Площадь поперечной проекции автомобиля

Аэродинамическое сопротивление автомобиля

В процессе проектирования и создания конструкторами очень тщательно прорабатывается аэродинамика автомобиля, поскольку она оказывает значительное влияние на технические показатели модели.

При движении автомобиля большая часть мощности силовой установки уходит на преодоление сопротивления, создаваемого воздухом. И правильно созданная аэродинамика автомобиля позволяет уменьшить это сопротивление, а значит на борьбу с противодействием находящего воздушного потока потребуется затратить меньше мощности, и соответственно – топлива.

Измерение аэродинамики автомобиля проводится для изучения сил, создаваемых воздушным потоком и воздействующих на транспортное средство. И таких сил несколько – подъемные и боковые, а также лобовое сопротивление.

Лобовое сопротивление и коэффициент Сх

По большей части все работы с кузовом авто направлены на преодоление лобового сопротивления, поскольку именно эта сила самая значительная.

Площадь поперечной проекции автомобиля. Смотреть фото Площадь поперечной проекции автомобиля. Смотреть картинку Площадь поперечной проекции автомобиля. Картинка про Площадь поперечной проекции автомобиля. Фото Площадь поперечной проекции автомобиля

Движение потоков воздуха

За основу при расчетах берется сила сопротивления воздуха. Для вычисления результата используются такие данные как плотность воздуха, площадь поперечной проекции авто, коэффициент аэродинамического сопротивления (Сх) — это важнейший показатель в аэродинамике автомобиля. При этом на силу сопротивления в значительной мере влияет также скорость движения. Так, увеличение скорости вдвое будет сопровождаться повышением сопротивлением в 4 раза. Скорость один из мощных факторов увеличения расхода.

Например, для хорошо обтекаемого авто с площадью проекции 2 м 2 и коэффициентом 0,3 при движении на скорости 60 км/ч для преодоления сопротивления воздуха необходимо 2,4 л.с., а при скорости 120 км/ч уже 19,1 л.с. Разница расхода топлива при таких условиях достигает 30% на 100 км.

Если вам, в данный момент, требуется максимальная экономия топлива, необходимо придерживаться постоянной скорости около 60 км/ч. В этом режиме движения расход будет минимальным даже у авто с большим Cx.

Рассмотрим все по-простому. У воздуха есть своя плотность, причем немалая. При движении автомобилю приходится проходить через имеющиеся воздушные массы, при этом создается поток, который обтекает кузов. И чем легче авто будет «резать» воздушную массу, тем меньше он затратит на это энергии.

Но не все так просто. Во время движения перед авто создается область увеличенного давления (машина сжимает воздушную массу), то есть спереди образуется такой себе невидимый барьер, осложняющий «разрезание» воздушной массы.

Также после обтекания кузова происходит отрыв воздушного потока от поверхности, что становиться причиной появления завихрений и разрежения за авто. В сочетании с повышенным давлением возникающее разрежение еще больше увеличивает сопротивление.

Поскольку повлиять на плотность воздуха невозможно, то конструкторам остается только вносить коррективы в две другие расчетные составляющие – площадь авто и коэффициент аэродинамического сопротивления.

Но уменьшить проекцию авто не представляется особо возможным без ущерба для полезных пространств кузова (просто невозможно сделать авто меньше, чем он есть), поэтому остается только изменение коэффициента Сх.

Этот коэффициент устанавливается экспериментальным путем (в аэродинамической трубе) и характеризует он соотношение лобового сопротивления к скоростному напору и площади поперечного сечения кузова. Величина его безразмерная.

Площадь поперечной проекции автомобиля. Смотреть фото Площадь поперечной проекции автомобиля. Смотреть картинку Площадь поперечной проекции автомобиля. Картинка про Площадь поперечной проекции автомобиля. Фото Площадь поперечной проекции автомобиля

Наименьший коэффициент аэродинамического сопротивления имеет каплевидное тело. При движении в воздушной массе такое тело плавно перед собой разводит поток, не создавая области повышенного давления, а имеющийся «хвост» позволяет за собой сомкнуть поток без обрывов и завихрений, то есть разрежение тоже отсутствует. Получается, что воздух просто обтекает тело, создавая минимальное сопротивление. Для такого тела коэффициент Сх составляет всего 0,05.

