По устройству обмоток ротора асинхронные машины делятся на
Устройство асинхронной машины
Конструктивные формы исполнения электрических машин.
Основные сведения о серийных асинхронных двигателях.
Режимы работы асинхронной машины.
Принцип действия асинхронной машины.
Устройство асинхронной машины.
СОДЕРЖАНИЕ
Лекция № 2
Навигационных комплексов
Иркутский филиал МГТУ ГА
Иркутск, 2007 г.
Асинхронные электрические машины
Электрические машины
ЛЕКЦИЯ № 9
И ПИЛОТАЖНО-НАВИГАЦИОННЫХ КОМПЛЕКСОВ
КАФЕДРА АВИАЦИОННЫХ ЭЛЕКТРОСИСТЕМ
ИРКУТСКИЙ ФИЛИАЛ
ГРАЖДАНСКОЙ АВИАЦИИ
МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ
для студентов специальности 160903
Кафедра Авиационных электросистем и пилотажно-
Заведующий кафедрой АЭС и ПНК
к.т.н., доцент Мишин С.В.
По дисциплине: Электрические машины
Тема лекции: Асинхронные электрические машины (2 часа)
1. Копылов Б.В. Электрические машины. М., 1988 г.
НАГЛЯДНЫЕ ПОСОБИЯ, ПРИЛОЖЕНИЯ, ТСО
1. Мультимедийная установка
Обсуждено на заседании кафедры
По своей конструкции асинхронные двигатели разделяются на два вида: двигатели с короткозамкнутым ротором и двигатели с фазным ротором. Рассмотрим устройство трехфазного асинхронного двигателя с короткозамкнутым ротором (рис.1). Двигатели этого вида имеют наиболее широкое применение.
Рис.1. Устройство трехфазного асинхронного двигателя с короткозамкнутым ротором:
В корпусе расположен сердечник статора 6, имеющий шихтованную конструкцию: отштампованные листы из тонколистовой электротехнической стали толщиной обычно 0,5 мм покрыты слоем изоляционного лака, собраны в пакет и скреплены специальными скобами или продольными сварными швами по наружной поверхности пакета. Такая конструкция сердечника способствует значительному уменьшению вихревых токов, возникающих в процессе перемагничивания сердечника вращающимся магнитным полем. На внутренней поверхности сердечника статора имеются продольные пазы, в которых расположены пазовые части обмотки статора, соединенные в определенном порядке лобовыми частями, находящимися за пределами сердечника по его торцовым сторонам.
Рис.2. Короткозамкнутый ротор:
а – обмотка «беличья клетка»; б – ротор с обмоткой, выполненной литьем под давлением;
Короткозамкнутая обмотка ротора в большинстве двигателей выполняется заливкой собранного сердечника ротора расплавленным алюминиевым сплавом. При этом одновременно со стержнями обмотки отливаются короткозамыкающие кольца и вентиляционные лопатки (рис.2, б).
Вал ротора вращается в подшипниках качения 1 и 11, расположенных в подшипниковых щитах 3 и 9.
Охлаждение двигателя осуществляется методом обдува наружной оребренной поверхности корпуса 13. Поток воздуха создается центробежным вентилятором 10 прикрытым кожухом 12. На торцовой поверхности этого кожуха имеются отверстия для забора воздуха. Двигатели мощностью 15 кВт и более помимо закрытого делают еще и защищенного исполнения с внутренней самовентиляцией. В подшипниковых щитах этих двигателей имеются отверстия (жалюзи), через которые воздух посредством вентилятора прогоняется через внутреннюю полость двигателя. При этом воздух «омывает» нагретые части (обмотки, сердечники) двигателя и охлаждение получается более эффективным, чем при наружном обдуве.
Концы обмоток фаз выводят на зажимы коробки выводов 4. Обычно асинхронные двигатели предназначены для включения в трехфазную сеть на два разных напряжения, отличающиеся в 
Рис.3. Расположение выводов обмотки статора (а) и положение перемычек
при соединении обмотки статора звездой и треугольником (б)
Монтаж двигателя в месте его установки осуществляется либо посредством лап 14 (см. рис.1), либо посредством фланца. В последнем случае на подшипниковом щите (обычно со стороны выступающего конца вала) делают фланец с отверстиями для крепления двигателя на рабочей машине. Для предохранения обслуживающего персонала от возможного поражения электрическим током двигатели снабжаются болтами заземления 15 (не менее двух). Принципиальная схема включения в трехфазную сеть асинхронного двигателя с короткозамкнутым ротором показана на рис.4, а.
Рис.4. Принципиальные схемы включения трехфазных асинхронных двигателей с короткозамкнутым (а) и фазным (б) ротором
Асинхронные двигатели с фазным ротором имеют более сложную конструкцию и менее надежны, но они обладают лучшими регулировочными и пусковыми свойствами, чем двигатели с короткозамкнутым ротором. Принципиальная схема включения в трехфазную сеть асинхронного двигателя с фазным ротором показана на рис.4, б. Обмотка ротора этого двигателя соединена с пусковым реостатом ПР, создающим в цепи ротора добавочное сопротивление Rдоб.
На корпусе асинхронного двигателя прикреплена табличка, на которой указаны тип двигателя, завод-изготовитель, год выпуска и номинальные данные (полезная мощность, напряжение, ток, коэффициент мощности, частота вращения и КПД).
Рис.5. Устройство трехфазного асинхронного двигателя с фазным ротором:
Типы асинхронных двигателей, разновидности, какие бывают двигатели
В связи с большими мощностями энергетических систем и большой протяженностью электрических сетей энергоснабжение потребителей всегда осуществляется на переменном токе. Поэтому естественно стремление к максимальному использованию электрических двигателей переменного тока. Это, казалось бы, освобождает от необходимости многократного преобразования энергии.
