Как сделать график дробной функции
Дробно-линейная функция
Разделы: Математика
Функция у = и её график.
ЦЕЛИ:
1) ввести определение функции у = ;
2) научить строить график функции у = , используя программу Agrapher;
3) сформировать умение строить эскизы графиков функции у = , используя свойства преобразования графиков функций;
4) научить читать графики функций у =.
I. Новый материал – развёрнутая беседа.
У: Рассмотрим функции, заданные формулами у = ; у =
; у =
.
Что представляют собой выражения, записанные в правых частях этих формул?
Д: Правые части этих формул имеют вид рациональной дроби, у которой числитель-двучлен первой степени или число, отличное от нуля, а знаменатель-двучлен первой степени.
У: Такие функции принято задавать формулой вида
у = (1).
Рассмотрите случаи когда а) с = 0 или в) =
.
(Если во втором случае учащиеся будут испытывать затруднения, то нужно попросить их выра зить с из заданной пропорции и затем подставить полученное выражение в формулу (1)).
Д1: Если с = 0, то у = х + в – линейная функция.
Д2: Если =
, то с =
. Подставив значение с в формулу (1) получим:
=
=
=
, то есть у =
— линейная функция.
У: Функция, которую можно задать формулой вида у =, где буквой х обозначена незави-
симая переменная, а буквами а, в, с и d – произвольные числа, причём с0 и аd – вс
0, называется дробно-линейной функцией.
Покажем, что графиком дробно-линейной функции является гипербола.
Пример 1. Построим график функции у = . Выделим из дроби
целую часть.
Имеем: =
=
= 1 +
.
График функции у = +1 можно получить из графика функции у =
с помощью двух параллельных переносов: сдвига на 2 единицы вправо вдоль оси Х и сдвига на 1 единицу вверх в направлении оси У. При этих сдвигах переместятся асимптоты гиперболы у =
: прямая х = 0 (т. е. ось У) – на 2 единицы вправо, а прямая у = 0 (т. е. ось Х) – на одну единицу вверх. Прежде чем строить график, проведём на координатной плоскости пунктиром асимптоты: прямые х = 2 и у = 1 (рис. 1а). Учитывая, что гипербола состоит из двух ветвей, для построения каждой из них составим, используя программу Agrapher, две таблицы: одну для х>2, а другую для х
х | 1 | 0 | -1 | -2 | -4 | -10 |
у | -5 | -2 | -1 | -0,5 | 0 | 0,5 |
х | 3 | 4 | 5 | 6 | 8 | 12 |
у | 7 | 4 | 3 | 2,5 | 2 | 1,6 |
Отметим (с помощью программы Agrapher) в координатной плоскости точки, координаты которых записаны в первой таблице, и соединим их плавной непрерывной линией. Получим одну ветвь гиперболы. Аналогично, воспользовавшись второй таблицей, получим вторую ветвь гиперболы (рис. 1б).
У: Что является графиком дробно-линейной функции?
Д: Графиком любой дробно-линейной функции является гипербола.
У: Как построить график дробно-линейной функции?
У: Какова область определения дробно-линейной функции?
Д: D(y) =
У: Какова область значений дробно-линейной функции?
Д: Е(у) = .
У: Есть ли у функции нули?
Д: Если х = 0, то f(0) = , d
. То есть у функции есть нули – точка А
.
У: Есть ли у графика дробно-линейной функции точки пересечения с осью Х?
У: Функция убывает на промежутках всей области определения, если bc-ad > 0 и возрастает на промежутках всей области определения, если bc-ad 0 и в которых у 0.
8. Укажите промежутки возрастания (убывания) функции.
Постройте, используя программу Agrapher, график функции и исследуйте ей свойства:
Найдите точки пересечения графиков, выполнив построение с помощью программы Agrapher.
Координаты, полученных точек, запишите в тетрадь:
Постройте, используя программу Agrapher, график функции и исследуйте ей свойства:
Найдите точки пересечения графиков, выполнив построение с помощью программы Agrapher.
Координаты, полученных точек, запишите в тетрадь:
а) у = и у = х+2; б) у =
и у = х
-2х+3.
Постройте, используя программу Agrapher, график функции и исследуйте ей свойства:
Найдите точки пересечения графиков, выполнив построение с помощью программы Agrapher.
