Как сделать злой атмосферный двигатель
Происхождение лошадок: как правильно форсировать атмосферный мотор
Сколько в вашем моторе сил? А какой у него рабочий объем? Если бы все автовладельцы России честно ответили на вопрос, то получилось бы в среднем что-то около 1,6-1,8 литра рабочего объема и 110-120 лошадиных сил. И почти каждый, у кого мощность примерно «средняя», мечтает ее увеличить до… А тут сколько хватает куража и фантазии. Вот в Формуле 1 с такого же объема «снимают» минимум 600 л. с., а Mercedes в прошедшем сезоне говорил об отдаче гибридной силовой установки в 900 л. с. Сколько из них приходится на сам ДВС, не сообщается, но вряд ли меньше 750. А чем вообще отличается форсированный мотор от «обычного», что позволяет ему быть настолько мощнее? В этой части сфокусируемся на атмосферных моторах.
Два слова о мощности
В таком вопросе нельзя без щепотки теории, поэтому позвольте пару слов о природе мощности, чтобы смысл всяких «железных» доработок был понятнее. Подробно на этом вопросе я останавливался в одном из прошлых материалов, а тут лишь обозначу коротко по сути. Мощность для любого двигателя внутреннего сгорания может быть выражена как крутящий момент, умноженный на обороты, с коэффициентом.
Не волнуйтесь, на выходе это все та же работа в единицу времени, просто так куда удобнее оперировать цифрами из технических характеристик машины.
Поэтому очевидно: для увеличения мощности нужно увеличивать крутящий момент и обороты. Ну или один из этих параметров.
На словах задача выглядит просто. Казалось бы, какая разница, 5 тысяч оборотов или 8? На практике зависимость нагрузок на цилиндропоршневую группу от оборотов – квадратичная. Если по-простому, то безоглядно поднимать рабочие обороты нельзя – мотор быстро получит необратимые механические повреждения. Поэтому нужно либо «затачивать» мотор под высокие обороты, либо все-таки идти путем увеличения крутящего момента.
На фото: Koenigsegg Regera, мощность: 1 100 л.с., максимальный крутящий момент: 1 280 Н*м при 4 100 об/мин
Чуть о природе крутящего момента
С ним тоже не так все просто. При поднятии момента нагрузка на поршневую группу растет уже не квадратично, а линейно, но увеличивается нагрузка иначе. Сильнее нагружаются коленчатый вал, шатуны, поршневые пальцы и сам блок цилиндров.
Ну хорошо, будем увеличивать момент осторожно. А что для этого надо сделать? «Вогнать» в мотор больше воздуха для окисления большего количества топлива. Как известно, для сжигания одного килограмма бензина нужно 14,7-15 килограммов воздуха. В пересчете на литры это выглядит куда внушительнее: 1,4 литра бензина против 12 кубометров, или же 12 тысяч литров воздуха. Поэтому-то, как вы понимаете, не так сложно подать в мотор нужное количество бензина, как обеспечить его воздухом.
Поэтому крутящий момент будет зависеть от количества воздуха, подаваемого в цилиндр за такт, а мощность – от того, сколько мотор может переварить в единицу времени.
Выводы напрашиваются сами собой: для форсировки нужно либо увеличивать рабочий объем, либо применить наддув!
Крутящий момент и объем
Так уж получилось, что в отношении почти любого атмосферного двигателя действует эмпирическое правило: 85-100 ньютон-метров приходятся на 1 литр рабочего объема. Моторчик объемом 1,6 литра будет иметь 140-160 Нм, двухлитровый – 180-200. Это фактический предел.
Правило это довольно универсальное и применимое к моторам как давним, так и совсем новым. Мощным и совсем слабеньким. Разве что совсем старые моторы отклоняются от него. Вот МеМЗ-968, мотор от Запорожца, его рабочий объем 1,2 литра, момент – 80 Нм. Но при этом ВАЗ-2101 – те же 1,2 литра, но уже 87 Нм. И это старые карбюраторные двигатели с совершенно ужасными по современным меркам характеристиками системы питания и зажигания!
