Чем вызвана необходимость введения представления о темной материи
Новая физика темной материи: зачем ее искать и как она будет работать?
Темная материя не излучает и не поглощает свет, практически не взаимодействует с «обычной» материей, ученым пока не удалось поймать ни одной «темной» частицы. Но без нее не могла бы существовать знакомая нам Вселенная, да и мы сами. Чем поможет и что объяснит изучение темной материи?
Читайте «Хайтек» в
Что такое темная материя?
Это такая гипотетическая форма материи, которая не участвует в электромагнитном взаимодействии и поэтому недоступна прямому наблюдению. Она составляет четверть массы энергии Вселенной и проявляется только в гравитационном взаимодействии.
Звезды производят 100% света, который мы видим во Вселенной, но всего 2% ее массы. Когда мы смотрим на движения галактик, скоплений и прочего, то находим, что количество гравитационной массы перевешивает звездную массу в 50 раз. Можно было бы подумать, что другие типы обычной материи могли бы объяснить эту разницу.
Но даже если суммировать все эти компоненты вместе, мы получим всего 15–17% общего количества вещества, которое необходимо для объяснения гравитации. Для остального движения, что мы видим, нам нужна форма материи, которая не только отличается от протонов, нейтронов и электронов, но и не соответствует ни одной известной частице Стандартной модели. Нам нужна в некотором роде темная материя.
Состав и природа темной материи на настоящий момент неизвестны. В рамках общепринятой космологической модели наиболее вероятной считается модель холодной темной материи. Наиболее вероятные кандидаты на роль частиц темной материи — вимпы. Несмотря на активные поиски, экспериментально они пока не обнаружены.
Зачем нам нужна темная материя?
Темная материя нам нужна не только для объяснения астрофизических явлений вроде галактического вращения, движения скоплений и их столкновений, но и для объяснения самого происхождения жизни.
Чтобы объяснить почему, нужно вспомнить, что Вселенная началась с горячего и плотного состояния — Большого взрыва, когда все было в виде практически однородного моря отдельных, свободных, высокоэнергетических частиц. По мере охлаждения и расширения Вселенной образовались протоны, нейтроны и легчайшие ядра (водород, гелий, дейтерий и немного лития), но ничего больше. Только спустя десятки или сотни миллионов лет назад эта материя коллапсировала в достаточно плотные регионы, чтобы образовать звезды и галактики.
Насколько сегодня ученые уверены, что темная материя действительно существует?
Главное свидетельство — это наблюдения флуктуаций реликтового излучения, то есть результаты, которые за последние 15 лет получили космические аппараты WMAP и «Планк».
Они с высокой точностью измеряли возмущение температуры космического микроволнового фона, то есть реликтового излучения. Эти возмущения сохранились с эпохи рекомбинации, когда ионизованный водород превратился в нейтральные атомы.
Эти измерения показали присутствие флуктуаций, очень небольших, примерно в одну десятитысячную Кельвина. Но когда они стали сравнивать эти данные с теоретическими моделями, то обнаружили важные отличия, которые нельзя объяснить никак иначе, кроме как присутствием темной материи. Благодаря этому они с точностью до процентов смогли посчитать доли темной и обычной материи во Вселенной.
Состав темной материи
По какой причине это происходит и каков состав темной материи, нам до сих пор точно не известно, однако существует три версии того, что это такое.
Что дальше?
Исследования и работы на тему изучения темной материи продолжаются, так как до сих пор у нас нет однозначного ответа на вопрос, существует ли эта субстанция.
Накануне стало известно о новой работе астрофизиков: они обнаружили в реликтовом излучении Вселенной намеки на нарушение пространственной четности. Иными словами, они стали на шаг ближе к открытию «новой физики».
Свет – это распространяющаяся электромагнитная волна. Когда он состоит из волн, колеблющихся в определенном направлении, физики называют его «поляризованным». Свет космического микроволнового фона рассеялся через 400 тыс. лет после Большого взрыва, поскольку путешествовал по Вселенной в течение 13,8 млрд лет.
Если темная материя или темная энергия взаимодействуют со светом космического микроволнового фона таким образом, что нарушает симметрию четности, мы можем найти его след в данных поляризации.