Конструкторам, работая с аэродинамикой автомобиля добиться, таких показателей пока не удается. И все потому, что при движении сопротивление создается несколькими факторами:

Поэтому для современных авто коэффициент аэродинамического сопротивления считается отличным, если его значение ниже 0,3. К примеру, у Peugeot 308 коэффициент составляет 0,29, у Audi A2 он равен 0,25, а у Toyota Prius – 0,26. Но стоит отметить, что это расчетные показатели в идеальных условиях. На практике же во время движения на авто воздействуют множество разнообразных факторов, которые негативным образом сказываются на сопротивлении кузова.

Примечательно, что на коэффициент оказывает наибольшее влияние не передок авто, а его задняя часть. И виной этому становится создание разрежения и завихрений в результате отрыва потока от кузова. Поэтому конструкторы по большей части занимаются приданием необходимой формы именно задней части.

Площадь поперечной проекции автомобиля. Смотреть фото Площадь поперечной проекции автомобиля. Смотреть картинку Площадь поперечной проекции автомобиля. Картинка про Площадь поперечной проекции автомобиля. Фото Площадь поперечной проекции автомобиля

Коэффициент сопротивления Volkswagen XL1 составляет всего 0,19

Снизить коэффициент Сх позволяет также уменьшение количества выступающих частей, причем везде на авто (бока, крыша, днище, передок), а тем элементам, которые не удается убрать с поверхности придается максимально возможная обтекаемая форма.

Подъемная и прижимная сила

В результате неравномерного обтекания потоком воздуха автомобиля с разных сторон возникает разница в скорости его движения.

Площадь поперечной проекции автомобиля. Смотреть фото Площадь поперечной проекции автомобиля. Смотреть картинку Площадь поперечной проекции автомобиля. Картинка про Площадь поперечной проекции автомобиля. Фото Площадь поперечной проекции автомобиля

Действующие подъемная и прижимная силы

Автомобиль движется и рассекает поток воздуха, при этом часть этого потока уходит под авто и проходит под днищем, то есть движется практически по прямой. А вот верхней части потока приходится повторять форму кузова, и ей приходится проходить большее расстояние. Из-за этого возникает разница в скорости воздуха – верхняя часть движется быстрее нижней, проходящей под авто. А поскольку увеличение скорости сопровождается снижением давления, то под днищем образуется зона повышенного давления, которая приподнимает машину.

Проблем добавляет и лобовое сопротивление. Область повышенного давления воздушной массы перед машиной прижимает передок к дороге, в то время как разрежение и завихрения позади наоборот – способствуют приподнятию кузова. Подъемная сила, как и лобовое сопротивление, возрастает при увеличении скорости движения.

Но эта сила может оказывать и положительное действие. При внесении корректив в конструкцию авто возможно преобразование подъемной силы в прижимную, которая будет обеспечивать лучшее сцепление с дорогой, устойчивость авто, его управляемость на высоких скоростях.

При этом для получения прижимной силы не требуется каких-либо отдельных решений. Все разработки, направленные на снижение коэффициента Сх также сказываются и на прижиме. К примеру, оптимизация формы задней части приводит к уменьшению завихрений и разрежения, из-за чего подъемная сила тоже снижается, а прижимная — повышается. Установка заднего спойлера действует таким же образом.

Площадь поперечной проекции автомобиля. Смотреть фото Площадь поперечной проекции автомобиля. Смотреть картинку Площадь поперечной проекции автомобиля. Картинка про Площадь поперечной проекции автомобиля. Фото Площадь поперечной проекции автомобиля

Уменьшение завихрений при установке спойлера

Боковые же силы при установлении аэродинамики автомобиля, особо в расчет не берутся, в силу того, что они не постоянны, а также значительного влияния на показатели авто не оказывают.

Но это все теория аэродинамики автомобиля. На практике все можно пояснить одним предложением — чем хуже аэродинамика, тем выше расход топлива.

Что ещё влияет на аэродинамику?

Конечно, конструкторы стараются по максимуму снизить сопротивление авто при движении и повысить прижимную силу. Но особенности эксплуатации авто и свой взгляд автовладельцев на внешние особенности машины вносят свои коррективы, причем в некоторых случаях – значительны.

Площадь поперечной проекции автомобиля. Смотреть фото Площадь поперечной проекции автомобиля. Смотреть картинку Площадь поперечной проекции автомобиля. Картинка про Площадь поперечной проекции автомобиля. Фото Площадь поперечной проекции автомобиля

Аэродинамическое сопротивление разных автомобилей в зависимости от скорости

К примеру, установка багажника на крышу, даже с аэродинамической формой увеличивает поперечную проекцию авто и сильно влияет на обтекаемость, это сразу сказывается на потреблении топлива.

