Химический элемент что называют
Химический элемент
Формой существования химических элементов в свободном виде являются простые вещества (одноэлементные). [3]
На данный момент ( март 2013 года ) известно 118 [4] химических элементов (из них не все официально признаны).
Содержание
История становления понятия
Символы химических элементов по Дж. Дальтону: 1 — водород; 2 — магний; 3 — кислород; 4 — сера; 5 — аммиак; 6 — диоксид углерода.
Однако Менделеев был вынужден сделать несколько перестановок в последовательности элементов, распределённой по возрастающему атомному весу, чтобы соблюсти периодичность химических свойств, а также ввести незаполненные клетки, соответствующие неоткрытым элементам. Позднее (в первые десятилетия XX века) стало ясно, что периодичность химических свойств зависит от атомного номера (заряда атомного ядра), а не от атомной массы элемента. Последняя определяется количеством стабильных изотопов элемента и их природной распространённостью. Тем не менее, устойчивые изотопы элемента имеют атомные массы, группирующиеся около некоторого значения, поскольку изотопы с избытком или недостатком нейтронов в ядре нестабильны, причём с ростом числа протонов (то есть атомного номера) число нейтронов, формирующих в совокупности стабильное ядро, также растёт. Поэтому периодический закон может быть сформулирован и как зависимость химических свойств от атомной массы, хотя эта зависимость нарушается в нескольких случаях.
С открытием изотопов стало ясно, что даже различные совокупности атомов одного и того же элемента могут иметь различающиеся атомные массы; так, радиогенный гелий, выделенный из урановых минералов, в связи с преобладанием изотопа 4 He имеет атомную массу больше, чем гелий космических лучей (где присутствует также лёгкий изотоп 3 He ).
Известные химические элементы
Право предложить название новому химическому элементу предоставляется первооткрывателям. Сообщение о новом открытии проверяется в течение нескольких лет независимыми лабораториями, и, в случае подтверждения, Международный союз теоретической и прикладной химии (ИЮПАК, IUPAC, en:International Union for Pure and Applied Chemistry ) официально утверждает название нового элемента.
Неоткрытые или неутверждённые элементы часто называются с помощью системы, использованной ещё Менделеевым, — по названию вышестоящего гомолога в периодической таблице, с добавлением префиксов «эка-» или (редко) «дви-», означающих санскритские числительные «один» и «два» (в зависимости от того, на 1 или 2 периода выше находится гомолог). Например, до открытия германий (стоящий в периодической таблице под кремнием и предсказанный Менделеевым ) назывался эка-кремнием, унуноктий (118) называется также эка-радоном, а флеровий (унунквадий, 114) — эка-свинцом.
Классификация
Символы химических элементов
Цифрами меньшего размера возле символа элемента обозначаются: слева вверху — атомная масса, слева внизу — порядковый номер, справа вверху — заряд иона, справа внизу — число атомов в молекуле [8] :
атомная масса | заряд иона |
Символ элемента | |
---|---|
порядковый номер | число атомов в молекуле |
В Периодической таблице карточка химического элемента обычно включает следующие характеристики:
Распространённость химических элементов в природе
Распространённость химических элементов в земной коре (% масс.) — кларковые числа
Из химических элементов наиболее распространены в земной коре кислород и кремний. Эти элементы вместе с элементами алюминий, железо, кальций, натрий, калий, магний, водород и титан составляют более 99 % массы земной оболочки, так что на остальные элементы приходится менее 1 %. В морской воде, помимо кислорода и водорода — составных частей самой воды, высокое содержание имеют такие элементы, как хлор, натрий, магний, сера, калий, бром и углерод. Массовое содержание элемента в земной коре называется кларковым числом или кларком элемента.
Содержание элементов в коре Земли отличается от содержания элементов в Земле, взятой как целое, поскольку химсоставы коры, мантии и ядра Земли различны. Так, ядро состоит в основном из железа и никеля. В свою очередь, содержания элементов в Солнечной системе и в целом во Вселенной также отличаются от земных. Наиболее распространённым элементом во Вселенной является водород, за ним идёт гелий. Исследование относительных распространённостей химических элементов и их изотопов в космосе является важным источником информации о процессах нуклеосинтеза и об эволюции Солнечной системы и небесных тел.