К сожалению, двигатели переменного тока по своим свойствам, и прежде всего по управляемости, существенно уступают двигателям постоянного тока, поэтому они используются преимущественно в установках, где не требуется регулирование скорости.
Относительно недавно начали активно использоваться регулируемые системы переменного тока с подключением электродвигателей переменного тока через частотные преобразователи.
При подключении двигателя в электрическую сеть в статоре возникает магнитное поле, которое вращается синхронно с частотой питающей сети. За счет явления электромагнитной индукции под действием магнитного поля статора в электрически замкнутых обмотках ротора возникает электрический ток.
Наведенный электрический ток ротора создаст собственное магнитное поле, которое вступает во взаимодействие с вращающимся магнитным полем статора. В результате ротор начинает вращаться, и на валу двигателя возникает механический момент, пропорциональный току статора.
Модель трехфазного асинхронного двигателя в разрезе
Характерной особенностью асинхронного двигателя является то, что за счет взаимодействия полей статора и ротора скорость вращения вала двигателя несколько меньше, чем частота питающей сети. Разность между частотой питающей сети и скоростью вращения называют скольжением.
Очень широко применяются в различных отраслях хозяйства и производства асинхронные двигатели в силу простоты их изготовления и высокой надежности. Между тем, можно выделить четыре основных типа асинхронных двигателей:
однофазный асинхронный двигатель с короткозамкнутым ротором;
двухфазный асинхронный двигатель с короткозамкнутым ротором;
трехфазный асинхронный двигатель с короткозамкнутым ротором;
трехфазный асинхронный двигатель с фазным ротором.
Однофазный асинхронный двигатель содержит на статоре лишь одну рабочую обмотку, на которую в процессе работы двигателя подается переменный ток. Но для пуска двигателя на его статоре есть и дополнительная обмотка, которая кратковременно подключается к сети через конденсатор или индуктивность, либо замыкается накоротко. Это необходимо для создания начального сдвига фаз, чтобы ротор начал вращаться, иначе пульсирующее магнитное поле статора не столкнуло бы ротор с места.
Ротор такого двигателя, как и любого другого асинхронного двигателя с короткозамкнутым ротором, представляет собой цилиндрический сердечник с залитыми алюминием пазами, с одновременно отлитыми вентиляционными лопастями. Такой ротор, типа «беличья клетка» и называется короткозамкнутым ротором. Однофазные двигатели применяются в маломощных приборах, таких как комнатные вентиляторы или небольшие насосы.
Двухфазные асинхронные двигатели наиболее эффективны при работе от однофазной сети переменного тока. Они содержат на статоре две рабочие обмотки, расположенные перпендикулярно, причем одна из обмоток подключается к сети переменного тока напрямую, а вторая – через фазосдвигающий конденсатор, так получается вращающееся магнитное поле, а без конденсатора ротор бы сам не сдвинулся с места.
Эти двигатели также имеют короткозамкнутый ротор, а их применение гораздо шире, чем у однофазных. Здесь уже и стиральные машины, и различные станки. Двухфазные двигатели для питания от однофазных сетей называют конденсаторными двигателями, так как фазосдвигающий конденсатор является зачастую неотъемлемой их частью.
Трехфазный асинхронный двигатель содержит на статоре три рабочие обмотки, сдвинутые относительно друг друга так, что при включении в трехфазную сеть, их магнитные поля получаются смещенными в пространстве относительно друг друга на 120 градусов. При подключении трехфазного двигателя к трехфазной сети переменного тока, возникает вращающееся магнитное поле, приводящее в движение короткозамкнутый ротор.
Обмотки статора трехфазного двигателя можно соединить по схеме «звезда» или «треугольник», причем для питания двигателя по схеме «звезда» требуется напряжение выше, чем для схемы «треугольник», и на двигателе, поэтому, указываются два напряжения, например: 127/220 или 220/380. Трехфазные двигатели незаменимы для приведения в действие различных станков, лебедок, циркулярных пил, подъемных кранов, и т.д.
Посредством щеток, на кольца также подается трехфазное переменное напряжение, и подключение может быть осуществлено как напрямую, так и через реостаты. Безусловно, двигатели с фазным ротором стоят дороже, но их пусковой момент под нагрузкой значительно выше, чем у типов двигателей с короткозамкнутым ротором. Именно в силу повышенной мощности и большого пускового момента, этот тип двигателей нашел применение в приводах лифтов и подъемных кранов, то есть там, где устройство запускается под нагрузкой, а не вхолостую.
Подробнее про этот тип двигателей читайте здесь: Асинхронные электродвигатели с фазным ротором
АСИНХРОННЫХ МАШИН
НАЗНАЧЕНИЕ И ОБЛАСТИ ПРИМЕНЕНИЯ АСИНХРОННЫХ МАШИН
Асинхронной машиной называется двухобмоточная электрическая машина переменного тока, у которой только одна обмотка (первичная) получает питание от электрической сети с постоянной частотой 