Также расход повышается от езды с открытыми окнами и люком, использование защитных и декоративных обвесов, перевозка негабаритных грузов, выступающих за авто, нарушение положения конструктивных элементов, расположенных под днищем, повышение клиренса.

Но автовладелец также может и внести коррективы, которые положительно повлияют на аэродинамику автомобиля. К ним относится использование аэродинамических обвесов, установка спойлера, уменьшение клиренса.

Источник

Аэродинамика автомобиля. Что это такое? Как это работает?

Площадь поперечной проекции автомобиля. Смотреть фото Площадь поперечной проекции автомобиля. Смотреть картинку Площадь поперечной проекции автомобиля. Картинка про Площадь поперечной проекции автомобиля. Фото Площадь поперечной проекции автомобиля Площадь поперечной проекции автомобиля. Смотреть фото Площадь поперечной проекции автомобиля. Смотреть картинку Площадь поперечной проекции автомобиля. Картинка про Площадь поперечной проекции автомобиля. Фото Площадь поперечной проекции автомобиля Площадь поперечной проекции автомобиля. Смотреть фото Площадь поперечной проекции автомобиля. Смотреть картинку Площадь поперечной проекции автомобиля. Картинка про Площадь поперечной проекции автомобиля. Фото Площадь поперечной проекции автомобиля

При движении автомобиля большая часть мощности силовой установки уходит на преодоление сопротивления, создаваемого воздухом. И правильно созданная аэродинамика автомобиля позволяет уменьшить это сопротивление, а значит на борьбу с противодействием находящего воздушного потока потребуется затратить меньше мощности, и соответственно – топлива.

Измерение аэродинамики автомобиля проводится для изучения сил, создаваемых воздушным потоком и воздействующих на транспортное средство. И таких сил несколько – подъемные и боковые, а также лобовое сопротивление.

Лобовое сопротивление и коэффициент Сх

По большей части все работы с кузовом авто направлены на преодоление лобового сопротивления, поскольку именно эта сила самая значительная.

Площадь поперечной проекции автомобиля. Смотреть фото Площадь поперечной проекции автомобиля. Смотреть картинку Площадь поперечной проекции автомобиля. Картинка про Площадь поперечной проекции автомобиля. Фото Площадь поперечной проекции автомобиля
Движение потоков воздуха

За основу при расчетах берется сила сопротивления воздуха. Для вычисления результата используются такие данные как плотность воздуха, площадь поперечной проекции авто, коэффициент аэродинамического сопротивления (Сх) — это важнейший показатель в аэродинамике автомобиля. При этом на силу сопротивления в значительной мере влияет также скорость движения. Так, увеличение скорости вдвое будет сопровождаться повышением сопротивлением в 4 раза. Скорость один из мощных факторов увеличения расхода.

Например, для хорошо обтекаемого авто с площадью проекции 2 м2 и коэффициентом 0,3 при движении на скорости 60 км/ч для преодоления сопротивления воздуха необходимо 2,4 л.с., а при скорости 120 км/ч уже 19,1 л.с. Разница расхода топлива при таких условиях достигает 30% на 100 км.

Если вам, в данный момент, требуется максимальная экономия топлива, необходимо придерживаться постоянной скорости около 60 км/ч. В этом режиме движения расход будет минимальным даже у авто с большим Cx.

Рассмотрим все по-простому. У воздуха есть своя плотность, причем немалая. При движении автомобилю приходится проходить через имеющиеся воздушные массы, при этом создается поток, который обтекает кузов. И чем легче авто будет «резать» воздушную массу, тем меньше он затратит на это энергии.

Но не все так просто. Во время движения перед авто создается область увеличенного давления (машина сжимает воздушную массу), то есть спереди образуется такой себе невидимый барьер, осложняющий «разрезание» воздушной массы.

Также после обтекания кузова происходит отрыв воздушного потока от поверхности, что становиться причиной появления завихрений и разрежения за авто. В сочетании с повышенным давлением возникающее разрежение еще больше увеличивает сопротивление.

Поскольку повлиять на плотность воздуха невозможно, то конструкторам остается только вносить коррективы в две другие расчетные составляющие – площадь авто и коэффициент аэродинамического сопротивления.

Но уменьшить проекцию авто не представляется особо возможным без ущерба для полезных пространств кузова (просто невозможно сделать авто меньше, чем он есть), поэтому остается только изменение коэффициента Сх.

