований приведём её к ступенчатому виду: 
(2) Ко второй строке прибавили первую строку, умноженную на 3. К третьей строке прибавили первую строку.
(3) У первой строки сменили знак. Ко второй строке прибавили третью строку, умноженную на 3.
(4) К третьей строке прибавили вторую строку, умноженную на –2.
(5) Вторую строку разделили на 2, третью строку разделили на 21.
Ранг матрицы системы равен количеству переменных, значит, система имеет только тривиальное решение.
Ответ:
Пример 4: Решение: запишем матрицу системы и с помощью элементарных преобразований приведем её ступенчатому виду: 

(1) У третьей строки сменили знак и переместили её на 1-е место.
(2) Ко 2-й и 4-й строкам прибавили первую строку, умноженную на 2 и 5 соответственно.
(3) Вторую строку разделили на –5, 4-ю строку разделили на –17.
(4) Вторая и 4-я строки одинаковы, последнюю строку удалили. К третьей строке прибавили вторую строку, умноженную на 4.


Выразим базисные переменные через свободную переменную.
Из последних двух уравнений:



Таким образом, общее решение: 
Найдем вектор фундаментальной системы решений. Для этого выберем в качестве значения свободной неизвестной 

Ответ: общее решение однородной системы уравнений: 

Пример 6: Решение: Запишем матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду: 
(1) К первой строке прибавили третью строку, умноженную на –1.
(2) Ко второй, третьей и четвертой строкам прибавили первую строку, умноженную на 5, 4 и 5 соответственно.
(3) Последние три строки пропорциональны, достаточно оставить только одну из них. У первой строки сменили знак.
(4) К первой строке прибавили вторую строку, умноженную на –1.


Выразим базисные переменные через свободные переменные: 
Таким образом, общее решение: 
Найдем векторы фундаментальной системы решений. Для этого последовательно выбираем в качестве значений свободных неизвестных следующие пары: 


Ответ: общее решение: 

Автор: Емелин Александр
(Переход на главную страницу)

cкидкa 15% на первый зaкaз, прoмoкoд: 5530-hihi5





