У современного моторчика Skoda Fabia 1,2 выдает уже 112 Нм. Тойотовский 1ZZ-FE на 1,8 литра объема выдает 171 Нм, а куда более мощный 2ZZ-GE – всего 180 Нм. Мерседесовский М111 2,3 литра выдает 220 Нм, а куда более новый и мощный М272 3,0 – ровно 300 Нм. Экстремально форсированный Honda K20A 2,0 имеет момент 215 Нм – чуть лучше «среднего». Ну и так далее.
Кстати, даже формульные атмосферные моторы 2,4 имели момент в пределах 260 Нм. При оборотах за 18 тысяч этого хватало для получения очень высокой мощности.
Причина столь малого разброса в «форсировании по моменту» именно в том, что он зависит от степени наполнения, площади поршня и хода поршня. Степень наполнения ограничена атмосферным давлением и еще немного можно выжать за счет хорошо проработанной системы впуска. Поэтому сильно поднять крутящий момент без увеличения рабочего объема не только нельзя, этого попросту не нужно.
Вот моторы с турбонаддувом делают, что хотят. Хотите 250 Нм с мотора 1,4? Пожалуйста, двигатель 1,4 TSI EA111 на Skoda Octavia это может. На Fabia RS тот же мотор мощнее, но момент такой же. А на Мерседесах мотор M274 2,0 DE20 AL может иметь как 350 Нм, так и 370. В общем, любые варианты возможны. Турбина наддует столько, сколько выдержит механическая часть мотора.
На фото: двигатель M274, мощность: 245 л.с., крутящий момент: 370 Н*м при 1 300-4 000 об/мин
Главный вывод, который нужно сделать: без наддува нет момента. Даже самые серьезные изменения дадут лишь небольшой прирост. И то в основном на высоких оборотах.
Про форсировку турбомоторов я подробно расскажу в следующей статье. Но если вы противник турбин и все же решились «допилить» свой атмосферный мотор, двинемся дальше. Что такого происходит с мотором, что с атмосферного 1,6 какой-нибудь Fiesta получают 180-220 лошадиных сил без всякого наддува, а мощность скромных двухлитровых с турбонаддувом переваливает за 400 или даже 800 сил? И что придется поменять в вашем совершенно обычном двигателе, чтобы он выдавал хотя бы 180-200 «лошадей»? Глобально вроде бы все понятно: либо «дуть» во имя момента, либо «крутить» во имя оборотов. А что придется менять в конструкции для достижения фантастических результатов?
Работы по «железу»
Даже если мотор остается атмосферным, хлопот немало. Увеличение рабочих оборотов – дело сложное и затратное. В первую очередь заботятся о том, чтобы поршневая группа вообще выдержала нагрузки. Улучшения идут в двух направлениях: увеличивают прочность и вместе с тем снижают массу поршневой группы.
Нам необходимы: кованый коленчатый вал, кованые Н-образные шатуны, Т-образные поршни пониженной высоты, особо прочные болты шатунов. Ну а более производительный маслонасос позволит снизить потери и обеспечить приемлемую прочность. У особенно форсированных двигателей для гонок поршень может остаться всего с двумя поршневыми кольцами для снижения массы, а для снижения потерь на трение их делают минимальной толщины.
Если в ваших планах – обороты свыше 10 тысяч в минуту, шатуны придется делать из титановых сплавов, хотя это не самый лучший материал для деталей двигателя. Несмотря на высокую прочность, его сплавы слишком пластичны, а в ДВС точность изготовления идет на микроны. Очень высокая нагрузка приходится на нижнюю головку шатуна, и потому требования к их шпилькам или болтам очень высоки, и тюнинговые детали стоят крайне дорого именно по этой причине.