Этот коэффициент устанавливается экспериментальным путем (в аэродинамической трубе) и характеризует он соотношение лобового сопротивления к скоростному напору и площади поперечного сечения кузова. Величина его безразмерная.

Площадь поперечной проекции автомобиля. Смотреть фото Площадь поперечной проекции автомобиля. Смотреть картинку Площадь поперечной проекции автомобиля. Картинка про Площадь поперечной проекции автомобиля. Фото Площадь поперечной проекции автомобиля
Аэродинамическая труба

Наименьший коэффициент аэродинамического сопротивления имеет каплевидное тело. При движении в воздушной массе такое тело плавно перед собой разводит поток, не создавая области повышенного давления, а имеющийся «хвост» позволяет за собой сомкнуть поток без обрывов и завихрений, то есть разрежение тоже отсутствует. Получается, что воздух просто обтекает тело, создавая минимальное сопротивление. Для такого тела коэффициент Сх составляет всего 0,05.

Конструкторам, работая с аэродинамикой автомобиля добиться, таких показателей пока не удается. И все потому, что при движении сопротивление создается несколькими факторами:

Поэтому для современных авто коэффициент аэродинамического сопротивления считается отличным, если его значение ниже 0,3. К примеру, у Peugeot 308 коэффициент составляет 0,29, у Audi A2 он равен 0,25, а у Toyota Prius – 0,26. Но стоит отметить, что это расчетные показатели в идеальных условиях. На практике же во время движения на авто воздействуют множество разнообразных факторов, которые негативным образом сказываются на сопротивлении кузова.

Примечательно, что на коэффициент оказывает наибольшее влияние не передок авто, а его задняя часть. И виной этому становится создание разрежения и завихрений в результате отрыва потока от кузова. Поэтому конструкторы по большей части занимаются приданием необходимой формы именно задней части.

Площадь поперечной проекции автомобиля. Смотреть фото Площадь поперечной проекции автомобиля. Смотреть картинку Площадь поперечной проекции автомобиля. Картинка про Площадь поперечной проекции автомобиля. Фото Площадь поперечной проекции автомобиля
Коэффициент сопротивления Volkswagen XL1 составляет всего 0,19

Снизить коэффициент Сх позволяет также уменьшение количества выступающих частей, причем везде на авто (бока, крыша, днище, передок), а тем элементам, которые не удается убрать с поверхности придается максимально возможная обтекаемая форма.

Немного теории

Коэффициент аэродинамического сопротивления автомобиля указывается в величине Cx, обычно она меньше 1. Чем он будет меньше, тем меньше мощностей он будет затрачивать для движения. Так показатель Cx у AUDI A8 — 0.37, Lexus LS 460 — 0.26. Весьма странным может показаться тот факт, что у спорткаров этот показатель значительно выше (Porsche 911 Turbo 997 — 0.31, Bugatti Veyron — 0.42). На самом же деле все довольно просто. Мощные двигатели требуют охлаждения, в том числе и воздушными потоками. Добиться этого можно увеличив площадь радиатора, а значит и поперечное сечение машины.

Подъемная и прижимная сила

В результате неравномерного обтекания потоком воздуха автомобиля с разных сторон возникает разница в скорости его движения.

Действующие подъемная и прижимная силы

Автомобиль движется и рассекает поток воздуха, при этом часть этого потока уходит под авто и проходит под днищем, то есть движется практически по прямой. А вот верхней части потока приходится повторять форму кузова, и ей приходится проходить большее расстояние. Из-за этого возникает разница в скорости воздуха – верхняя часть движется быстрее нижней, проходящей под авто. А поскольку увеличение скорости сопровождается снижением давления, то под днищем образуется зона повышенного давления, которая приподнимает машину.

Проблем добавляет и лобовое сопротивление. Область повышенного давления воздушной массы перед машиной прижимает передок к дороге, в то время как разрежение и завихрения позади наоборот – способствуют приподнятию кузова. Подъемная сила, как и лобовое сопротивление, возрастает при увеличении скорости движения.

Негативным фактором от воздействия такой силы является ухудшение устойчивости авто при увеличении скорости и повышение вероятности ухода в занос.

Но эта сила может оказывать и положительное действие. При внесении корректив в конструкцию авто возможно преобразование подъемной силы в прижимную, которая будет обеспечивать лучшее сцепление с дорогой, устойчивость авто, его управляемость на высоких скоростях.