Образование
Одним из главных источников особо тяжёлых элементов во Вселенной должны быть, согласно расчётам, слияния нейтронных звёзд, с выбросом значительных количеств этих элементов, которые впоследствии участвуют в образовании новых звёзд и их планет. [14]
Химические элементы как составная часть химических веществ
Химические вещества могут состоять как из одного химического элемента ( простое вещество ), так и из разных ( сложное вещество или химическое соединение ).
См. также
Ссылки
Примечания
Выделить Химический элемент и найти в:
Что такое химический элемент
Химическим элементом называют определённый вид атомов, имеющих определённый заряд ядра и уникальное строение электронных оболочек.
Рис. Атомы гелия (He), углерода (С), серы (S).
Современной науке известны 110 химических элементов, 21 из которых был получен искусственным путём.
Каждый химический элемент обозначается одной или двумя латинскими буквами, в соответствии с его названием. Например:
Все 110 элементов сведены в специальную таблицу, которая носит название Периодической таблицы химических элементов, открытую в 1869 году русским учёным Д. И. Менделеевым.
В Периодической таблице каждый химический элемент имеет свой порядковый номер и занимает строго отведённое ему место.
Все химические элементы в Периодической таблице сведены в периоды и группы.
Химическая формула
Числовые индексы показывают в каких относительных количествах в данном веществе присутствуют атомы из которых состоит это вещество. Числовые индексы записываются внизу (в нижнем регистре) за элементом (или группой элементов), к которому они относятся. Если числовой индекс = 1, он не пишется.
Как читать химические формулы:
Химики числовые индексы называют стехиометрическими индексами.
Стоящее перед химической формулой число обозначает число молекул и называется стехиометрическим коэффициентом.
Если вам понравился сайт, будем благодарны за его популяризацию 🙂 Расскажите о нас друзьям на форуме, в блоге, сообществе. Это наша кнопочка:
Код кнопки:
Политика конфиденциальности Об авторе
Происхождение названий химических элементов. Часть 1 (1 фото)
Всё это не случайно. Наибольшие отличия в названиях тех элементов (либо их самых распространённых соединений), с которыми человек познакомился в древности или в начале средних веков. Это семь металлов древних (золото, серебро, медь, свинец, олово, железо, ртуть, которые сопоставлялись с известными тогда планетами, а также сера и углерод). Они встречаются в природе в свободном состоянии, и многие получили названия, соответствующие их физическим свойствам.
Вот наиболее вероятное происхождение этих названий:
Золото
Серебро
Железо
Свинец
Происхождение слова неясно; во всяком случае, ничего общего со свиньей. Самое удивительное здесь то, что на большинстве славянских языков (болгарском, сербско-хорватском, чешском, польском) свинец называется оловом! Наш «свинец» встречается только в языках балтийской группы: svinas (литовский), svin (латышский).
Английское название свинца lead и голландское lood, возможно, связаны с нашим «лудить», хотя лудят опять же не ядовитым свинцом, а оловом. Латинское же plumbum (тоже неясного происхождения) дало английское слово plumber — водопроводчик (когда-то трубы зачеканивали мягким свинцом), и название венецианской тюрьмы со свинцовой крышей — Пьомбе. Из этой тюрьмы по некоторым данным ухитрился бежать Казанова. А вот мороженое здесь ни при чём: пломбир произошёл от названия французского курортного городка Пломбьер.
Олово
Ртуть
Латинское hydrargirum произошло от греческих слов «хюдор» — вода и «аргирос» — серебро. «Жидким» (или «живым», «быстрым») серебром ртуть называется также в немецком (Quecksilber) и в староанглийском (quicksilver) языках, а по-болгарски ртуть — живак: действительно, шарики ртути блестят, как серебро, и очень быстро «бегают» — как живые. Современное английское (mercury) и французское (mercure) названия ртути произошли от имени латинского бога торговли Меркурия. Меркурий был также вестником богов, и его обычно изображали с крылышками на сандалиях или на шлеме. Так что бог Меркурий бегал так же быстро, как переливается ртуть. Ртути соответствовала планета Меркурий, которая быстрее других передвигается по небосводу.
