Хлорид железа 3 и гидроксид натрия что наблюдаем
Реакция хлорида железа и гидроксида натрия
Реакция взаимодействия хлорида железа и гидроксида натрия.
Уравнение реакции взаимодействия хлорида железа и гидроксида натрия:
Реакция хлорида железа (II) и гидроксида натрия протекает при условии: в атмосфере азота.
Реакция хлорида железа (III) и гидроксида натрия протекает при обычных условиях.
Для проведения реакций используются водные растворы хлорида железа (II или III) и гидроксида натрия.
Примечание: © Фото https://www.pexels.com, https://pixabay.com
Мировая экономика
Справочники
Востребованные технологии
Поиск технологий
О чём данный сайт?
Настоящий сайт посвящен авторским научным разработкам в области экономики и научной идее осуществления Второй индустриализации России.
Он включает в себя:
– экономику Второй индустриализации России,
– теорию, методологию и инструментарий инновационного развития – осуществления Второй индустриализации России,
– организационный механизм осуществления Второй индустриализации России,
– справочник прорывных технологий.
Мы не продаем товары, технологии и пр. производителей и изобретателей! Необходимо обращаться к ним напрямую!
Мы проводим переговоры с производителями и изобретателями отечественных прорывных технологий и даем рекомендации по их использованию.
О Второй индустриализации
Осуществление Второй индустриализации России базируется на качественно новой научной основе (теории, методологии и инструментарии), разработанной авторами сайта.
Конечным результатом Второй индустриализации России является повышение благосостояния каждого члена общества: рядового человека, предприятия и государства.
Вторая индустриализация России есть совокупность научно-технических и иных инновационных идей, проектов и разработок, имеющих возможность быть широко реализованными в практике хозяйственной деятельности в короткие сроки (3-5 лет), которые обеспечат качественно новое прогрессивное развитие общества в предстоящие 50-75 лет.
Та из стран, которая первой осуществит этот комплексный прорыв – Россия, станет лидером в мировом сообществе и останется недосягаемой для других стран на века.
Гидроксид железа (III)
Гидроксид железа (III)
Способы получения
1. Гидроксид железа (III) можно получить действием раствора аммиака на соли железа (III).
2. Окислением гидроксида железа (II) кислородом или пероксидом водорода:
3. Гидроксид железа (III) можно получить действием щелочи на раствор соли железа (III).
FeCl3 + 3KOH → Fe(OH)3↓ + 3KCl
Видеоопыт получения гидроксида железа (III) взаимодействием хлорида железа (III) и гидроксида калия можно посмотреть здесь.
Например: бромид железа (III) реагирует с карбонатом натрия. При этом выпадает осадок гидроксида железа (III), выделяется углекислый газ и образуется бромид натрия:
Взаимодействие хлорида железа (III) с сульфитом, например, калия — очень интересная реакция. Во-первых, в некоторых источниках указывается, что в ней таки может протекать необратимый гидролиз. Но для ЕГЭ лучше считать, что при этом протекает ОВР. Во-вторых, ОВР можно записать в разных видах:
Также допустима такая запись:
Химические свойства
3. Гидроксид железа (III) взаимодействует с растворимыми основаниями (щелочами). При этом в расплаве образуются соли—ферриты, а в растворе реакция практически не идет. При этом гидроксид железа (III) проявляет кислотные свойства.
4. Г идроксид железа (III) разлагается при нагревании :
Видеоопыт взаимодействия гидроксида железа (III) с соляной кислотой можно посмотреть здесь.
Опыты по химии. Железо
Взаимодействие железа с концентрированными кислотами
Безводная серная и азотная кислоты пассивируют железо, не реагируют с ним. Однако концентрированные растворы этих кислот растворяют железо. Приготовим две колбы с кусочками железа. Концентрированная азотная кислота бурно реагирует с железом. Продукты реакции – нитрат железа (III) и бурый газ – диоксид азота (IV).
Концентрированная серная кислота тоже реагирует с железом. Выделяется сернистый газ.