Конечно, новой поршневой группой изменения не ограничиваются. Требования к механизму ГРМ тоже растут. С ростом оборотов должна возрастать упругость клапанных пружин, чтобы они успевали возвращать тарелки в закрытое положение. Тут нужно снижать массу клапанов, а заодно и их возможности по теплоотдаче. К тому же с более агрессивными распределительными валами скорость открытия и закрытия клапанов увеличивается, и растет нагрузка на все компоненты механизма. В общем, клапаны обычно заменяют на облегченные и особо прочные. Титановые детали изредка применяют и тут, но чаще в ход идут высокопрочная сталь и металлокерамика.
Ну а дальше вопрос в настройке резонансных явлений на впуске и выпуске мотора с помощью впускного коллектора, выпуска и распредвалов. Разумеется, расширяют «узкие места» в виде дросселя, а то и переходят на многодроссельный впуск, с отдельной заслонкой для каждого цилиндра.
Если действовать по уму, то оптимизации обычно требует также форма каналов в ГБЦ и остальных местах впускного тракта. Для этого мотор «продувают» и ищут точки потери давления – места с повышенным сопротивлением течению воздуха. Процессы доработки впуска на практике ничуть не проще доработки поршневой группы мотора, а при «легком» тюнинге и вовсе съедают основную долю бюджета доработок.
Вот, например, мотор Opel C20XE. Двигатель дорабатывался специалистами Lotus и является типичным примером «двигателя для омологации» – мотора, изначально подготовленного к переделкам самим производителем. Не зря его использовали в WTCC команды Opel, а затем Chevrolet и Lada добрых полтора десятка лет. Его конструкция неплохо переносит форсирование, и потому список необходимых изменений выглядит достаточно скромным.
С мотором изначально менее «прочным» бюджет был бы выше, причем в разы. Стоковый C20XE имеет объем 2,0 литра и мощность 150 л. с. Английские компании набрали большой опыт по подготовке этого двигателя к различным гонкам и существуют так называемые «киты», которые можно купить и установить на свой мотор. Разумеется, двигатель должен быть идеально собран и не иметь значительного износа. Для примера воспользуемся продуктами компании Qedmotorsport.
Любой комплект доработок включает в себя впускной коллектор с индивидуальными дросселями на каждый цилиндр диаметром 45 мм, новый регулятор давления топлива, топливную рампу, новую систему управления двигателем (ECU), двухступенчатый ограничитель максимальных оборотов и поставляется в сборе с комплектом проводки. Система омологирована для применения в автоспорте.
Минимальный уровень доработок гарантирует мощность 190-200 л. с. при установке распределительных валов с большой высотой кулачков и более крепких болтов шатунов. Цена такого комплекта – 1 800 фунтов. Небюджетно, зато все рассчитано не в гараже на коленке, а профессионалами.
Хотите больше? Набор доработок C20XE до 210 л. с. включает в себя замену поршней для работы на более высоких оборотах, разрезные шестерни ГРМ для тонкой настройки фаз и еще более «агрессивные» распределительные валы. Цена такого комплекта уже 2 300 фунтов.
Для получения еще 10 л.с. сверху, с пределом мощности 215-220 л.с., комплект получает новые распредвалы, предназначенные для работы без гидрокомпенсаторов, новые толкатели, новые клапанные пружины. Цена такого комплекта уже 2 550 фунтов.
Топовый комплект, с максимальной мощностью до 245 л.с., включает в себя тот же набор, что и предыдущий, но настроенный на более высокие обороты и нагрузку. Цена – 2 750 фунтов. Готовый же двигатель с сертификатом стенда на 240-260 л.с. имеет цену порядка 3 500-5 000 фунтов, в зависимости от производителя.
Максимальный уровень мощности, который имели заводские гоночные команды с таким мотором, – порядка 280-320 лошадиных сил при неограниченном бюджете.
Другой пример – очень популярный на раллийных Fiesta и Focus мотор 2,0 Duratec. Те же 2 литра и 150 л.с., но более современная конструкция. Для примера возьмем английские доработки Omex Technology Systems.