Координаты, полученных точек, запишите в тетрадь:
1. Постройте, используя программу Agrapher, график функции и исследуйте ей свойства:
Найдите точки пересечения графиков, выполнив построение с помощью программы Agrapher.
Координаты, полученных точек, запишите в тетрадь:
Примерное содержание карточки “Результаты исследования функции» см. “Приложение 1”.
Список литературы.
Как сделать график дробной функции
Как создать собственный онлайн-ресурс за 3 недели
самоучитель для преподавателей
Психологическое тестирование
Дистанционные школы БГУ
Образовательные ресурсы факультетов |
УМС БГУ: УПРАВЛЕНИЕ МЕЖДУНАРОДНОЙ ДЕЯТЕЛЬНОСТЬЮ В УЧРЕЖДЕНИИ ВЫСШЕГО ОБРАЗОВАНИЯ
Календарь
February 2021
|
Установлены новые плагины:
Формат курса — темы кнопками, попробуйте!
Платформа для разработки и использования образовательных онлайн-ресурсов БГУ
на базе LMS MOODLE 3.6.2+ — самой новой версии.
© Белорусский государственный университет. Адрес: пр. Независимости, 4, 220030, г. Минск, Республика Беларусь
Построение графиков функций
Умение строить графики функций необходимо для решения задач с параметрами на ЕГЭ по математике. Это одна из первых тем курса математического анализа в вузе. Это настолько важная тема, что мы в ЕГЭ-Студии проводим по ней специальные интенсивы для старшеклассников и учителей, в Москве и онлайн. И часто участники говорят: «Жаль, что мы не знали этого раньше».
Но это не все. Именно с понятия функции и начинается настоящая, «взрослая» математика. Ведь сложение и вычитание, умножение и деление, дроби и пропорции — это все-таки арифметика. Преобразования выражений — это алгебра. А математика — наука не только о числах, но и о взаимосвязях величин. Язык функций и графиков понятен и физику, и биологу, и экономисту. И, как сказал Галилео Галилей, «Книга природы написана на языке математики».
Точнее, Галилео Галилей сказал так:«Математика есть алфавит, посредством которого Господь начертал Вселенную».
Темы для повторения:
1. Построим график функции
Знакомая задача! Такие встречались в вариантах ОГЭ по математике. Там они считались сложными. Но сложного ничего здесь нет.
Упростим формулу функции:
График функции — прямая с выколотой точкой
2. Построим график функции
Выделим в формуле функции целую часть:
График функции — гипербола, сдвинутая на 3 вправо по x и на 2 вверх по y и растянутая в 10 раз по сравнению с графиком функции
Выделение целой части — полезный прием, применяемый в решении неравенств, построении графиков и оценке целых величин в задачах на числа и их свойства. Он встретится вам также на первом курсе, когда придется брать интегралы.
3. Построим график функции
Он получается из графика функции растяжением в 2 раза, отражением по вертикали и сдвигом на 1 вверх по вертикали
4. Построим график функции
Главное — правильная последовательность действий. Запишем формулу функции в более удобном виде:
Действуем по порядку:
1) График функции y=sinx сдвинем на влево;
2) сожмем в 2 раза по горизонтали,
3) растянем в 3 раза по вертикали,
4) сдвинем на 1 вверх
Сейчас мы построим несколько графиков дробно-рациональных функций. Чтобы лучше понять, как мы это делаем, читайте статью «Поведение функции в бесконечности. Асимптоты».
5. Построим график функции
Область определения функции:
Промежутки знакопостоянства функции определим с помощью метода интервалов.
Прямая x = 0 (ось Y) — вертикальная асимптота функции. Асимптота — прямая, к которой бесконечно близко подходит график функции, но не пересекает ее и не сливается с ней (смотри тему «Поведение функции в бесконечности. Асимптоты»)
Есть ли другие асимптоты у нашей функции? Чтобы выяснить это, посмотрим, как ведет себя функция, когда x стремится к бесконечности.
Раскроем скобки в формуле функции:
Если x стремится к бесконечности, то стремится к нулю. Прямая является наклонной асимптотой к графику функции.
6. Построим график функции
Это дробно-рациональная функция.
Область определения функции
Нули функции: точки — 3, 2, 6.
Промежутки знакопостоянства функции определим с помощью метода интервалов.
Если x стремится к бесконечности, то у стремится к 1. Значит, — горизонтальная асимптота.