2Fe + 6H2SO4 = Fe2(SO4)3 + 3SO2↑ + 6H2O
И в том, и в другом случае происходит окисление железа до степени окисления +III. Даже небольшие количества воды, содержащиеся в концентрированных кислотах, сильно влияют на их свойства. Концентрированные и безводные кислоты – не одно и то же.
Оборудование: колбы, пинцет.
Техника безопасности. Соблюдать правила работы с концентрированными кислотами. Опыт проводится под тягой, так как выделяются ядовитые оксиды азота и оксид серы.
Постановка опыта – Елена Махиненко, текст – к.п.н. Павел Беспалов.
Качественные реакции на железо (II)
Как определить в растворе ионы железа (II)? Возьмем для опытов сульфат железа (II).
Добавим красную кровяную соль ‑ гексацианоферрат калия K3[Fe(CN)6]. (Для определения железа (III) используют желтую кровяную соль K4[Fe(CN)6]). В присутствии ионов железа (II) образуется темно-синий осадок. Это — турнбуллева синь ‑ комплексная соль железа KFe[Fe(CN)6]).
Появление турнбуллевой сини доказывает присутствие в растворе ионов железа (II).
2 К3[Fe(CN)6 ] +3 Fe SO4 = KFe[Fe(CN)6])↓ + 3K2SO4
Турнбуллева синь очень похожа по свойствам на берлинскую лазурь и тоже служила красителем. Названа по имени одного из основателей шотландской фирмы по производству красителей «Артур и Турнбуль».
Реакция со щелочью – еще один способ обнаружения ионов железа (II). Гидроксид железа (II) Fe(OH)2 — серо-зеленого цвета, гидроксид железа (III) Fe(OH)3 — бурый. Добавим щелочь (NaOH) в колбу с солью железа — образуется серо-зеленый осадок. Значит, в растворе присутствуют ионы железа (II). Образовавшийся осадок – гидроксид железа (II) Fe(OH)2.
Оборудование: колбы.
Техника безопасности. Соблюдать правила обращения с растворами щелочей и растворами гексацианоферратов. Не допускать контакта растворов гексацианоферратов с концентрированными кислотами.
Постановка опыта – Елена Махиненко, текст – к.п.н. Павел Беспалов.
Качественные реакции на железо (III)
Ионы железа (III) в растворе можно определить с помощью качественных реакций. Проведем некоторые из них. Возьмем для опыта раствор хлорида железа (III).
Если в растворе есть ионы железа (III), образуется гидроксид железа (III) Fe(OH)3. Основание нерастворимо в воде и бурого цвета. (Гидроксид железа (II) Fe(OH)2. – также нерастворим, но серо-зеленого цвета). Бурый осадок указывает на присутствие в исходном растворе ионов железа (III).
FeCl3 + 3 NaOH = Fe(OH)3 ↓+ 3 NaCl
Желтая кровяная соль – это гексацианоферрат калия K4[Fe(CN)6]. (Для определения железа (II) используют красную кровяную соль K3[Fe(CN)6]). К порции раствора хлорида железа прильем раствор желтой кровяной соли. Синий осадок берлинской лазури* показывает на присутствие в исходном растворе ионов трехвалентного железа.
3 К4[Fe(CN)6 ] +4 FeCl3 = KFe[Fe(CN)6])↓ + 12 KCl
Вначале разбавляем испытуемый раствор – иначе не увидим ожидаемой окраски. В присутствии иона железа (III) при добавлении роданида калия образуется вещество красного цвета. Это ‑ роданид железа (III). Роданид от греческого «родеос» — красный.
FeCl3 + 3 КCNS = Fe(CNS)3 + 3 KCl
Берлинская лазурь была получена случайно в начале 18 века в Берлине красильных дел мастером Дисбахом. Дисбах купил у торговца необычный поташ (карбонат калия): раствор этого поташа при добавлении солей железа получался синим. При проверке поташа оказалось, что он был прокален с бычьей кровью. Краска оказалась подходящей для тканей: яркой, устойчивой и недорогой. Вскоре стал известен и рецепт получения краски: поташ сплавляли с высушенной кровью животных и железными опилками. Выщелачиванием такого сплава получали желтую кровяную соль. Сейчас берлинскую лазурь используют для получения печатной краски и подкрашивания полимеров.