Мотор с комплектом доработок до мощности в 180 л.с. стоит 5 995 фунтов без учета налога с продаж. В комплект входит новый впускной коллектор с индивидуальными впускными патрубками и дроссельными заслонками, система управления, «злые» распределительные валы, усиленные болты шатунов и выпускная система. Максимальные обороты – 7 800 в минуту, максимальная мощность достигается при 6 500.
Мотор с комплектом доработок до 200 л. с. включает в себя уже доработки ГБЦ и камер сгорания. Цена такого мотора – 6 895 фунтов без учета налогов. Максимальная мощность достигается при 7 000 оборотов.
Максимальный уровень доработки до мощности 260 сил – это кованые поршни для высочайших нагрузок, Н-образные кованые шатуны, более эластичные пружины клапанов и комплект облегчения ГРМ, более производительные форсунки и другие доработки. Максимальные обороты 8 700, максимальная мощность при 8 500 оборотах. Цена такого двигателя уже 11 595 фунтов.
В общем, как видите, правильный «атмосферный тюнинг» – это довольно дорого, сложно, а отдача на выходе не то чтобы ошеломляющая.
Эффект
Даже при небольшом увеличении максимальных оборотов можно существенно прибавить в мощности, если уменьшить падение крутящего момента или даже чуть увеличить его на максимальной скорости вращения.
При сохранении величины крутящего момента за счет его переноса в зону более высоких оборотов можно получить рост мощности на 30-40%. Фактически именно перестройка впуска является залогом высокой мощности атмосферного двигателя, а ограничением здесь выступают возможности поршневой группы.
Предел конструкции
Чем выше степень форсирования атмосферного мотора, тем больше усилий нужно прилагать. Обороты до 7 тысяч не требуют особых усилий, если максимум стокового мотора был на уровне 6 тысяч.
Каждая тысяча оборотов сверх дается дорогой ценой. Все элементы должны становиться легче и прочнее, а это не просто сложно, а очень сложно сочетать. Уже 10 тысяч оборотов для стандартной поршневой группы типичного «квадратного» мотора – недостижимая мечта. Большая часть сильно форсированных двигателей ограничивается оборотами 8 500-9 000 в минуту. Конструкции с особо коротким ходом поршня могут попытаться получить и более высокие обороты. Скажем, малоразмерные мотоциклетные моторы вполне неплохо себя чувствуют на оборотах за 13 тысяч, но форсировать до такой степени «гражданский» автомобильный мотор нереально.
Все ухищрения бесполезны, потери в поршневой группе возрастают слишком быстро. И даже серьезные переделки механизма ГРМ для повышения КПД уже не помогут, хотя для мотоциклетных и гоночных короткоходных есть еще пути. Скажем, есть такая штука как десмодромный клапанный механизм, где не используются пружины – они выдерживают экстремально высокие обороты. Но это дорого и неоправданно – сейчас такой механизм используют только на мотоциклах Ducati, и в основном ради имиджа. А на машинах формулы использовали «пневмопружины» клапанов, позволяющие «играть» упругостью в широких пределах.
Словом, еще раз повторю уже сказанное выше. Серьезно поднять мощность мотора без применения того или иного наддува невозможно. О «наддувном тюнинге» я расскажу во второй части рассказа о форсировке.
Разбудить ураган: как правильно форсировать турбомотор
Мы продолжаем серию публикаций про увеличение мощности моторов. В прошлой части мы прошлись по теории и поняли, что именно влияет на итоговые показатели в лошадиных силах, а также рассмотрели случаи тюнинга атмосферных моторов. Теперь разберемся с наддувными, ведь правильный тюнинг турбомоторов может дать прирост в районе 50% мощности и более.
Как турбомоторы победили атмосферники
Т юнинг атмосферников долгое время был крайне востребованным, ведь в автоспорте наддув был под запретом, как «читерский» способ увеличения мощности, к тому же слабо применимый к гражданским машинам. Но все поменялось к концу 90-х годов. Турбонаддувные моторы прочно прописались сначала под капотами премиальных и спортивных машин, а затем, после введения моды на тотальный даунсайз, и под капотами малолитражек.