Еще один интересный прием — сложение графиков.
7. Построим график функции
Если x стремится к бесконечности, то и график функции будет бесконечно близко подходить к наклонной асимптоте
Если x стремится к нулю, то функция ведет себя как Это мы и видим на графике:
Вот мы и построили график суммы функций. Теперь график произведения!
8. Построим график функции
Область определения этой функции — положительные числа, поскольку только для положительных x определен
Значения функции равны нулю при (когда логарифм равен нулю), а также в точках, где то есть при
9. Построим график функции
Функция определена при Она четная, поскольку является произведением двух нечетных функций и График симметричен относительно оси ординат.
Нули функции — в точках, где то есть при
Оказывается, что если x стремится к нулю, то стремится к единице. В математике это утверждение носит название «Первого замечательного предела».
А как же производная? Да, наконец-то мы до нее добрались. Производная помогает более точно строить графики функций. Находить точки максимума и минимума, а также значения функции в этих точках.
10. Построим график функции
Область определения функции — все действительные числа, поскольку
Функция нечетна. Ее график симметричен относительно начала координат.
При x=0 значение функции равно нулю. При значения функции положительны, при отрицательны.
Если x стремится к бесконечности, то стремится к нулю.
Найдем производную функции
По формуле производной частного,
В точке производная меняет знак с «минуса» на «плюс», — точка минимума функции.
В точке производная меняет знак с «плюса» на «минус», — точка максимума функции.
Найдем значения функции при x=2 и при x=-2.
Графики функций удобно строить по определенному алгоритму, или схеме. Помните, вы изучали ее в школе?
Общая схема построения графика функции:
1. Область определения функции
2. Область значений функции
3. Четность — нечетность (если есть)
4. Периодичность (если есть)
5. Нули функции (точки, в которых график пересекает оси координат)
6. Промежутки знакопостоянства функции (то есть промежутки, на которых она строго положительна или строго отрицательна).
7. Асимптоты (если есть).
8. Поведение функции в бесконечности
9. Производная функции
10. Промежутки возрастания и убывания. Точки максимума и минимума и значения в этих точках.
Построение графиков функций
Понятие функции
Функция — это зависимость y от x, где x является переменной или аргументом функции, а y — зависимой переменной или значением функции.
Задать функцию значит определить правило, в соответствии с которым по значениям независимой переменной можно найти соответствующие ее значения. Вот, какими способами ее можно задать:
Область определения — множество х, то есть область допустимых значений выражения, которое записано в формуле.
Например, для функции вида область определения выглядит так
Область значений — множество у, то есть это значения, которые может принимать функция.
Например, естественная область значений функции y = x² — это все числа больше либо равные нулю. Можно записать вот так: Е (у): у ≥ 0.
Чтобы ребенок разобрался в теории и чувствовал себя увереннее на школьных контрольных, запишите его на современные уроки математики в онлайн-школу Skysmart.
Интерактивные задания, математические комиксы и карта прогресса в личном кабинете — математика еще никогда не была таким увлекательным приключением!
Понятие графика функции
Графиком функции y = f(x) называется множество точек (x; y), координаты которых связаны соотношением y = f(x). Само равенство y = f(x) называется уравнением данного графика.
График функции — это множество точек (x; y), где x — это аргумент, а y — значение функции, которое соответствует данному аргументу.
Проще говоря, график функции показывает множество всех точек, координаты которых можно найти, просто подставив в функцию любые числа вместо x.
Для примера возьмём самую простую функцию, в которой аргумент равен значению функции, то есть y = x.
В этом случае нам не придётся вычислять для каждого аргумента значение функции, так как они равны, поэтому у всех точек нашего графика абсцисса будет равна ординате.
Если мы последовательно от наименьшего значения аргумента к большему соединим отмеченные точки, то у нас получится прямая линия. Значит графиком функции y = x является прямая. На графике это выглядит так:
Надпись на чертеже y = x — это уравнение графика. Ставить надпись с уравнением на чертеже удобно, чтобы не запутаться в решении задач.
Важно отметить, что прямая линия бесконечна в обе стороны. Хоть мы и называем часть прямой графиком функции, на самом деле на чертеже изображена только малая часть графика.
Исследование функции
Важные точки графика функции y = f(x):
Стационарные точки — точки, в которых производная функции f(x) равна нулю.