Наибольшее распространение получили асинхронные машины с трехфазной симметричной разноименнополюсной обмоткой на статоре, питаемой от сети переменного тока, и с трехфазной или многофазной симметричной разноименнополюсной обмоткой на роторе.
Машины такого исполнения называют просто «асинхронными машинами», в то время как асинхронные машины иных исполнений относятся к «специальным асинхронным машинам».
Асинхронные машины используются в основном как двигатели, в качестве генераторов они применяются редко.
Асинхронный двигатель является наиболее распространенным типом двигателя переменного тока.
Разноименно-полюсная обмотка ротора асинхронного двигателя может быть короткозамкнутой (беличья клетка) или фазной (присоединяется к контактным кольцам). Наибольшее распространение имеют дешевые в производстве и надежные в эксплуатации двигатели с короткозамкнутой обмоткой на роторе, или короткозамкнутые двигатели (см. рис.1.1).
Эти двигатели обладают жесткой механической характеристикой (при изменении нагрузки от холостого хода до номинальной их частота вращения уменьшается всего на 2—5%).
Двигатели с короткозамкнутой обмоткой на роторе обладают также довольно высоким начальным пусковым вращающим моментом. Их основные недостатки: трудность осуществления плавного регулирования частоты вращения в широких пределах; потребление больших токов из сети при пуске (в 5—7 раз превышающих номинальный ток).
Двигатели с фазной обмоткой на роторе или двигатели с контактными кольцами (см. 1.2) избавлены от этих недостатков ценой усложнения конструкции ротора, что приводит к их заметному удорожанию по сравнению с короткозамкнутыми двигателями (примерно в 1,5 раза). Поэтому двигатели с контактными кольцами на роторе находят применение лишь при тяжелых условиях пуска, а также при необходимости плавного регулирования частоты вращения.
Двигатели с контактными кольцами иногда применяют в каскаде с другими машинами. Каскадные соединения асинхронной машины позволяют плавно регулировать частоту вращения в широком диапазоне при высоком коэффициенте мощности, однако из-за значительной стоимости не имеют сколько-нибудь заметного распространения.
В двигателях с контактными кольцами выводные концы обмотки ротора, фазы которой соединяются обычно в звезду, присоединяются к трем контактным кольцам. С помощью щеток, соприкасающихся с кольцами, в цепь обмотки ротора можно вводить добавочное сопротивление или дополнительную ЭДС для изменения пусковых или рабочих свойств машины. Щетки позволяют также замкнуть обмотку накоротко.
В большинстве случаев добавочное сопротивление вводится в обмотку ротора только при пуске двигателя, что приводит к увеличению пускового момента и уменьшению пусковых токов и облегчает пуск двигателя. При работе асинхронного двигателя пусковой реостат должен быть полностью выведен, а обмотка ротора замкнута накоротко. Иногда асинхронные двигатели снабжаются специальным устройством, которое позволяет после завершения пуска замкнуть между собой контактные кольца и приподнять щетки. В таких двигателях удается повысить КПД за счет исключения потерь от трения колец о щетки и электрических потерь в переходном контакте щеток.
Выпускаемые заводами асинхронные двигатели предназначаются для работы в определенных условиях с определенными техническими данными, называемыми номинальными.
К числу номинальных данных асинхронных двигателей, которые указываются в заводской табличке машины, укрепленной на ее корпусе, относятся:
— механическая мощность, развиваемая двигателем 
— частота сети 
— линейное напряжение статора 
— линейный ток статора 
— частота вращения ротора 
— коэффициент мощности 
— коэффициент полезного действия 
Если у трехфазной обмотки статора выведены начала и концы фаз, то она может быть включена в звезду или треугольник. В этом случае указываются линейные напряжения и токи для каждого из возможных соединений ( 