Сейчас в Европе атмосферные моторы – просто исчезающий класс. Более того, моторов объемом больше 1,6 литра на машинах до D- класса включительно попросту больше нет. Турбонаддув стал массовым явлением, к которому волей-неволей приобщаются все покупатели европейских машин. Конечно, можно купить японский. Но стоит ли? Ведь и в обычной эксплуатации «турбосилы» проявляют себя хорошо, а уж при тюнинге.
Будем честными. Затраты на тюнинг атмосферных моторов не оправдывают себя, значительные вложения приводят к росту мощности, но вместе с тем внешняя характеристика мотора – ВСХ – становится крайне неудобной для передвижения, ведь мотор придется ожесточенно «крутить».
Неудивительно, что сейчас большую часть высокофорсированных моторов предпочитают наддувать. Тюнинг атмосферных двигателей остается лишь там, где турбонаддув все еще запрещен – например, в некоторых дисциплинах автоспорта. Если же ограничений нет, то преимущество у этого метода подавляющее.
Общий смысл турботюнинга
Если мотор форсируется наддувом, то мы наращиваем мощность за счет массы воздуха и, как следствие, крутящего момента. Вы наверняка уже знаете, что мощность – это расчетный показатель, который зависит от момента и скорости вращения коленвала, а значит без труда сделаете вывод: если есть момент, то обороты можно особо не наращивать. Стало быть – облегченная поршневая группа, как у атмосферников, нам тут ни к чему.
И даже если высокие обороты нужны, то… нужно просто усилить конструкцию – за счет снижения КПД высокие обороты все равно достижимы, и этот путь форсирования не закрывается. Поскольку нагрузка на наддувный мотор больше, то конструкцию максимально усиливают, ведь она должна передавать больший крутящий момент.
Значит, нам понадобятся усиленные стальные шатуны, хорошо противостоящие детонационным ударам, а также усиленные поршневые пальцы и кованые поршни, способные выдержать большой тепловой поток и нагрузки.
При высокой нагрузке требуется хорошее охлаждение, поэтому пригодятся более толстые поршневые кольца, толстое же днище поршня, более высокий жаровый пояс, усиливающие вставки, более мощные маслофорсунки.
Клапаны, особенно выпускные – особо жаростойкие, с натриевым наполнителем и никакого титана – он при таких нагрузках точно «потечет». Максимум специальная металлокерамика в гоночных конструкциях – она лучше металла держит температуру и выдерживает высокие механические нагрузки.
Даже сам блок цилиндров часто требует усиления, особенно в нижней своей части, которая непосредственно воспринимает нагрузку от коленчатого вала и коробки передач. Особая роль у коленчатого вала. Он должен выдержать все: и высокую нагрузку, и горячее масло, и деформации блока под нагрузкой, а значит его придется сделать с очень большим запасом прочности.
Казалось бы, это все достаточно сложно, много элементов требуют усиления – куда больше, чем при форсировании мотора по оборотам. Но поскольку нагрузка на поршневую группу при увеличении оборотов растет квадратично, а при увеличении наддува – линейно, и лишь поршням достается сильнее, то игра стоит свеч. Это банально проще выполнить. Да и турбированный мотор «в стоке» часто имеет уже оптимизированную по этим параметрам конструкцию, при дальнейшем форсировании доработки потребуются лишь при очень значительном повышении мощности. Не зря столь популярен и эффективен чип-тюнинг.
Ладно, железо мы доработали. А что со впуском? Помимо общего улучшения продувки его конструкцию почти не усложняют. Резонансные явления играют свою роль, но при работе «в бусте» особой роли не имеют. Тонкая проработка требуется или для получения максимальной экономичности, или для реализации максимальной мощности при наличии ограничений на степень наддува или применяемые типы турбин.
