По шоссе автомобиль движется со скоростью 70 км ч по гравийной дороге 50 км ч
По шоссе автомобиль движется со скоростью 70 км ч по гравийной дороге 50 км ч
Определите, на какой маршрут потребуется меньше всего времени. В ответе укажите, сколько минут потратят на дорогу Настя с дедушкой, если поедут этим маршрутом.
Настя летом отдыхает у дедушки в деревне Александровке. В воскресенье они собираются съездить на машине в село Фомино. Из Александровки в Фомино можно проехать по прямой грунтовой дороге. Есть более длинный путь по шоссе — через деревню Новомальцево до деревни Парахино, где нужно повернуть под прямым углом направо на другое шоссе, ведущее в Фомино. Есть и третий маршрут: в Новомальцева можно свернуть на прямую грунтовую дорогу, которая идёт мимо озера прямо в Фомино.
По шоссе Настя с дедушкой едут со скоростью 60 км/ч, а по грунтовой дороге — 50 км/ч. На плане изображено взаимное расположение населённых пунктов, сторона каждой клетки равна 3 км.
Пользуясь описанием, определите, какими цифрами на плане обозначены населённые пункты. В ответе запишите полученную последовательность четырёх цифр.
Населённые пункты | Новомальцево | Парахино | Александровка | Фомино |
---|---|---|---|---|
Цифры |
Пользуясь описанием и рисунком можно заметить, что деревня Новомальцево соответствует цифре 3, деревня Парахино — цифре 4, деревня Александровка — цифре 2 и деревня Фомино —цифре 1.
Аналоги к заданию № 392887: 392914 392940 392966 Все
Найдите расстояние от деревни Александровки до села Фомино по прямой. Ответ выразите в километрах.
Расстояние от деревни Александровки до села Фомино соответствует длине гипотенузы прямоугольного треугольника с катетами 36 и 27. По теореме Пифагора имеем:
Аналоги к заданию № 392888: 392915 392941 392967 Все
Сколько километров проедут Настя с дедушкой, если они поедут по шоссе через Парахино?
Расстояние, которое проедут Настя с дедушкой, проезжая через Парахино, равно сумме длин катетов прямоугольного треугольника с катетами 36 и 27. Таким образом, имеем, что искомое расстояние равно 36 + 27 = 63.
Аналоги к заданию № 392889: 392916 392942 392968 Все
Сколько времени затратят на дорогу Настя с дедушкой, если они поедут сначала до Новомальцево, а затем свернут на грунтовую дорогу, идущую мимо озера? Ответ выразите в минутах.
По шоссе Настя с дедушкой проедут 12 километров со скоростью 60 км/ч. Следовательно, они затратят 12 : 60 = 0,2 часа или 12 минут. Дальше по условию задачи они свернут на грунтовую дорогу длина которой равна длине гипотенузы прямоугольного треугольника с катетами 36 и 15. Таким образом, по теореме Пифагора длина составит:
По грунтовой дороге Настя с дедушкой едут со скоростью 50 км/ч, следовательно, они затратят 39 : 50 = 0,78 часа или 46,8 минут.
Таким образом, Настя с дедушкой на весь путь затратят 46,8 + 12 = 58,8 минут.
Аналоги к заданию № 392890: 392917 392943 392969 Все
Настя с дедушкой могут поехать тремя разными маршрутами. Рассмотрим каждый из них.
1) По грунтовой дороге напрямую. Длина такого пути соответствует длине гипотенузы прямоугольного треугольника с катетами 36 и 27. По теореме Пифагора имеем:
Двигаясь по грунтовой дороге со скоростью 50 км/ч дедушка с Настей потратят 45 : 50 = 0,9 часа или 54 минуты.
2) Сначала по шоссе, а затем по грунтовой дороге вдоль озера. По шоссе Настя с дедушкой проедут 12 километров со скоростью 60 км/ч. Следовательно, они затратят 12 : 60 = 0,2 часа или 12 минут. Дальше по условию задачи они свернут на грунтовую дорогу длина которой равна длине гипотенузы прямоугольного треугольника с катетами 36 и 15. Таким образом, по теореме Пифагора длина составит:
По грунтовой дороге Настя с дедушкой едут со скоростью 50 км/ч, следовательно, они затратят 39 : 50 = 0,78 часа или 46,8 минут.
Таким образом, Настя с дедушкой на весь путь затратят 46,8 + 12 = 58,8 минут.
3) По шоссе через Парахино. Расстояние, которое проедут Настя с дедушкой, проезжая через Парахино, равно сумме длин катетов прямоугольного треугольника с катетами 36 и 27. Таким образом, имеем, что искомое расстояние равно 36 + 27 = 63.
Двигаясь по шоссе со скоростью 60 км/ч Настя с дедушкой потратят 63 : 60 ≈ 1,05 часа или 63 минуты.
Таким образом, самый быстрый путь составит 54 минуты.
Аналоги к заданию № 392891: 392918 392944 392970 Все
По шоссе автомобиль движется со скоростью 70 км ч по гравийной дороге 50 км ч
Весной катер идёт против течения реки в раза медленнее, чем по течению. Летом течение становится на 1 км/ч медленнее. Поэтому летом катер идёт против течения в
раза медленнее, чем по течению. Найдите скорость течения весной (в км/ч).
Смешав 45-процентный и 97-процентный растворы кислоты и добавив 10 кг чистой воды, получили 62-процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50-процентного раствора той же кислоты, то получили бы 72-процентный раствор кислоты. Сколько килограммов 45-процентного раствора использовали для получения смеси?
Автомобиль, движущийся с постоянной скоростью 70 км/ч по прямому шоссе, обгоняет другой автомобиль, движущийся в ту же сторону с постоянной скоростью 40 км/ч. Каким будет расстояние (в километрах) между этими
автомобилями через 15 минут после обгона?
Первая труба наполняет резервуар на 48 минут дольше, чем вторая. Обе трубы, работая одновременно, наполняют этот же резервуар за 45 минут. За сколько минут наполняет этот резервуар одна вторая труба?
Пусть x (км/ч) — собственная скорость катера, (км/ч) — скорость течения реки весной. Тогда летом она составит
(км/ч);
Составим таблицу по данным задачи:
Весна | Лето | |
По течению | ||
Против течения |
Решим систему уравнений:
Таким образом, скорость течения весной равна 5 км/ч.
Пусть масса 45-процентного раствора кислоты – кг, а масса 97-процентного –
Если смешать 45-процентный и 97-процентный растворы кислоты и добавить 10 кг чистой воды, получится 62-процентный раствор кислоты:
Если бы вместо 10 кг воды добавили 10 кг 50-процентного раствора той же кислоты, то получили бы 72-процентный раствор кислоты:
Решим полученную систему уравнений:
Значит, было использовано 15 килограммов 45-процентного раствора кислоты.
Скорость удаления автомобилей друг от друга составляет: 70 − 40 = 30 км/ч.
Переведем минуты в часы: 15 минут составляют часа.
Таким образом, через 15 минут после обгона расстояние составит: км.
Пусть вторая труба наполняет резервуар за x минут, а первая — за x + 48 минут. В одну минуту они наполняют соответственно и
часть резервуара. Поскольку за 45 минут обе трубы заполняют весь резервуар, получаем:
Заметим, что при положительных x функция, находящаяся в левой части уравнения, убывает. Поэтому очевидное решение уравнения единственно. Решая это уравнение, получим Поскольку вторая труба заполняет
резервуара в минуту, она заполнит весь резервуар за 72 минуты.