При этом для получения прижимной силы не требуется каких-либо отдельных решений. Все разработки, направленные на снижение коэффициента Сх также сказываются и на прижиме. К примеру, оптимизация формы задней части приводит к уменьшению завихрений и разрежения, из-за чего подъемная сила тоже снижается, а прижимная — повышается. Установка заднего спойлера действует таким же образом.

Площадь поперечной проекции автомобиля. Смотреть фото Площадь поперечной проекции автомобиля. Смотреть картинку Площадь поперечной проекции автомобиля. Картинка про Площадь поперечной проекции автомобиля. Фото Площадь поперечной проекции автомобиля
Уменьшение завихрений при установке спойлера

Боковые же силы при установлении аэродинамики автомобиля, особо в расчет не берутся, в силу того, что они не постоянны, а также значительного влияния на показатели авто не оказывают.

Но это все теория аэродинамики автомобиля. На практике все можно пояснить одним предложением — чем хуже аэродинамика, тем выше расход топлива.

Как меняют аэродинамику автомобиля?

Задача специалистов по аэродинамике состоит в уменьшении паразитных сил и моментов (Рх, Рz, Му, Мх и Мz). Добиться можно с помощью дополнительных аэродинамических элементов, что ведет к увеличению площади миделя и как следствие – к увеличению силы лобового сопротивления. Тупик? Нет, оказывается, грамотно сконструированные и тщательно продутые в аэродинамической трубе элементы позволяют уменьшить Сх! Что это за устройства? Обычно при слове обвес речь идет о бамперах, порогах, спойлерах и антикрыльях.

Антикрыло. Создано для борьбы с подъемной силой. Первостепенная задача – создать прижимную силу, чтобы колеса не теряли контакт с дорогой ни при каких условиях. Взгляните на болиды Ф1. Вот где антикрылья – усилия работы специалистов по аэродинамике! Но перебарщивать с размерами нельзя – резко растет аэродинамическое сопротивление, а значит – падает скорость, увеличивается расход топлива. Практически на всех спортивных автомобилях рабочая часть крыла выполнена регулируемой для возможности изменения угла атаки и возможности настройки.

Вискомуфта (вязкостная муфта). Принцип работы и устройство

Спойлер (от spoil — портить). Аэродинамический элемент с одной рабочей поверхностью для изменения направления движения воздушного потока. Основная задача «правильного» спойлера – организация безотрывного и «плавного» обтекания воздушным потоком всей поверхности автомобиля, что повышает устойчивости при движении с высокими скоростями. Спойлер может бороться с подъемной силой, отсюда его сложные формы. Но эта деталь всегда примыкает к кузову автомобиля. По большому счету, бамперы и пороги это тоже большие спойлеры.

Спойлер и антикрыло – основные, но не единственные элементы, улучшающие аэродинамику. Если заглянуть под днище современного авто, то увидим большое количество специальных щитков. Их задача – уменьшить сопротивление, исключить завихрения и направление потока в нужном направлении. Иногда проработка днища дает потрясающие результаты.

Диффузор. Дальше всех пошли спортсмены – они решили присосать автомобиль к трассе! Появились болиды с днищем, имитирующим «трубку Вентури» – создающие резкий рост скорости воздушного потока под машиной. В результате создавалась мощная прижимная сила. Плодами этого открытия норовит воспользоваться каждый автопроизводитель: диффузоры, обеспечивающие ускорение потока, появляются в задней части гражданских машин.

Проблема, что для максимально эффективной реализации т.н. «граунд-эффекта» нужны по возможности плоское днище и минимальный дорожный просвет. Если строители спортивных машин могут это позволить, то, к примеру, на Evolution диффузор служит скорее украшением, чем полноценным аэродинамическим элементом.

Турбокомпрессор: что это такое и как он работает

Что ещё влияет на аэродинамику?

Конечно, конструкторы стараются по максимуму снизить сопротивление авто при движении и повысить прижимную силу. Но особенности эксплуатации авто и свой взгляд автовладельцев на внешние особенности машины вносят свои коррективы, причем в некоторых случаях – значительны.

Площадь поперечной проекции автомобиля. Смотреть фото Площадь поперечной проекции автомобиля. Смотреть картинку Площадь поперечной проекции автомобиля. Картинка про Площадь поперечной проекции автомобиля. Фото Площадь поперечной проекции автомобиля
Аэродинамическое сопротивление разных автомобилей в зависимости от скорости

К примеру, установка багажника на крышу, даже с аэродинамической формой увеличивает поперечную проекцию авто и сильно влияет на обтекаемость, это сразу сказывается на потреблении топлива.