За степень наполнения отвечает в основном турбокомпрессор и согласование его характеристик с двигателем, а также точность настройки на всех режимах работы двигателя. Вот впускные каналы прорабатывают тщательно: закрутить нужный «вихрь» в камере куда важнее лучшего наполнения. Ведь это обеспечит лучшее сгорание, меньшую детонацию, высокую степень сжатия и наддув. А значит будет выше и мощность. Потерями на всасывание можно пренебречь – турбина наддует.
Кстати, столь популярный в атмосферном тюнинге «портинг» ГБЦ на турбомоторе должен выполняться с большой осторожностью именно потому, что заводская конфигурация впуска эти нюансы учитывает. А сделав каналы шире, можно убрать столь необходимое закручивание потока на каких-то режимах работы или же изменить соотношение между вертикальными и горизонтальными вихрями. В итоге при настройке мощность будет меньше, чем была бы без подобной доработки.
Короче, за тюнинг турбомотора нужно браться только в том случае, если вы действительно специалист. Дилетанты и недоучившиеся автомеханики могут запороть мотор, не добившись существенного эффекта.
Детали, которые мы поменяем
Если вы собираетесь поднимать мощность на 30-50%, то помимо чип-тюнинга вам понадобятся новая турбина для наполнения на высоких оборотах, хороший интеркулер и доработка топливной системы. Железо мотора рассчитано обычно с запасом, его можно не трогать.
А вот если вы задумали поднять отдачу вдвое или даже больше, то без замены блока цилиндров, шатунов и коленвала вряд ли обойтись. Все будет больше похоже на постепенное замещение почти всех деталей мотора на более крепкие.
Но что, если вы ожидаете прирост от 50 до 80%? Тогда все не так страшно, но с железками повозиться придется. Про коленвал уже сказано было – он нужен усиленный, с лучшим охлаждением.
Специально подготовленный блок цилиндров может иметь увеличенную жесткость за счет большей высоты стенок. Тут будут более толстые бугели крепления коленвала, более прочная резьба в блоке цилиндров.
Головка блока цилиндров дорабатывается не менее тщательно. Убираются все компромиссные элементы серийного изготовления, каналы впуска и выпуска растачиваются для получения оптимальной пропускной способности и степени завихрения. Оптимизируется течение жидкости в ГБЦ, направляющие и седла клапанов изготавливают из усиленных материалов с более высокой точностью и индивидуально проверяют.
При повышении давления и температуры в камере сгорания нагрузка на прокладку ГБЦ растет многократно. Прокладку, соответственно, нужно применять цельнометаллическую. И очень прочно ее закреплять. Плотность газового стыка можно обеспечить только перейдя на шпильки – они более прочно держатся в блоке цилиндров, меньше деформируя резьбу при затяжке. Еще для улучшения газового стыка с ГБЦ делают канавки под одноразовые медные уплотнительные кольца или буртик на гильзе для надежной фиксации цельностальной прокладки.
Шатуны тоже обзаводятся шпильками, если вдруг ранее использовалась конструкция с болтами. Логика такая же, как с крепежом ГБЦ: меньшая деформация при затяжке и лучшая работа резьбы при высокой нагрузке.
Полный список доработок даже у изначально турбированного двигателя может оказаться куда больше, ведь максимальная мощность бывает более 1 000 сил при изначальных 200, а ресурс мотора определяется по самому слабому звену.
Фактически, при высокой степени форсирования количество элементов, оставшихся без доработки, стремится к нулю.
Естественно, качество работы по установке и подготовке элементов должно быть максимально высоким, поэтому серьезный тюнинг – дело крайне затратное. Сложные сплавы и высокая точность мехобработки, точный расчет деталей вряд ли когда-нибудь упадут в цене.
Примеры
Впрочем, не будем тратить слова – обратимся к кейсам. Сколько стоит качественный атмосферный тюнинг, вы уже знаете. Теперь поищем удачные варианты для моторов с турбонаддувом. Примеров опять же будет два: с весьма популярным вариантом доработки фольксвагеновского EA 888 и куда менее популярным, но не менее интересным мотором от «классиков наддувного жанра» Saab.