Юто Минами, один из авторов исследования
По его словам, благодаря новой методике ученые смогут максимально точно оценить, насколько сильно пыль Млечного Пути влияет на измерение поляризации реликтового излучения.
Расстояние, которое проходит свет от пыли в пределах Млечного Пути, намного короче, чем расстояние космического микроволнового фона. Это означает, что на излучение пыли не влияют ни темная материя, ни темная энергия. Исследователи выяснили, что с вероятностью 99,2% темная материя и темная энергия действительно нарушают принцип четности.
Зачем придумали темную материю
Темная материя нужна физикам не просто так. Без нее на самом деле не обойтись, ведь сразу несколько наблюдаемых явлений говорят о необходимости введения такой субстанции. Правда пока что ее природа остается неизвестной
О структуре Вселенной ученые знают сегодня далеко не всё. Одной из главных загадок астрофизики сегодня считается темная материя. Эту субстанцию никто еще ни разу не наблюдал напрямую, а над тем, что она может собой представлять, ломает голову не одно поколение ученых. Но если четких доказательств ее присутствия нет, почему же темная материя вообще должна существовать?
Самая очевидная причина этого — несоответствие наблюдаемых данных теоретическим расчетам. Наблюдения показывают, что многие галактики имеют слишком маленькую массу для того гравитационного воздействия, которое они оказывают. Иными словами, если сложить массу всего видимого вещества в галактике, получится, что она не способна оказывать то гравитационное влияние, которое наблюдается с Земли. Однако, этого недостаточно для введения темной материи, ведь в таком случае можно заменить ее барионной материей, которая просто-напросто не излучает и не видна с Земли.
Обстоятельства, которые вынудили физиков все же ввести темную материю, накапливались со временем. За годы работ ученые накопили множество данных наблюдений удаленных галактик. Они показали, что, например, из разных частей ядра галактик излучение приходит с задержкой во времени. Исследователи стали думать, почему так происходит, в результате чего построили компьютерную модель, которая варьировала параметры так, чтобы теоретические кривые блеска совпали с практическими.
Оказалось, что звезды в галактиках движутся совсем не так, как это было предсказано теорией. Они двигались так, будто на них действовала еще какая-то невидимая сила. Еще одно доказательство наличия невидимой материи ученые обнаружили в нашей собственной Солнечной системе. В 1610-х годах Иоганн Кеплер опубликовал свои работы, в которых описывал законы движения небесных тел. И они хорошо описывали движение всех известных на тот момент планет.
Всё было хорошо ровно до того момента, как в 1781 году Уильям Гершель не открыл Уран. Оказалось, что за 20 лет наблюдений орбита новой планеты несколько раз менялась, и это не объяснялось законами Кеплера. Согласно первому закону Кеплера, планеты вокруг Солнца в отсутствие других действующих на них масс должны двигаться по идеальным эллиптическим траекториям, а в одном из фокусов эллипса должна находиться звезда. Но наблюдения показали, что орбиты планет, например, Меркурия, совершают перцессию — то есть, эллипсы орбит сами вращаются вокруг фокуса, в котором расположено Солнце. Объяснить такое явление ничем, кроме скрытой массы, астрофизикам не удалось.
И барионная материя действительно могла бы объяснить наблюдаемые явления, если бы не теории формирования галактик. На самом деле без введения темной материи с эпохи рекомбинации (Вселенной тогда было всего 480 000 лет) до наших дней не смогло бы возникнуть флуктуаций плотности, столь необходимых для формирования галактик. Чтобы это произошло, нужна электрически нейтральная тёмная материя, переставшая взаимодействовать с излучением задолго до эпохи рекомбинации. Именно она должна отвечать за «слипание» ядер и возникновение квазаров, которые собирали вокруг себя диски вещества, в которых затем формировались звезды.
Зачем нужна тёмная материя и можно ли обойтись без неё?