Также расход повышается от езды с открытыми окнами и люком, использование защитных и декоративных обвесов, перевозка негабаритных грузов, выступающих за авто, нарушение положения конструктивных элементов, расположенных под днищем, повышение клиренса.

Но автовладелец также может и внести коррективы, которые положительно повлияют на аэродинамику автомобиля. К ним относится использование аэродинамических обвесов, установка спойлера, уменьшение клиренса.

ALFA 40-60 HP Aerodinamica Castagna

Площадь поперечной проекции автомобиля. Смотреть фото Площадь поперечной проекции автомобиля. Смотреть картинку Площадь поперечной проекции автомобиля. Картинка про Площадь поперечной проекции автомобиля. Фото Площадь поперечной проекции автомобиля

Первым в истории шоу-каром и первой попыткой применить принципы аэродинамики к автомобилям был аэродинамический автомобиль ALFA, выпущенный в 1914 году (в те годы марка еще не называлась Alfa Romeo).

Смотрите также: Необычные автомобили, которые приехали на техосмотр

Автомобиль был создан итальянской компанией Carrozzeria Castagna для графа Марио Рикотти. Кузов машины был выполнен в виде капли и опирался на классическую раму.

Благодаря алюминиевому кузову и отсутствию капота максимальная скорость этого концепта составляла 120 км/ч. Когда машина пошла в серийный выпуск, скорость уже составляла 139 км/ч. К сожалению, точное значение аэродинамического сопротивления воздуха этого автомобиля неизвестно.

Что такое сопротивление качению шины?

Площадь поперечной проекции автомобиля. Смотреть фото Площадь поперечной проекции автомобиля. Смотреть картинку Площадь поперечной проекции автомобиля. Картинка про Площадь поперечной проекции автомобиля. Фото Площадь поперечной проекции автомобиля

Давайте разберемся, что такое сопротивление качению шин. Когда вы нажимаете на педаль газа в вашем автомобиле, вы начинаете ускоряться. Но если посмотреть более детально на сам процесс ускорения автомобиля, то можно увидеть, что нажимая на педаль газа вы передаете энергию от сгорания топлива в моторе, или электрическую энергию (все зависит от того, какой тип двигателя вы используете) через другие системы прямиком на шины вашего автомобиля. Это приводит к тому, что ваши покрышки начинают оборачиваться и набирать достаточный импульс, чтобы ваш автомобиль начал двигаться. Но для того, чтобы колесо начало двигаться, ваши покрышки должны преодолеть очень много факторов, которые препятствуют началу движения. И одним из этих факторов является сопротивление качению шины.

Если говорить техническим языком, то сопротивление качению шины – это минимальная энергия, которую ваше транспортное средство должно передать на колеса, чтобы поддерживать постоянную скорость на ровном дорожном полотне. Другими словами, это усилие, которое нужно для того, чтобы колесо постоянно двигалось.

Главным источником сопротивлению качения является процесс, который называется гистерезис. С технической точки зрения, гистерезис – это, по сути, потеря энергии, которая возникает при прохождении шины по поверхности дорожного полотна. Из-за того, что двигатель автомобиля должен постоянно компенсировать гистерезис, он должен вырабатывать дополнительную энергию, что приводит к увеличению расхода топлива.

Минимальное сопротивление качению шины

Площадь поперечной проекции автомобиля. Смотреть фото Площадь поперечной проекции автомобиля. Смотреть картинку Площадь поперечной проекции автомобиля. Картинка про Площадь поперечной проекции автомобиля. Фото Площадь поперечной проекции автомобиля

Скажем сразу, что избавиться сопротивления качению шины нельзя исходя из законов физики. Но раз его нельзя полностью устранить, его можно попробовать свести к минимуму. Как мы уже выяснили, сопротивление качения шин вызвано гистерезисом. Чтобы минимизировать его влияние можно спроектировать покрышку таким образом, чтобы ее протектор был как можно меньше. Минусом такого подхода будет очень малый срок службы покрышки.

Второй способ более технологичен, ведь он требует разработки качественно новых материалов для шин. Покрышки из таких материалов получат снижение сопротивления качению благодаря тому, что они будут устойчивыми к выработке тепла и их протектор будет иметь минимальный прогиб во время сцепления с дорожным покрытием. Современные шины с низким сопротивлением качению используют именно второй подход.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *