По двум взаимно перпендикулярным дорогам движутся равномерно два автомобиля со скоростями 54 и 72
По двум взаимно перпендикулярным дорогам движутся равномерно два автомобиля со скоростями 54 и 72
Два велосипедиста равномерно движутся по взаимно перпендикулярным дорогам по направлению к перекрестку этих дорог. Один из них движется со скоростью 40 км/ч и находится на расстоянии 5 км от перекрестка, второй движется со скоростью 30 км/ч и находится на расстоянии 3 км от перекрестка. Через сколько минут расстояние между велосипедистами станет наименьшим? Каково будет это наименьшее расстояние? Считайте, что перекресток не T-образный, обе дороги продолжаются за перекрестком.
Обозначим буквой t время, прошедшее с начального момента времени. Поскольку каждый велосипедист движется по взаимно перпендикулярным дорогам, то расстояние между ними может быть вычислено по теореме Пифагора. Рассмотрим f (t) — квадрат длины в каждый момент времени, тогда:
Итак, У данной квадратичной функции есть наименьшее значение, которое достигается при
мин. Найдем его:
Таким образом, минимальное расстояние между велосипедистами равно км, и будет достигнуто через
мин.
Ответ: мин,
км.
Условие уточнено редакцией Решу ЕГЭ.
Критерии оценивания выполнения задания | Баллы |
---|---|
Обоснованно получен верный ответ | 2 |
Верно построена математическая модель | 1 |
Решение не соответствует ни одному из критериев, перечисленных выше | 0 |
Максимальный балл | 2 |
В условии сказано, что велосипедисты движутся по направлению к перекрестку и ничего не сказано, куда они будут двигаться, достигнув этого перекрёстка, и будут ли вообще куда-то двигаться. И даже продолжается ли каждая из дорог после этого перекрёстка нам тоже неизвестно (бывают ведь и Т-образные перекрёстки). И остаются ли они на этом продолжении, если таковое имеется, по-прежнему взаимно перпендикулярными.
На мой взгляд, правильным решением будет тот момент, когда второй велосипедист достигнет перекрёстка, то есть через шесть минут. Ведь именно в этот момент они оба ещё двигались по направлению к перекрестку. К этому моменту первый велосипедист будет на расстоянии 1 км от перекрёстка и от второго велосипедиста. То есть при решении задачи минимум функции f(t) следует искать на отрезке от 0 до 0,1 часа. В предложенном же на сайте варианте решения второй велосипедист уже почти целую минуту движется по направлению от перекрестка, что не соответствует условию задачи.
По двум взаимно перпендикулярным дорогам движутся равномерно два автомобиля со скоростями 54 и 72
Два велосипедиста равномерно движутся по взаимно перпендикулярным дорогам по направлению к перекрестку этих дорог. Один из них движется со скоростью 40 км/ч и находится на расстоянии 5 км от перекрестка, второй движется со скоростью 30 км/ч и находится на расстоянии 3 км от перекрестка. Через сколько минут расстояние между велосипедистами станет наименьшим? Каково будет это наименьшее расстояние? Считайте, что перекресток не T-образный, обе дороги продолжаются за перекрестком.
Обозначим буквой t время, прошедшее с начального момента времени. Поскольку каждый велосипедист движется по взаимно перпендикулярным дорогам, то расстояние между ними может быть вычислено по теореме Пифагора. Рассмотрим f (t) — квадрат длины в каждый момент времени, тогда:
Итак, У данной квадратичной функции есть наименьшее значение, которое достигается при
мин. Найдем его:
Таким образом, минимальное расстояние между велосипедистами равно км, и будет достигнуто через
мин.
Ответ: мин,
км.
Условие уточнено редакцией Решу ЕГЭ.
Критерии оценивания выполнения задания | Баллы |
---|---|
Обоснованно получен верный ответ | 2 |
Верно построена математическая модель | 1 |
Решение не соответствует ни одному из критериев, перечисленных выше | 0 |
Максимальный балл | 2 |
В условии сказано, что велосипедисты движутся по направлению к перекрестку и ничего не сказано, куда они будут двигаться, достигнув этого перекрёстка, и будут ли вообще куда-то двигаться. И даже продолжается ли каждая из дорог после этого перекрёстка нам тоже неизвестно (бывают ведь и Т-образные перекрёстки). И остаются ли они на этом продолжении, если таковое имеется, по-прежнему взаимно перпендикулярными.
На мой взгляд, правильным решением будет тот момент, когда второй велосипедист достигнет перекрёстка, то есть через шесть минут. Ведь именно в этот момент они оба ещё двигались по направлению к перекрестку. К этому моменту первый велосипедист будет на расстоянии 1 км от перекрёстка и от второго велосипедиста. То есть при решении задачи минимум функции f(t) следует искать на отрезке от 0 до 0,1 часа. В предложенном же на сайте варианте решения второй велосипедист уже почти целую минуту движется по направлению от перекрестка, что не соответствует условию задачи.