На удивление притягательная сила
По идее, гравитация должна быть силой предсказуемой. Мы с ней хорошо знакомы, благодаря ей мы твёрдо стоим на Земле, а наша атмосфера не улетает в космос. Если же взять более крупные масштабы, то эта сила повлияла на эволюцию самой Вселенной. Как же обидно, что иногда гравитация нас подводит. Дабы объяснить спиралевидное вращение галактик и скоплений галактик гравитацией в том виде, в котором мы её понимаем, нам нужно придумать совершенно новую форму материи, которую никто никогда не наблюдал воочию — тёмную материю. Чтобы объяснить ускорение расширения Вселенной, нам нужно выдумать настолько же загадочную сущность — тёмную энергию.
Но что если мы никогда до конца не понимали гравитацию? Что если где-то вне нашего поля зрения гравитация играет не по правилам?
Думать так — практически ересь, хотя такие идеи и не новы. Однако в последнее время свежие исследования галактик и неожиданные результаты из области квантовой информатики с новой силой подталкивают нас к тому, чтобы переосмыслить наше понимание гравитации. Появляются новые радикальные идеи, в которых наши представления о пространстве-времени и сущности гравитации основательно преобразовываются. В новой картине мира нет места тёмной материи, а тёмная энергия, вместо того, чтобы противостоять гравитации, может отчасти её порождать.
Практически всё, что мы знаем о гравитации, дали нам Исаак Ньютон и Альберт Эйнштейн. Ньютон объяснил нам, что сила притяжения уменьшается обратно пропорционально квадрату расстояния, а Эйнштейн — что гравитация появляется в результате искривления пространства-времени массивными объектами.
Закон всемирного тяготения Ньютона гласит, что на звёзды, более удалённые от центра галактики, сила тяготения действует слабее, чем на звёзды, расположенные ближе к центру галактики, поэтому скорость движения первых ниже. Однако в 1970-х годах астрономы, в их числе была Вера Рубин [Vera Rubin], заметили, что скорость звёзд, удалённых от центра галактик, уменьшалась не так, как предсказывалось. Вместо этого скорость выравнивалась, что можно было объяснить только присутствием какой-то невидимой материи, окружавшей галактики и создававшей дополнительное притяжение. С тех пор мы безуспешно пытаемся найти эту материю.
Игра не по правилам
В поисках, правда, участвовали далеко не все. В 1980-х годах Мордехай Милгром [Mordehai Milgrom], тогда работавший в университете Принстона, показал, что можно объяснить странности в скорости вращения галактик без участия тёмной материи. Для этого надо только отбросить идею того, что с увеличением расстояний гравитация всегда ведёт себя так, как предсказывали Ньютон и Эйнштейн. Теория Милгрома, известная как MOND (модифицированная ньютоновская динамика), предполагает, что сила притяжения ослабевает плавнее, чем утверждал Ньютон. Как только ускорение объекта, вызванное гравитацией, падает ниже определённого значения, а точнее становится в 82 миллиарда раз слабее, чем ускорение свободного падения на Земле, гравитация вдруг переключается в новый режим.
Милгром достиг определённых успехов, применяя свою теорию к спиралевидным галактикам, но MOND так и не получила распространения. Для начала, с её помощью нельзя было просчитывать скопления галактик, которые не могли бы формировать собственно скопления без участия тёмной материи или без внесения более радикальных изменений в теорию гравитации помимо тех, что допускала MOND. Плюс предлагаемые этой теорией изменения казались слишком случайными. С чего бы вдруг силе притяжения меняться в этой, казалось бы, произвольной точке?
И, однако же, MOND до сих пор остаётся на плаву и в неменьшей степени из-за того, что тёмная материя так и не была обнаружена. «Существуют две возможности, — говорит Джон Моффат [John Moffat] из Института теоретической физики Perimeter в Уотерлу, Канада, — либо мы найдём невидимый источник дополнительного притяжения и убедимся, что Ньютон и Эйнштейн были правы, либо мы не найдём ничего. В этом случае нам нужно будет дорабатывать гравитацию».