Кроме того, для двигателя с контактными кольцами приводится напряжение на разомкнутых кольцах при неподвижном роторе и линейный ток ротора в номинальном режиме.
Номинальный КПД асинхронных двигателей возрастает с ростом их мощности и частоты вращения. При мощности более 0,5 кВт КПД составляет 0,65-0,95, в микродвигателях 0,2-0,65.
Номинальный коэффициент мощности асинхронных двигателей, равный отношению активной мощности к полной мощности, потребляемой из сети,
также возрастает с ростом мощности и частоты вращения двигателей; при мощности более 1 кВт он составляет 0,7—0,9; в микродвигателях 0,3—0,7.
КОНСТРУКЦИЯ АСИНХРОННЫХ МАШИН С КОРОТКОЗАМКНУТЫМ РОТОРОМ
Конструктивная компоновка асинхронной машины с короткозамкнутым ротором представлена на рис. 39.1. В основных чертах она совпадает с типичной компоновкой вращающейся электрической машины.
Статор машины состоит из магнитопровода 2, трехфазной разноименнополюсной обмотки 20, выводные концы которой с помощью выводной коробки 13 присоединяются к сети переменного тока, и станины 1.
Активными элементами статора, специально предназначенными для образования вращающегося магнитного поля, являются магнитопровод 2 и обмотка 20; станина выполняет только конструктивные функции, фиксируя активные части в определенном положении (с помощью лап 14 станина неподвижно закрепляется на фундаменте).
Магнитопровод 2 набирается из изолированных пластин электротехнической стали обычно толщиной 0,5 мм. Пластины штампуются из листовой или рулонной электротехнической стали со стандартизованными размерами и изолируются с обеих сторон лаком. При наружном диаметре магнитопровода менее 1 м, что имеет место во всех асинхронных двигателях, за исключением самых крупных, его набирают из цельных кольцеобразных пластин, на внутренней стороне которых вырублены пазы нужной формы (рис. 1.3б).
В конструкции по рис.1.3 радиальные каналы в магнитопроводе отсутствуют. В этом случае кольцевые пластины собираются в пакет и прессуются вне станины на специальной цилиндрической оправке. В спрессованном состоянии пакет пластин удерживается с помощью нажимных колец 6 и стяжных скоб 5 и лишь после укладки обмотки вставляется в станину.
При наружном диаметре магнитопровода более 1 м он набирается из отдельных сегментов и конструкция статора получается такой же, как в крупных синхронных машинах.
С целью уменьшения пульсаций магнитного поля и добавочных потерь, связанных с зубчатостью магнитопровода, обмотка статора, как правило, укладывается в асинхронных машинах в полузакрытые пазы (рис. 1.4а).
Для таких пазов пригодны как однослойные, так и двухслойные многовитковые катушечные всыпные обмотки. Катушки этих обмоток наматываются из изолированного обмоточного провода круглого сечения (1 на рис. 1.4); каждый проводник катушки «всыпается» в паз по отдельности.
Для изоляции витков катушки друг от друга оказывается достаточной собственная изоляция обмоточных проводников. Изоляция обмотки от заземленных частей, называемая корпусной изоляцией, делается в зоне пазовых и лобовых частей по-разному. Корпусная изоляция пазовой части катушки выполняется в виде «пазовой коробочки», образованной из нескольких слоев 2-4 изоляционных материалов, которая закладывается в паз перед укладкой обмотки. Обмотка закрепляется в пазах с помощью клиньев 7 из изоляционного материала. Под клинья подкладываются изоляционные прокладки 6. Изоляцией между слоями обмотки служит прокладка 5 (в однослойной обмотке эта прокладка отсутствует).