Оборудование: колбы, пипетка.
Техника безопасности. Соблюдать правила обращения с растворами щелочей и растворами гексацианоферратов. Не допускать контакта растворов гексацианоферратов с концентрированными кислотами.
Постановка опыта – Елена Махиненко, текст – к.п.н. Павел Беспалов.
Получение гидроксида железа (II) и взаимодействие его с кислотами
Получим гидроксид железа (II) Fe(OH)2. Для этого воспользуемся реакцией растворимой соли железа (II) со щелочью: соединим сульфат железа (II) и гидроксид калия.
FeSO4 + 2KOH = Fe(OH)2↓ + K2SO4
Образуется серо-зеленый осадок гидроксида железа (II). Вспомним, что гидроксид железа (III) – бурый. По цвету получаемого осадка гидроксида различают соли железа (II) и железа (III). Как подействует кислота на серо-зеленый осадок гидроксида? Добавляем раствор соляной кислоты.
Fe(OH)2 + 2HCl = FeCl2 + 2H2O
Осадок гидроксида растворяется. Образуется раствор хлорида железа (II).
Оборудование: колба, пипетка.
Техника безопасности. Соблюдать правила обращения с растворами кислот и щелочей. Избегать попадания кислот и щелочей на кожу и слизистые оболочки.
Постановка опыта – Елена Махиненко, текст – к.п.н. Павел Беспалов.
Получение гидроксида железа (III) и взаимодействие его с кислотами
Получим гидроксид железа (III) Fe(OH)3 взаимодействием растворов хлорида железа (III) FeCl3 и гидроксида калия KOH. Это обычный способ получения нерастворимых оснований – реакция обмена растворимой соли и щелочи.
FeCl3 + 3KOH = Fe(OH)3 ↓+ 3KCl
Выпадает бурый осадок. Это гидроксид железа (III). Как гидроксид реагирует с кислотами? Добавим раствор соляной кислоты.
Fe(OH)3 + 3HCl = FeCl3 + 3H2O
Осадок гидроксида железа растворяется, образуется желтый раствор хлорида железа (III). Реакции обмена с кислотами могут превращать нерастворимые основания в растворимые соли.
Оборудование: колба, пипетка.
Техника безопасности.
Соблюдать правила обращения с растворами кислот и щелочей. Избегать попадания кислот и щелочей на кожу и слизистые оболочки.
Постановка опыта – Елена Махиненко, текст – к.п.н. Павел Беспалов.
Получение железа алюминотермией
Алюминий используется для получения некоторых металлов. Этот метод называется алюминотермией. Метод основан на том, что порошкообразный алюминий при воспламенении восстанавливает оксиды многих металлов. При этом образуется очень чистый, свободный от углерода металл. Получим железо способом алюминотермии. Смесь порошкообразного алюминия и оксидов железа называется термитом. Приготовим термит и подожжем его. При горении термита алюминий восстанавливает железо из его оксида.
Fe2O3 + 2 AI = AI2O3 + 2 Fe
После окончания реакции извлечем железо. Оно образуется на дне тигля в виде отдельных застывших капель. Металл притягивается к магниту.
Оборудование: тигель, ступка, металлическая чашка с песком, щипцы, пробирка, фильтровальная бумага, магнит.
Техника безопасности. Соблюдать правила пожарной безопасности и правила безопасности при работе с нагревательными приборами.
Постановка опыта и текст – к.п.н. Павел Беспалов.
Роль кислорода в процессе коррозии железа
Коррозия – это разрушение металлов под действием кислорода и воды. Попробуем установить зависимость степени коррозии железа от степени аэрации – то есть от доступа кислорода к поверхности металла. Опустим в пробирки железные гвозди и добавим воды: в первую пробирку – до половины, во вторую и в третью – до верха. В третью пробирку нальем слой растительного масла. Сплошной слой масла блокирует поступление кислорода в толщу воды. Посмотрим, что произошло с гвоздями через некоторое время. Больше всего ржавчины оказалось на гвозде из первой пробирки, этот гвоздь соприкасался и с водой, и с воздухом. Доступ кислорода к поверхности металла был свободным. На гвозде из второй пробирки коррозии меньше, так как железо взаимодействовало только с небольшим количеством растворенного в воде кислорода. Гвоздь из третьей пробирки почти не поржавел. Кислород не мог пройти через слой растительного масла, а без кислорода коррозия не развивается.