В прошлом году, возможно, наконец-то, настал переломный момент. Стейси МакГо [Stacy McGaugh], астроном из университета Case Western Reserve в Кливленде, штат Огайо, и его коллеги заново взглянули на более чем 150 спиральных галактик скожих с нашей галактикой Млечный Путь. Когда они сравнили расчётную силу притяжения со скоростью вращения диска галактик, они обнаружили, что ближе к краю диска звёзды вращаются с аномально высокими скоростями.
И что из этого? Ведь именно такое поведение мы уже неоднократно наблюдали и ранее, а объяснить его можно, окутав галактику облаком тёмной материи. Однако при статистической оценке МакГо использовал перекрёстный контроль. Он взял всю видимую материю во всех галактиках и сравнил силу притяжения этой материи в каждой точке со скоростью вращения близлежащих звёзд. В результате он получил на удивление тесную взаимосвязь между скоростью вращения галактик и распределением видимой материи, которую они содержат.
Ли Смолин [Lee Smolin], теоретик из института Perimeter в Канаде, был поражён. Такая взаимосвязь «равносильна закону природы», — говорит он. Такого не ожидаешь увидеть, если на галактики оказывает влияние что-то кроме видимой материи.
Ещё более удивителен тот факт, что эта тесная взаимосвязь между видимой материей и движением звёзд сохраняется в широком ряду разных галактик, даже при том, что тёмная материя в них распределена по-разному. Тёмная материя не должна безропотно следовать за обычным веществом. Поэтому либо она взаимодествует с обычной материей или самой собой сильнее, чем то предсказывает простая модель, либо что-то не так с гравитацией.
Работа МакГо не единственная причина, заставившая нас снова поднять этот еретический вопрос. Одна из самых больших проблем для MOND это поведение скоплений галактик. Как и звёзды на краю галактик, галактики на краю скоплений тоже движутся слишком быстро — факт, который объясняется с помощью тёмной материи. Наблюдение эффекта гравитационного линзирования (небольшое искривление света гравитационным полем массивных объектов) предполагает, что дополнительная сила, придающая скорость галактикам, находится не там, где видимая материя. Просто невозможно объяснить поведение скоплений галактик без участия невидимой материи, по крайне мере так считается.
Самый известный пример — скопление Пуля (Bullet CLuster 1E 0657-558, заглавное изображение), названное так за схожесть с замедленным изображением пули, разрывающей на части мишень. Для многих охотников за тёмной материей это лучшее доказательство того, что охотятся они на этого зверя не зря, и он существует. Но Павел Крупа [Pavel Kroupa] из Боннского университета в Германии утверждает обратное — это высокоскоростное межгалактическое столкновение можно объяснить только теорией MOND.
«Сравнение с образом пули, попадающей в мишень, это конечно же шутка для широких масс», — говорит он. Крупа утверждает, что в реалистичных временных рамках стандартная гравитация слишком слабая сила, чтобы вызывать такие горячие и неистовые столкновения галактик, как мы наблюдаем в скоплении Пуля. Тёмная материя на начальных этапах столкновения способна придать ему ту высокую скорость, что мы наблюдаем, но всем последующим взаимодействиям она уже будет мешать. «Гало тёмной материи напоминает паутину», — говорит Крупа. «Оно захватывает любую попавшуюся на его пути галактику». Поэтому пару столкнувшихся галактик, которые продолжают двигаться на больших скоростях даже после столкновения, очень трудно объяснить. «Это большая, большая проблема для стандартной модели космологии», — говорит Крупа. «Но с модифицированной гравитацией… такой проблемы не существует».
Суть MOND в том, что на галактических и межгалактических расстояниях, где мы не можем напрямую измерить силу гравитации, она сильнее, чем мы думали. И именно это, а не какая-то невидимая материя, будет самым простым объяснением того, почему материя в таких масштабах движется быстрее и сталкивается сильнее, чем то предсказывают Ньютон и Эйнштейн.
Это не значит, что у теории MOND нет определённых проблем, когда речь заходит о взаимодествии внутри скоплений галактик. В скоплении Пуля с помощью телескопов мы выявили два выраженных места, где гравитационное линзирование проявляется сильнее, а значит там более высокая концентрация массы, которая не совпадает с количеством наблюдаемой нами в этих же местах обычной материи.