Ротор машины состоит из магнитопровода 3 (рис. 1.1), в пазах которого размещается неизолированная многофазная короткозамкнутая обмотка 19, пристроенных к ней вентиляционных лопастей 7, вала 15 и двух вентиляторов 8 и 11. Активными элементами ротора, принимающими участие в процессе преобразования энергии, являются магнитопровод 3 и обмотка 19; остальные детали имеют конструктивное назначение: вал 15 передает механическую энергию к исполнительной машине, вентиляторы 7, 8 и 11 обеспечивают циркуляцию охлаждающей среды. Более детально устройство активных частей ротора показано на рис. 1.5.
Пластины магнитопровода ротора набираются на специальную оправку, спрессовываются на ней и удерживаются в запрессованном состоянии в процессе изготовления короткозамкнутой обмотки. Короткозамкнутая обмотка отливается из алюминия и не изолируется от магнитопровода. Торцевые кольца 2 (рис 1.5), замыкающие с двух сторон стержни обмотки 1, отливаются как одно целое со стержнями. Одновременно в виде приливов к короткозамыкающим кольцам отливаются вентиляционные лопасти 3.
Кроме своего основного назначения, короткозамкнутая обмотка служит также для стягивания пластин ротора после удаления оправки. Это позволяет обойтись без специальных прессующих деталей, удерживающих листы ротора в осевом направлении.
Вал ротора 15 (см. рис. 1,1) опирается на подшипники качения 12, 17, которые в свою очередь с помощью подшипниковых щитов 9, 21 и крышек подшипников 16, 18 сопрягаются со станиной 1.
Шариковый подшипник 12 центрирует ротор не только в радиальном, но и в осевом направлении, воспринимая наряду с радиальными усилиями также и осевые. Консистентная смазка подшипников закладывается в камеру между подшипниковыми крышками 16, 18 и не нуждается в замене в течение нескольких лет эксплуатации. Поскольку зазор между магнитопроводами ротора и статора при мощности более 0,5 кВт обычно не превышает 0,3-1 мм (в микромашинах 0,02-0,3 мм), вал ротора должен быть достаточно жестким, а механическая обработка конструктивных частей, обеспечивающих правильное положение оси вала в пространстве, должна производиться с высокой точностью.
Подъем двигателя при монтаже производится с помощью рыма 4.
КОНСТРУКЦИЯ АСИНХРОННЫХ МАШИН С ФАЗНЫМ РОТОРОМ
Конструктивная компоновка асинхронной машины с контактными кольцами представлена на рис. 1.2. Двигатели этого типа отличаются от короткозамкнутых только устройством ротора.
Статор двигателя может иметь те же разновидности конструктивных исполнений, что и в короткозамкнутом двигателе. Статор двигателя по рис. 1.2 с радиальными каналами в магнитопроводе. Статор состоит из станины 1, в которой с помощью нажимных шайб 5 и шпонок 7 укреплены пакеты магнитопровода, набранные из кольцевых пластин 2. Для образования каналов между пакетами служат распорки 4. В пазы магнитопровода статора уложена двухслойная обмотка, катушки 30 которой связаны между собой соединениями 8. Выводные концы обмотки статора сосредоточены в выводной коробке 23. К фундаменту станина крепится лапами 22. Для подъема двигателя при монтаже служат рымы 6.
Ротор двигателя состоит из вала 26, на котором с помощью нажимных колец 24, шпонки 21 и разрезной шпонки 20 укреплены в запрессованном состоянии пакеты магнитопровода, набранные из кольцевых пластин 3 (см. рис. 1.3а). Радиальные вентиляционные каналы между пакетами образуются дистанционными распорками, помещенными на каждом зубцовом делении. В полузакрытых пазах магнитопровода ротора, показанных в разрезе па рис. 1.4. б, размещается трехфазная двухслойная волновая стержневая обмотка 29, соединенная обычно в звезду, выводные концы которой посредством электрических кабелей 19, проведенных через отверстие в валу, присоединены к контактным кольцам 15.