Русское название ртути, по одной из версий, — это заимствование из арабского (через тюркские языки); по другой версии, «ртуть» связана с литовским ritu — качу, катаю, происшедшим от индоевропейского рет(х) — бежать, катиться. Литва и Русь были тесно связаны, а во 2-й половине XIV века русский язык был языком делопроизводства великого княжества Литовского, а также языком первых письменных памятников Литвы.
Углерод
Кадмий
Кобальт
Никель
Ниобий и тантал
Прометий
Торий
Титан
Ванадий
Уран, нептуний, плутоний
В 1781 году английский астроном Уильям Гершель открыл новую планету, которую назвали Ураном — по имени древнегреческого бога неба Урана, деда Зевса. В 1789 году М. Клапрот выделил из минерала смоляной обманки чёрное тяжёлое вещество, которое он принял за металл и, по традиции алхимиков, «привязал» его название к недавно открытой планете. А смоляную обманку он переименовал в урановую смолку (именно с ней работали супруги Кюри). Лишь спустя 52 года выяснилось, что Клапрот получил не сам уран, а его оксид UO2.
В 1846 году астрономы открыли предсказанную незадолго до этого французским астрономом Леверье новую планету. Её назвали Нептуном — по имени древнегреческого бога подводного царства. Когда в 1850 году в минерале, привезенном в Европу из США, обнаружили, как полагали, новый металл, его, под впечатлением открытия астрономов, предложили назвать нептунием. Однако вскоре выяснилось, что это был уже открытый ранее ниобий. О «нептунии» забыли почти на целое столетие, пока в продуктах облучения урана нейтронами не обнаружили новый элемент. И как в Солнечной системе за Ураном следует Нептун, так и в таблице элементов за ураном (№ 92) появился нептуний (№ 93).
В 1930 году была открыта девятая планета Солнечной системы, предсказанная американским астрономом Ловеллом. Её назвали Плутоном — по имени древнегреческого бога подземного царства. Поэтому было логично назвать следующий за нептунием элемент плутонием; он был получен в 1940 году в результате бомбардировки урана ядрами дейтерия.
Гелий
Обычно пишут, что его открыли спектральным методом Жансен и Локьер, наблюдая полное солнечное затмение в 1868 году. На самом деле всё было не так просто. Спустя несколько минут после окончания солнечного затмения, которое французский физик Пьер Жюль Жансен наблюдал 18 августа 1868 года в Индии, ему впервые удалось увидеть спектр солнечных протуберанцев. Аналогичные наблюдения провёл английский астроном Джозеф Норман Локьер 20 октября того же года в Лондоне, особо подчеркнув, что его способ позволяет изучать солнечную атмосферу во вне-затменное время. Новые исследования солнечной атмосферы произвели большое впечатление: в честь этого события Парижская академия наук вынесла постановление о чеканке золотой медали с профилями учёных. При этом ни о каком новом элементе речи не было.
Итальянский астроном Анджело Секки 13 ноября того же года обратил внимание на «замечательную линию» в солнечном спектре вблизи известной жёлтой D-линии натрия. Он предположил, что эту линию испускает водород, находящийся в экстремальных условиях. И только в январе 1871 года Локьер высказал идею, что эта линия может принадлежать новому элементу. Впервые слово «гелий» произнёс в своей речи президент Британской ассоциации содействия наукам Уильям Томсон в июле того же года. Название было дано по имени древнегреческого бога солнца Гелиоса. В 1895 году английский химик Уильям Рамзай собрал выделенный из уранового минерала клевеита при его обработке кислотой неизвестный газ и с помощью Локьера исследовал его спектральным методом. В результате «солнечный» элемент был обнаружен и на Земле.
Чем химический элемент отличается от вещества?
Кратко:
– химический элемент это вид атомов с одинаковым зарядом ядра;
– простое вещество образовано атомами одного химического элемента.