Оборудование: пробирки, штатив для пробирок.
Техника безопасности. Опыт не опасен.
Постановка опыта – Елена Махиненко, текст – к.п.н. Павел Беспалов.
Гидролиз хлорида железа(III)
Общие сведения о гидролизе хлорида железа (III)
Представляет собой вещество с кристаллической структурой черно-коричневого, темно-красного, фиолетового или зеленого цвета, в зависимости от угла падающего света. Молярная масса – 162 г/моль.
Рис. 1. Хлорид железа (II). Внешний вид.
Гидролиз хлорида железа (III)
Гидролизуется по катиону. Характер среды – кислый. Теоретически возможны вторая и третья ступени. Уравнение гидролиза выглядит следующим образом:
FeCl3 ↔ Fe 3+ +3Cl — (диссоциация соли);
Fe 3+ + HOH ↔ FeOH 2+ + H + (гидролиз по катиону);
Fe 3+ +3Cl — + HOH ↔ FeOH 2+ +3Cl — + H + (ионное уравнение);
FeCl3 + H2O ↔ Fe(OH)Cl2 + HCl (молекулярное уравнение).
Fe(OH)Cl2 ↔ FeOH 2+ + 2Cl — (диссоциация соли);
FeOH 2+ + HOH ↔ Fe(OH)2 + + H + (гидролиз по катиону);
FeOH 2+ + 2Cl — + HOH ↔ Fe(OH)2 + + 2Cl — + H + (ионное уравнение);
Fe(OH)Cl2 + H2O ↔ Fe(OH)2Cl+ HCl (молекулярное уравнение).
Fe(OH)2Cl ↔ Fe(OH)2 + + Cl — (диссоциация соли);
Fe(OH)2 + + HOH ↔ Fe(OH)3↓ + H + (гидролиз по катиону);
Fe(OH)2 + + Cl — + HOH ↔ Fe(OH)3↓ + Cl — + H + (ионное уравнение);
Fe(OH)2Cl + H2O ↔ Fe(OH)3↓ + HCl (молекулярное уравнение).
Примеры решения задач
Задание | К раствору гидроксида натрия массой 150 г (ω=10%) прилили раствор хлорида железа (III), в результате чего выпал осадок бурого цвета – гидроксид железа (III). Определите его массу. |
Решение | Запишем уравнение реакции взаимодействия гидроксида натрия и хлорида железа (III): |
Рассчитаем массу растворенного вещества гидроксида натрия в растворе:
msolute(NaOH) = msolution(NaOH) × ω(NaOH)/100%;
msolute(NaOH) = 150× 10/100% = 15г.
Найдем количество вещества гидроксида натрия (молярная масса – 40 г/моль):
υ(NaOH) = msolute(NaOH)/ M(NaOH) = 15/40 = 0,375моль.
Согласно уравнению реакции
Тогда рассчитаем массу осадка гидроксида железа (III) (молярная масса – 107 г/моль):
Задание | Рассчитайте массовые доли каждого из элементов, входящих в состав хлорида железа (III). |
Решение | Массовая доля элемента рассчитывается следующим образом: |
т.е. отношение относительной атомной массы с учетом количества атомов, входящих в состав вещества, к молекулярной массе этого вещества, выраженное в процентах. Молекулярная масса хлорида железа (III) равна 162.
Рассчитаем массовые доли элементов:
ω(Fe) = 1×56/162 ×100% =34,27%.
ω(Cl) = 3×35,5/162 ×100% = 65,73%.
Чтобы проверить правильность расчета, путем складывания полученных массовых долей мы должны получить 100%:
ω(Fe) +ω(Cl) = 34,27 +65,73 = 100%.
Копирование материалов с сайта возможно только с разрешения
администрации портала и при наличие активной ссылки на источник.
Хлорид железа 3 и гидроксид натрия что наблюдаем
Тема. Железо и его соединения.