Стержни 1 обмотки с заранее наложенной витковой изоляцией 2, 3 (рис. 1.4.б) вставляются в пазы с торцевой стороны магнитопровода. Предварительно в пазы вводится пазовая коробочка 4, играющая роль корпусной изоляции. Для укрепления стержней в радиальном направлении и усиления витковой и корпусной изоляции используются изоляционные прокладки 5,6. Центробежная сила, действующая на пазовую часть обмотки, воспринимается клиньями 7 из изоляционного материала.
Лобовые части обмоток укладываются на нажимные шайбы 24 (рис. 1.2), которые одновременно выполняют роль обмоткодержателей, и охватываются снаружи кольцевыми бандажами 32, рассчитанными на восприятие центробежной силы.
Электрическое соединение вращающейся обмотки ротора с внешними (неподвижными) электрическими цепями производится с помощью контактных колец, на которые выведены обмотки, и щеточного устройства, связанного с неподвижными электрическими цепями. Контактные кольца выполняются как отдельный узел машины. Кольца 15, изготовленные из стали, отделяются друг от друга и от корпуса с помощью изоляционных прокладок 17.
Все эти детали стягиваются вместе изолированными шпильками 16 и крепятся с помощью фланца к торцу вала. К кольцам плотно прижимаются щетки, электрически соединенные с токоподводящими шинами 12 щеточной траверсы (кроме этих шин, на рис. 1.2 показаны болты 11 щеточной траверсы и ее изоляционные детали, а также корпус 13 и крышка 14; щетки и щеткодержатели не показаны). Необходимый электрический контакт щеток с кольцами обеспечивается с помощью щеткодержателей, укрепленных на шинах 12. Соединение токоподводящих шин 12 щеточной траверсы с пусковым реостатом производится в выводной коробке контактных колец 18.
Правильное расположение оси ротора по отношению к статору и возможность вращения ротора обеспечиваются с помощью таких же деталей, как в короткозамкнутом двигателе по рис. 1.1 (подшипников качения, роликового 25 и шарикового 10, подшипниковых крышек 27 и подшипниковых щитов 31).
По способу охлаждения и защиты от воздействия внешней среды двигатель по рис. 1.2 имеет продуваемое каплезащищенное исполнение. Внутри машины воздух перемещается аксиально-радиально. Наружный воздух поступает в машину с двух сторон через отверстия в подшипниковых щитах 31 и направляется диффузорами 9 к вентиляционным лопастям 28, промежуткам между лобовыми частями стержней обмотки ротора и к аксиальным каналам в магнитопроводе ротора; далее воздух из аксиальных каналов попадает в радиальные каналы в магнитопроводе ротора и статора; воздух от вентиляционных лопастей 28 и лобовых частей ротора омывает лобовые части обмотки статора. Нагретый потерями в машине воздух попадает в пространство между ярмом статора и корпусом станины, откуда он выбрасывается наружу через боковые отверстия в корпусе. Необходимый для циркуляции воздуха напор создается радиальными каналами в роторе, которые играют роль центробежных вентиляторов.
Принцип действия асинхронной машины.
Предположим, что ротор асинхронного двигателя неподвижен и к его валу не приложен тормозной момент. Если трехфазную обмотку статора подключить к трехфазной сети, то токи, протекающие по обмотке, создадут вращающееся магнитное поле. Угловая скорость этого поля, называемая синхронной, равна 