Химический элемент – это условная запись в периодической таблице. Простое вещество – то, с чем мы имеем дело на практике.
Химический элемент – это атомы с одинаковым зарядом ядра.
Можно сказать, что химический элемент это условная выборка атомов по заряду ядра. Химические элементы представлены в периодической таблице Менделеева, но на практике мы всегда имеем дело с простыми веществами.
Обратите внимание: в определении химического элемента указан заряд ядра, но не масса ядра или атома. Почему?
Всё дело в том, что у многих (большинства) химических элементов в природе встречаются изотопы.
Изотопы (греч. isos – одинаковый + topos – место) – это разновидности одного и того же химического элемента, имеющих одинаковый заряд ядра (число протонов), но разное число нейтронов.
А масса атома, прежде всего складывается из числа протонов и нейтронов. Именно поэтому в определении химического элемента используют понятие заряда ядра. Этим, кстати, объясняются дробные значения у большинства химических элементов в периодической таблице (но не у всех).
Примеры изотопов есть на сайте – изотопы водорода.
Известно, что примерно 75% содержащегося в природе хлора представлено изотопами хлора с атомной массой 35. Тогда как примерно 25 % хлора в природе имеет атомную массу равную 37.
Рассчитаем примерное среднее значение относительной атомной массы хлора:
Ar (Cl) = (35/100% * 75%) + (37/100 % * 25%) = 35,5
Относительная атомная масса — значение массы атома, выраженное как отношение массы атома данного элемента к 1⁄12 массе атома изотопа углерода 12 C.
Можно спросить, а как быть с элементами, у которых нет изотопов? Почему у них дробная масса?
Всё дело в так называемом дефекте массы. Опытным путём было доказано, что масса ядра оказывается меньше, чем масса протонов и нейтронов, из которых состоит ядро. Но почему?
Ответ даёт уравнение Эйнштейна: E = mc 2
Нуклоны (протоны и нейтроны) в ядре атома удерживаются силами ядерного взаимодействия, которое выражается формулой выше. Эта величина называется энергией связи ядра. Именно энергия связи порождает дефект массы и создает дробные значения относительной атомной массы у химических элементов без изотопов.
Простое вещество – это вещество, образованное атомами одного химического элемента.
На сегодняшний день известно более 400 простых веществ, но химических элементов в таблице Менделеева около 120. Откуда же еще 300 веществ? Один и тот же химический элемент может образовывать сразу несколько простых веществ.
Аллотро́пия — существование двух и более простых веществ одного и того же химического элемента. Явление аллотропии обусловлено либо различным состоянием молекул простого вещества (аллотропия состава), либо способом размещения атомов или молекул в кристаллической решётке (аллотропия формы).
Безусловным рекордсменом по числу аллотропных модификаций является углерод. Наиболее известные: алмаз, графит, графены, фуллерены, нанотрубки, нановолокна, карбин и графин.
Известные примеры других веществ: кислород и озон, красный и белый фосфор.
Итак, если химический элемент это совокупность атомов с одинаковым зарядом ядра, то простое вещество образовано из этих атомов.
В этом и заключается разница. Химический элемент – это условный вид атомов, вещество – это то, с чем мы имеем дело в жизни.
Путаница может возникнуть ввиду того, что зачастую названия простого вещества и элемента совпадают (кислород, азот, водород, углерод и т.д.).
Как понять когда речь идёт о химическом элементе, а когда – о простом веществе?
Химический элемент не обладает химическими свойствами и физическими характеристиками (температуры плавления и кипения, электрическая проводимость, растворимость, запах, цвет и т.п. – см. подробнее).
Вот пример из учебника 7-го класса.
В каком случае речь идёт о водороде как о простом веществе:
а) водород присутствует в организме человека;
б) водород малорастворим в воде;
в) массовая доля водорода в воде равна 11%;
г) при обычных условиях водород находится в газообразном агрегатном состоянии;
д) в атмосфере водорода живые организмы погибают;
е) в состав оксидов водород не входит?