Поскольку мотор шведский, то и тюнинг на него пусть будет шведский. Например, от MapTun Performance.
Получить на этом моторе 225 лошадиных сил не стоит почти ничего. Это чистый чип-тюнинг, мотор в исполнении BioPower это позволяет. Всего 447 евро – и сертификат ваш. Гарантия и разрешение на движение по дорогам с таким мотором – тоже. Итог – 225 л. с. и 340 Нм момента. Максимум, на что вам придется потратиться, это на новые, более «холодные» свечи, но это расходники, так что в счет их не включаем.
А вот 240 лошадиных сил уже даются сложнее, некоторые комплекты чип-тюнинга доходят и до этой планки, но MapTun рекомендует уже с «кит» за 688 евро, который включает в себя новые форсунки производительностью 630 «кубиков» в минуту, комплект для их установки и новые свечи. Собственно, все. На выходе уже 240 л. с. и 360 Нм на топливе Е85 и 225 л. с и 340 Нм на обычном АИ-98.
Настоящий тюнинг начинается с планки 245-250 л. с. Если в вашем распоряжении нет чудесного топлива Е85, не расстраивайтесь. Всего за 1 002 евро вы можете получить 245 л. с. и 365 Нм на АИ-98. Комплект дополнительно включает в себя новую систему выпуска после катализатора и новый турбокомпрессор Mitsubishi TD 04-15.
Следующий лимит, 270 л. с., дополнительно включает в себя уже спортивный воздушный фильтр, полностью новую выхлопную систему и небольшую доработку впуска. Стоить это будет уже 2 364 евро.
Обратите внимание, блок и ГБЦ остались фактически неизменными, а исходные 150 сил кажутся смехотворными. Да, «турботюнинг» – он такой.
Посмотрим, какие цифры обещают для двухлитрового мотора на Audi A 4 В7, который в стандарте выдает уже 211 л. с. и 349 Нм.
Первая стадия, или Stage 1 – это именно чип-тюнинг. В зависимости от состояния двигателя и топлива обещают сразу…257-286 л. с. и 430-471 Нм. Большой разброс обусловлен широкой адаптацией прошивки к условиям эксплуатации и наличием пресетов под высокооктановый бензин, до 104-го включительно. По возможностям это топливо сравнимо с европейским Е85. Цена такого решения – скромные 399 евро.
Stage 2 – это уже от тех же 257 л. с. до 300 л. с. Цена софта – 499 евро, плюс еще 245 евро за выпускную систему и 193 евро за комплект тюнинга впуска. Итоговая минимальная цена комплекта уже 937 евро, но работа индивидуальна, да и количество модификаций двигателей довольно велико, так что возможны дополнительные затраты. Скорее всего, будет рекомендовано заменить интеркулер и ТНВД двигателя. В сумме до тысячи евро.
Stage 3 включает в себя еще апгрейд топливной системы и турбины. Обновление программного обеспечения обойдется уже в 799 евро, но к ним придется добавить еще затраты на новую турбину К04 за 1 683 евро и 351 евро на новый топливный насос. Результат – примерно 350 л. с. и 470 Нм момента. И не забывайте об обязательном новом интеркулере, это порядка 1 000 евро. Минимальная стоимость такого комплекта получится 3 833 евро, не считая дополнительных непредвиденных расходов.
Что в итоге?
Как можно убедиться, турботюнинг, особенно до мощности порядка 300 л. с., практически на порядок дешевле атмосферного при сохранении «гражданских» характеристик двигателя. А дальнейшее повышение мощности пусть и стоит дорого, но все еще сильно дешевле аналогичного для атмомотора. При этом двигатель остается « road legal » – со всеми катализаторами и системами экологического мониторинга, что крайне важно для обычных серийных машин. Мне кажется, цифры достаточно убедительно объясняют, почему тюнинг атмосферных моторов ныне непопулярное дело.