Критические точки — точки, в которых производная функции f(x) равна нулю либо не существует. Стационарные точки являются подмножеством множества критических точек.
Экстремум в математике — максимальное или минимальное значение функции на заданном множестве. Точка, в которой достигается экстремум, называется точкой экстремума. Соответственно, если достигается минимум — точка экстремума называется точкой минимума, а если максимум — точкой максимума.
Нули функции — это значения аргумента, при которых функция равна нулю.
Асимптота — прямая, которая обладает таким свойством, что расстояние от точки графика функции до этой прямой стремится к нулю при неограниченном удалении точки графика от начала координат. По способам их отыскания выделяют три вида асимптот: вертикальные, горизонтальные, наклонные.
Функция непрерывна в точке k, если предел функции в данной точке равен значению функции в этой точке:
Если функция f(x) не является непрерывной в точке x = a, то говорят, что f(x) имеет разрыв в этой точке.
Если нам нужно построить график незнакомой функции, когда заранее невозможно представить вид графика, полезно применять схему исследования свойств функции. Она поможет составить представление о графике и приступить к построению по точкам.
Схема построения графика функции:
У нас есть отличные онлайн занятия по математике для учеников с 1 по 11 классы! Приходи на пробное занятие с нашими лучшими преподавателями!
Построение графика функции
Чтобы понять, как строить графики функций, потренируемся на примерах.
Задача 1. Построим график функции
Упростим формулу функции:
Задача 2. Построим график функции
Выделим в формуле функции целую часть:
График функции — гипербола, сдвинутая на 3 вправо по x и на 2 вверх по y и растянутая в 10 раз по сравнению с графиком функции
Выделение целой части — полезный прием, который применяется в решении неравенств, построении графиков и оценке целых величин.
Задача 3. По виду графика определить знаки коэффициентов общего вида функции y = ax2 + bx + c.
Вспомним, как параметры a, b и c определяют положение параболы.
Ветви вниз, следовательно, a 0.
Точка пересечения с осью Oy — c = 0.
Координата вершины , т.к. неизвестное число при делении на положительное дает отрицательный результат, то это число отрицательное, следовательно, b > 0.
Ветви вниз, следовательно, a 0.
Координата вершины , т.к. неизвестное число при делении на отрицательное дает в результате положительное, то это число отрицательное, следовательно, b
x | y |
0 | -1 |
1 | 2 |
x | y |
0 | 2 |
1 | 1 |
x | y |
0 | 0 |
1 | 2 |
k = 2 > 0 — угол наклона к оси Ox острый, B = 0 — график проходит через начало координат.
Задача 5. Построить график функции
Это дробно-рациональная функция. Область определения функции D(y): x ≠ 4; x ≠ 0.
Нули функции: 3, 2, 6.
Промежутки знакопостоянства функции определим с помощью метода интервалов.
Вертикальные асимптоты: x = 0, x = 4.
Если x стремится к бесконечности, то у стремится к 1. Значит, y = 1 — горизонтальная асимптота.
Вот так выглядит график:
Задача 6. Построить графики функций:
б)
г)
д)
Когда сложная функция получена из простейшей через несколько преобразований, то преобразования графиков можно выполнить в порядке арифметических действий с аргументом.
а)
Преобразование в одно действие типа f(x) + a.
Сдвигаем график вверх на 1:
б)
Сдвигаем график вправо на 1:
Сдвигаем график вправо на 1:
Сдвигаем график вверх на 2:
г)
Преобразование в одно действие типа
Растягиваем график в 2 раза от оси ординат вдоль оси абсцисс:
д)
Чтобы выполнить преобразования, посмотрим на порядок действий: сначала умножаем, затем складываем, а уже потом меняем знак. Чтобы применить умножение ко всему аргументу модуля в целом, вынесем двойку за скобки в модуле.
Сжимаем график в два раза вдоль оси абсцисс:
Сдвигаем график влево на 1/2 вдоль оси абсцисс:
Отражаем график симметрично относительно оси абсцисс:
В детской школе Skysmart учиники чертят графики на специальной онлайн-доске. Учитель видит, как размышляет ученик и может вовремя его направить в нужную сторону.
Запишитесь на бесплатный вводный урок математики и занимайтесь в современном формате и с поддержкой заботливых учителей.