а) Водород входит в состав большинства органических молекул поэтому речь идёт о химическом элементе.
б) У химического элемента нет такой характеристики как растворимость.
в) В состав воды входят атомы водорода, а не водород как простое вещество.
г) Агрегатное состояние – характеристика простого вещества.
д) Речь идет об атмосфере, т.е. газе. Агрегатное состояние характеристика простого вещества.
е) Простое вещество не может входит в состав вещества сложного (см. определения), а вот атомы – могут.
А что такое сложное вещество?
Сложное вещество – это вещество, образованное атомами разных химических элементов.
Во Вселенной преобладают простые вещества: водород и гелий. Но в окружающем нас мире (на Земле) преобладают сложные вещества. Какое из них самое распространенное? Наверное вода? А вот и нет!
Основная масса Земли сосредоточена в мантии (
30%). Ядро Земли состоит преимущественно из железа и никеля; а мантия – из оксидов кремния, магния и железа в виде различных минералов.
Как видите, масса поверхности Земли ничтожно мала. Да, в мантии тоже присутствует вода и, по оценкам учёных, по объему её содержание сопоставимо со всем мировым океаном. Но даже этого количества ничтожно мало.
Таким образом, самым распространенным (по массе) сложным веществом на Земле является оксид кремния, на втором месте – оксид магния, и на третьем месте – оксиды железа.
А вот если говорить о поверхности Земли, то первое место займет… самый обычный песок! Вода – на втором месте.
ХИМИЯ
ХИМИЯ, наука о химических элементах, их соединениях и превращениях, происходящих в результате химических реакций. Она изучает, из каких веществ состоит тот или иной предмет; почему и как ржавеет железо, и почему олово не ржавеет; что происходит с пищей в организме; почему раствор соли проводит электрический ток, а раствор сахара – нет; почему одни химические изменения происходят быстро, а другие – медленно. Главная задача химии – выяснение природы вещества, главный подход к решению этой задачи – разложение вещества на более простые компоненты и синтез новых веществ. Используя этот подход, химики научились воспроизводить множество природных химических субстанций и создавать материалы, не существующие в природе. На химических предприятиях уголь, нефть, руды, вода, кислород воздуха превращаются в моющие средства и красители, пластики и полимеры, лекарства и металлические сплавы, удобрения, гербициды и инсектициды и т.д. Живой организм тоже можно рассматривать как сложнейший химический завод, на котором тысячи веществ вступают в точно отрегулированные химические реакции.
ЭЛЕМЕНТЫ И СОЕДИНЕНИЯ
Элементы
Исследование сложного вещества начинается с попыток разложить его на более простые. Простейшая форма материи, в которой сохраняется определенная совокупность физических и химических свойств, называется химическим элементом. Химические элементы – это частицы вещества, представляющие собой совокупность атомов с одинаковым зарядом ядра. Водород, кислород, хлор, натрий, железо – все это элементы. Элемент нельзя разложить на более простые составляющие обычными методами: с помощью тепла, света, электричества или под действием другого вещества. Для этого нужны колоссальное количество энергии, специальное оборудование (например, ускоритель частиц) или высокие температуры, сравнимые с температурами в недрах Солнца. Из 109 известных элементов в природе существует девяносто два элемента, остальные получены искусственно. Все они систематизированы в периодической таблице элементов, где каждому элементу соответствует свой порядковый номер, называемый атомным номером (см. ЭЛЕМЕНТЫ ХИМИЧЕСКИЕ; ПЕРИОДИЧЕСКАЯ СИСТЕМА ЭЛЕМЕНТОВ). В табл. 1 перечислены первые 103 элемента в алфавитном порядке. Из этого ограниченного набора элементов и состоят миллионы химических веществ.