Реактивы: железные опилки Fe, соль Мора (NH4)2SO4·FeSO4·6H2O, раствор хлорида железа (III) FeCl3, раствор гексационоферрата (III) калия K3[Fe(CN)6], раствор гексационоферрата (II) калия K4[Fe(CN)6], раствор роданида калия KCNS, раствор соляной кислоты HCl (концентрированный и разбавленный), раствор серной кислоты H2SO4 (концентрированный и разбавленный), раствор азотной кислоты HNO3 (концентрированный и разбавленный), раствор гидроксида натрия NaOH (концентрированный и разбавленный).
Посуда и оборудование: спиртовка, держатель для пробирок, штатив для пробирок, шпатель, пробирки, стеклянная палочка.
Опыт 1. Свойства металлического железа
Испытайте действие на железо концентрированных и разбавленных кислот при обычных условиях и при нагревании.
Для этого поместите железные опилки в пробирку и прилейте несколько капель разбавленной соляной кислоты, запишите наблюдаемые явления и дайте им объяснения. Опыт повторите с разбавленными растворами серной и азотной кислот. Осторожно нагрейте те пробирки, в которых не происходит взаимодействие железа с кислотой. Отметьте наблюдения.
Повторите опыт с концентрированными растворами кислот. Запишите наблюдаемые явления, обратите внимание на цвет и запах выделяющихся газов и на цвет растворов.
1. В пробирку поместили железные опилки и прилили несколько капель разбавленной соляной кислоты.
Наблюдается выделение бесцветного газа, раствор окрашивает-ся в бледно-зеленый цвет
Fe 0 – 2e Fe 2+ восстановитель
2H + + 2e H2
Опыт 2. Гидроксид железа (II), получение и свойства
Вскипятите немного воды, охладите ее и добавьте несколько кристаллов соли Мора (NH4)2SO4·FeSO4·6H2O. В пробирку со свежеприготовленным раствором соли Мора прилейте раствор гидроксида натрия до выпадения осадка. Отметьте цвет осадка. Оставьте осадок на воздухе и наблюдайте за быстрым изменением окраски.
Запишите уравнение реакции получения гидроксида железа (II) (в уравнении учитывайте только FeSO4) в молекулярной и ионной форме и уравнение окисления гидроксида железа (II) кислородом воздуха. Сделайте вывод об устойчивости ионов двухвалентного железа.
Опыт 3. Гидроксид железа (III), получение и свойства
В пробирку поместите несколько капель раствора хлорида железа (III) и прибавьте по каплям раствор гидроксида натрия до выпадения осадка. Отметьте цвет осадка. Полученный осадок разделите на две части. К первой прилейте по каплям раствор соляной кислоты, ко второй – концентрированный раствор гидроксида натрия. Запишите наблюдаемые явления.
Запишите уравнения получения гидроксида железа (III). Приведите уравнения растворения гидроксида железа (III) в кислоте и в щелочи, сделайте вывод о кислотно-основных свойствах гидроксида железа (III).
Взаимодействие соли железа (II) с гексационоферратом (III) калия (качественная реакция на ионы Fe 2+ )
В пробирку с раствором соли Мора (NH4)2SO4·FeSO4·6H2O прилейте несколько капель раствора гексационоферрата (III) калия (красной кровяной соли). Отметьте цвет осадка. Запишите уравнение реакции, дайте название образовавшемуся соединению KFe +2 [Fe +3 (CN)6] (используйте справочную литературу).
Взаимодействие соли железа (III) с гексационоферратом (II) калия (качественная реакция на ионы Fe 3+ )
В пробирку с раствором хлорида железа (III) прилейте несколько капель раствора гексационоферрата (II) калия (желтой кровяной соли). Отметьте цвет осадка. Запишите уравнение реакции, дайте название образовавшемуся соединению KFe +3 [Fe +2 (CN)6] (используйте справочную литературу).
Взаимодействие соли железа (III) с роданидом калия (качественная реакция на ионы Fe 3+ )
В пробирку с раствором хлорида железа (III) прилейте несколько капель раствора роданида калия. Отметьте цвет раствора. Запишите уравнение реакции.
Сделайте общий вывод по работе.
Пример оформления отчета приведен в лабораторной работе №2.