Рис. 1.6. Направление электромагнитного момента, созданного током ротора
Так как обмотка ротора замкнута, то в ней возникает ток 


По мере разгона ротора его угловая скорость 



Ток 






где 
Так как частота вращения магнитного поля относительно ротора равна 

Откуда следует, что частота в роторе не постоянна, а изменяется пропорционально скольжению.
Найдем диапазон изменения скольжения в двигательном режиме. При 



Скорость ротора 



Номинальная частота вращения двигателя зависит от частоты вращения магнитного поля и не может быть выбрана произвольно. При стандартной частоте промышленного тока 

![]() |
, об/мин |
В зависимости от необходимой номинальной частоты вращения обмотки двигателя выполняют на соответствующее число пар полюсов 
Асинхронная машина может работать также в генераторном режиме и режиме электромагнитного тормоза.
Генераторный режим возникает в том случае, когда ротор с помощью постороннего двигателя будет вращаться в направлении поля со скоростью, большей скорости поля. Скольжение в этом режиме будет отрицательным. Теоретически можно как угодно увеличивать скорость ротора относительно вращающегося поля. Поэтому при работе асинхронной машины в генераторном режиме скольжение находится в пределах от 


Если ротор под действием посторонних сил начнет вращаться в сторону, противоположную вращению поля, то возникает режим электромагнитного тормоза. Так как скорость ротора отрицательна, то скольжение в этом режиме будет 





Электромагнитный момент асинхронной машины
Выражение для электромагнитного момента асинхронной машины может быть получено через электромагнитную мощность 
. Из Г-образной схемы замещения асинхронной машины найдем приведенный ток ротора 
где 





Поделим на угловую скорость поля и заменим ток 

Если принять, что параметры машины являются постоянными, то момент при 



В соответствии с (5) 

В асинхронных машинах активное сопротивление статора 




Из (7) видно, что максимальный момент обратно пропорционален индуктивным сопротивлениям рассеяния обмоток статора и ротора 

Начальный пусковой электромагнитный момент 


Пусковой момент при данных значениях параметров машины также пропорционален квадрату приложенного напряжения.
Из выражения (8) следует, что с увеличением 





При дальнейшем увеличении 

Механическая характеристика асинхронного двигателя и эксплуатационные требования к ней.
Полезный вращающий момент на валу двигателя 



Механическая характеристика двигателя представляет собой зависимость 


Так как при нагрузке момент 










Очевидно, что вид механических характеристик существенно зависит от значения вторичного активного сопротивления.
Процесс пуска и установившийся режим работы асинхронного двигателя
Рассмотрим процесс пуска асинхронного двигателя с короткозамкнутой вторичной обмоткой при его включении на полное напряжение сети. Так производится пуск подавляющего большинства находящихся в эксплуатации асинхронных двигателей. При рассмотрении процесса пуска не будем принимать во внимание электромагнитные переходные процессы, связанные с тем, что при включении любой электрической цепи электромагнитного механизма под напряжение и при изменении режима его работы токи достигают практически установившихся значений не сразу, а после истечения некоторого времени, которое пропорционально электромагнитной постоянной времени Т, зависящей от индуктивности и активного сопротивления цепи.
Обычно при пуске асинхронного двигателя время его разбега до нормальной скорости значительно больше длительности электромагнитных переходных процессов, и поэтому влияние этих процессов на процесс пуска невелико. Следовательно, процесс пуска можно рассматривать на основе полученных выше зависимостей для вращающего момента и токов в условиях работы двигателя при установившемся режиме с заданным скольжением.
На рис. 1.9 показана механическая характеристика 

Уравнение моментов агрегата «двигатель — производственный механизм» имеет вид

представляет собой динамический вращающий момент агрегата, пропорциональный моменту его инерции 








В точке 1 (рис. 1.9) достигается равновесие моментов.
При этом 










Переход двигателя к новому установившемуся режиму работы при изменении нагрузки физически происходит следующим образом. Если 


Таким образом, в принципе работа асинхронного двигателя возможна при 0 3 = 0,72 или 72 % от своего первоначального значения.
В связи с изложенным, должно выполняться 

Отношение максимального момента при номинальном напряжении к номинальному