Элемент | Символ | Атомный номер | Атомная масса |
Азот | N | 7 | 14,0067 |
Актиний | Ac | 89 | (227) |
Алюминий | Al | 13 | 26,98154 |
Америций | Am | 95 | (243) |
Аргон | Ar | 18 | 39,948 |
Астат | At | 85 | (210) |
Барий | Ba | 56 | 137,33 |
Бериллий | Be | 4 | 9,01218 |
Берклий | Bk | 97 | (247) |
Бор | B | 5 | 10,811 |
Бром | Br | 35 | 79,904 |
Ванадий | V | 23 | 50,9415 |
Висмут | Bi | 83 | 208,9804 |
Водород | H | 1 | 1,0079 |
Вольфрам | W | 74 | 183,85 |
Гадолиний | Gd | 64 | 157,25 |
Галлий | Ga | 31 | 69,723 |
Гафний | Hf | 72 | 178,49 |
Гелий | He | 2 | 4,0026 |
Германий | Ge | 32 | 72,59 |
Гольмий | Ho | 67 | 164,9304 |
Диспрозий | Dy | 66 | 162,50 |
Европий | Eu | 63 | 151,96 |
Железо | Fe | 26 | 55,847 |
Золото | Au | 79 | 196,9665 |
Индий | In | 49 | 114,82 |
Иод | I | 53 | 126,9045 |
Иридий | Ir | 77 | 192,22 |
Иттербий | Yb | 70 | 173,04 |
Иттрий | Y | 39 | 88,9059 |
Кадмий | Cd | 48 | 112,41 |
Калий | K | 19 | 39,0983 |
Калифорний | Сf | 98 | (251) |
Кальций | Ca | 20 | 40,078 |
Кислород | O | 8 | 15,9994 |
Кобальт | Co | 27 | 58,9332 |
Кремний | Si | 14 | 28,0855 |
Криптон | Kr | 36 | 83,80 |
Ксенон | Xe | 54 | 131,29 |
Кюрий | Cm | 96 | (247) |
Лантан | La | 57 | 138,9055 |
Лоуренсий | Lr | 103 | (260) |
Литий | Li | 3 | 6,941 |
Лютеций | Lu | 71 | 174,967 |
Магний | Mg | 12 | 24,305 |
Марганец | Mn | 25 | 54,9380 |
Медь | Cu | 29 | 63,546 |
Менделевий | Md | 101 | (258) |
Молибден | Mo | 42 | 95,94 |
Мышьяк | As | 33 | 74,9216 |
Натрий | Na | 11 | 22,98977 |
Неодим | Nd | 60 | 144,24 |
Неон | Ne | 10 | 20,179 |
Нептуний | Np | 93 | 237,0482 |
Никель | Ni | 28 | 58,69 |
Ниобий | Nb | 41 | 92,9064 |
Нобелий | No | 102 | (259) |
Олово | Sn | 50 | 118,710 |
Осмий | Os | 76 | 190,2 |
Палладий | Pd | 46 | 106,42 |
Платина | Pt | 78 | 195,08 |
Плутоний | Pu | 94 | (244) |
Полоний | Po | 84 | (209) |
Празеодим | Pr | 59 | 140,9077 |
Прометий | Pm | 61 | (145) |
Протактиний | Pa | 91 | 231,0359 |
Радий | Ra | 88 | 226,0254 |
Радон | Rn | 86 | (222) |
Рений | Re | 75 | 186,207 |
Родий | Rh | 45 | 102,9055 |
Ртуть | Hg | 80 | 200,59 |
Рубидий | Rb | 37 | 85,4678 |
Рутений | Ru | 44 | 101,07 |
Самарий | Sm | 62 | 150,36 |
Свинец | Pb | 82 | 207,2 |
Селен | Se | 34 | 78,96 |
Сера | S | 16 | 32,066 |
Серебро 2) | Ag | 47 | 107,8682 |
Скандий | Sc | 21 | 44,9559 |
Стронций | Sr | 38 | 87,62 |
Сурьма | Sb | 51 | 121,75 |
Таллий | Tl | 81 | 204,383 |
Тантал | Ta | 73 | 180,9479 |
Теллур | Te | 52 | 127,60 |
Тербий | Tb | 65 | 158,9254 |
Технеций | Tc | 43 | [97] |
Титан | Ti | 22 | 47,88 |
Торий | Th | 90 | 232,0381 |
Тулий | Tm | 69 | 168,9342 |
Углерод | C | 6 | 12,011 |
Уран | U | 92 | 238,0289 |
Фермий | Fm | 100 | (257) |
Фосфор | P | 15 | 30,97376 |
Франций | Fr | 87 | (223) |
Фтор | F | 9 | 18,998403 |
Хлор | Cl | 17 | 35,453 |
Хром | Cr | 24 | 51,9961 |
Цезий | Cs | 55 | 132,9054 |
Церий | Ce | 58 | 140,12 |
Цинк | Zn | 30 | 65,39 |
Цирконий | Zr | 40 | 91,224 |
Эйнштейний | Es | 99 | (252) |
Эрбий | Er | 68 | 167,26 |
1) В расчете на атомную массу изотопа углерода 12 С, равную 12,0000. В круглых скобках указано массовое число наиболее долгоживущего нуклида. 2) См. также АТОМНАЯ МАССА. |
Соединения
Элементы, соединяясь друг с другом, образуют сложные вещества – химические соединения. Соль, вода, ржавчина, каучук – это примеры соединений. Соединение состоит из элементов, но обычно по своим свойствам и внешнему виду не напоминает ни один из них. Так, ржавчина образуется при взаимодействии газа – кислорода с металлом – железом, а сырьем для получения многих волокон служат уголь, вода и воздух. Именно индивидуальность свойств – одна из черт, отличающих соединение от простой смеси. Другая, и наиболее важная, характеристика соединения заключается в том, что элементы всегда соединяются между собой в определенных массовых соотношениях. Например, вода состоит из 2,016 массовых частей водорода и 16,000 массовых частей кислорода. Массовое соотношение между водородом и кислородом в водах Волги и льдах Антарктики одинаково и равно 1:8. Иными словами, каждое химическое соединение имеет вполне определенный состав, т.е. всегда содержит одни и те же элементы в одних и тех же массовых соотношениях. Это один из основных химических законов – закон постоянства состава.
Многие элементы образуют несколько соединений. Так, помимо воды известно еще одно соединение водорода и кислорода – пероксид водорода, который состоит из 2,016 частей водорода и 32 частей кислорода. Здесь водород и кислород находятся в массовом соотношении 1:16, что ровно вдвое отличается от их соотношения в воде. Этот пример иллюстрирует закон кратных соотношений: если два элемента образуют между собой несколько соединений, то массовые количества одного элемента, соединяющиеся с одним и тем же массовым количеством другого, относятся между собой как небольшие целые числа.
Атомы и молекулы
Понятия атомов и молекул – основные в химии. Атом – это мельчайшая частица элемента, обладающая всеми его свойствами, а молекула – мельчайшая частица соединения, обладающая его свойствами и способная к самостоятельному существованию. Атомистическая идея восходит к 6–5 вв. до н.э. и принадлежит древнегреческим философам Левкиппу и его ученику Демокриту. По их представлениям, вещество состоит из мельчайших неделимых частиц – атомов, созданных из одного и того же первичного материала. Правда, ни один из этих философов не определил, что это за материал. Впоследствии атомную теорию развил другой греческий философ, Эпикур (4–3 вв. до н.э.). Он утверждал, что атомы обладают весом и перемещаются в горизонтальном и вертикальном направлениях, взаимодействуя друг с другом. Аналогичные идеи высказывал римский поэт Лукреций в 1 в. до н.э., наблюдавший за пылинками, которые танцуют в солнечном луче. Наконец, в 1804–1810 английский химик и физик Дж.Дальтон разработал атомную теорию, которая включала законы кратных соотношений и постоянства состава. Однако убедительные доказательства существования атомов были получены только в 20 в. Когда Лукреций утверждал, что пылинки подталкиваются невидимыми потоками движущихся атомов, он был не так уж далек от истины: их танец действительно могут вызывать воздушные течения, но даже в неподвижном воздухе частички пыли или дыма находятся в постоянном движении. Этот эффект называют броуновским движением (см. также БРОУНОВСКОЕ ДВИЖЕНИЕ). Спустя два тысячелетия после Лукреция французский ученый Ж.Перрен, вооруженный микроскопом и математической теорией, изучил случайные блуждания суспендированных частичек краски и рассчитал число невидимых молекул, чьи удары заставляли их двигаться. После того, как атомы и молекулы удалось сосчитать, само их существование стало гораздо более убедительным.
Строение атома
Согласно современным представлениям, атом содержит центральное ядро, размеры которого очень малы по сравнению с атомом в целом. Ядро несет положительный электрический заряд и окружено диффузной оболочкой (облаком) из отрицательно заряженных электронов, которая и определяет размер атома. Диаметр атома – ок. 10 –8 см, диаметр ядра в 10 000 раз меньше и равен примерно 10 –12 см. У простейшего из атомов – атома водорода – в ядре всего одна частица – протон. Ядро атомов других элементов содержит более одного протона, а также нейтроны – частицы, близкие к протонам по массе, но не имеющие электрического заряда. Заряд ядра называют его атомным (или порядковым) номером. Атомный номер равен числу протонов в ядре и определяет химическую природу элемента. Так, атом с зарядом ядра +26 содержит 26 протонов в ядре и представляет собой элемент железо. Ядро атома железа окружают 26 электронов, поэтому атом в целом электронейтрален.
Суммарное число протонов и нейтронов в ядре называют массовым числом, поскольку в этих частицах сосредоточена практически вся масса атома. Число нейтронов, содержащихся в ядрах атомов данного элемента, в отличие от числа протонов, может варьировать. Атомы одного элемента, ядра которых содержат разное число нейтронов, называют изотопами. Слово «изотоп» греческого происхождения; оно означает «одно и то же место» – разные изотопы элемента занимают одну и ту же позицию в периодической таблице Менделеева (см. также ИЗОТОПЫ) и обладают очень близкими химическими свойствами. Так, у водорода (массовое число 1) есть изотоп дейтерий, в ядре которого один протон и один нейтрон (массовое число соответственно равно 2). Оба изотопа вступают в одни и те же химические реакции, но не всегда одинаково легко.
Термин «атомная масса» означает массу атома элемента, выраженную в единицах массы атома изотопа углерода 12 С, которую принято считать равной его массовому числу – 12,0000 (атомная масса изотопа близка к его массовому числу, но не равна ему, поскольку при образовании атомного ядра часть массы теряется в виде энергии). До 1961 атомные массы элементов определяли относительно среднего массового числа для смеси изотопов кислорода, равного 16,0000. Атомная масса элемента, существующего в природе в виде смеси изотопов, – это средняя величина атомных масс всех изотопов с учетом их распространенности в природе (см. также АТОМНАЯ МАССА). Молекулярная масса равна сумме масс атомов элементов, составляющих молекулу. Например, мол. масса воды равна сумме 2 · 1,008 (два атома водорода) + 16,0000 (один атом кислорода), т.е. 18,016.
Электронное облако
Физические и химические свойства атомов, а следовательно, и вещества в целом во многом определяются особенностями электронного облака вокруг атомного ядра. Положительно заряженное ядро притягивает отрицательно заряженные электроны. Электроны вращаются вокруг ядра так быстро, что точно определить их местонахождение не представляется возможным. Движущиеся вокруг ядра электроны можно сравнить с облаком или туманом, в одних местах более или менее плотным, в других – совсем разреженным. Форму электронного облака, а также вероятность нахождения электрона в любой его точке можно определить, решив соответствующие уравнения квантовой механики (см. также КВАНТОВАЯ МЕХАНИКА). Области наиболее вероятного нахождения электронов называют орбиталями. Каждая орбиталь характеризуется определенной энергией, и на ней может находиться не более двух электронов. Обычно вначале заполняются ближайшие к ядру самые низкоэнергетические орбитали, затем орбитали с более высокой энергией и т.д.
Существует четыре типа орбиталей, их обозначают s, p, d и f. На каждом уровне (слое) имеется одна s-орбиталь, которая содержит наиболее прочно связанные с ядром электроны. За ней следуют три p-орбитали, пять d-орбиталей и, наконец, семь f-орбиталей.