Милгром настаивает, что эта проблема не такая страшная угроза для его модели, как считают многие. «Достаточно всего лишь небольшого количества неучтённой массы, которая может оказаться самой обычной материей, например, погибшими звёздами или облаками холодного газа, которые мы ещё не обнаружили», — говорит он.
Но пока наблюдениями это не подтверждено, другие учёные ищут теоретические решения этой проблемы. Одно такое решение представляет собой гибридную модель, в которой тёмная материя ведёт себя как оборотень — она беспрепятственно проходит через галактики, создавая дополнительную силу притяжения, согласующуюся с теорией MOND, но в скоплениях галактик она ведёт себя как обычная тёмная материя.
Ещё один вариант, который неожиданно снова вошёл в моду — модифицировать MOND. Именно этим и занимается Моффат. В его понимании сила притяжения изменяется после добавления силы отталкивания, которая в свою очередь зависит от расстояния, из-за чего на небольших расстояниях сила притяжения подчиняется закону обратных квадратов Ньютона, но на окраинах галактики она слабеет. В такой картине мира гравитация сильнее, чем считал Ньютон, и ведёт себя она так, как предсказывает MOND.
Моффат утверждает, что его теория может объяснить вращение галактик и аномальные скорости в скоплении Пуля. Но главной особенностью его теории является то, что вблизи чёрных дыр силы притяжения сильнее, чем предсказывает даже MOND, что, возможно, даст нам шанс проверить эту теорию.
Если бы мы могли посмотреть на чёрную дыру, мы бы увидели чёрный диск, окружённый тенью, вызванной чрезвычайно сильным гравитационным линзированием. В 2015 году Моффат подсчитал, что согласно его теории тень вокруг сверхмассивной чёрной дыры в центре Млечного Пути будет в 10 раз больше, чем предсказывает ОТО. И тут на сцену выходит Event Horizon
Telescope (EHT) — глобальная сеть радиотелескопов, запуск которой намечен на апрель этого года, впервые способная получить подробные изображения чёрных дыр. По крайней мере теоретически мы сможем наблюдать эту раздутую тень, если, конечно, она вообще там есть.
Однако что бы мы не выбрали, традиционную теорию MOND или модифицированную гравитацию Моффата, существует огромная проблема, на которую нельзя закрыть глаза — вопиющее отсутствие основополагающей теории. С чего вдруг гравитации отклоняться от того курса, который проложили для неё Ньютон и Эйнштейн, да ещё и, казалось бы, в случайной точке? Ответ на этот вопрос можно получить, если радикальным образом пересмотреть наше понимание сущности гравитации.
В прошлом году Эрик Ферлинде [Erik Verlinde] из Университета Амстердама в Нидерландах предложил свежую точку зрения по этому вопросу. Гравитация, как считает он, возникает не сама по себе, а в результате взаимодействий между запутанными битами квантовой информации.
Запутанность — это глубокая и одновременно глубоко парадоксальная связь между парами или группами частиц, когда воздействие на одну частицу вызывает реакцию у других, даже если их разделяют большие расстояния. Физики уже с конца 1990-х годов научились получать Ньютоновскую и Эйнштейновскую гравитацию с помощью сетей запутанных квантовых битов. Проблема в том, что работает это только в теоретической вселенной известной как Пространство анти-де Ситтера, которая ведёт себя не так, как вселенная, где мы живём.
Ключевая разница заключается в том, что в нашей вселенной вакуум не такой спокойный и неподвижный. Он бурлит тёмной энергией, таинственным веществом или силой, которая, как считается, ответственна за ускорение расширения пространства-времени.
Вместо того, чтобы пытаться решить эту проблему, Ферлинде взглянул на то, как гравитация, вызванная взаимодействием между запутанными битами квантовой информации, ведёт себя во вселенной, где есть тёмная энергия. В результате он получил новую картину гравитации, в которой тёмная энергия придаёт запутанности квантовых битов что-то вроде дополнительной эластичности.
«Получается так, как будто тёмная энергия это эластичная среда, — говорит Ферлинде, — и если внести туда массу, она деформирует эту среду». Дополнительная эластичность, добавляет он, создаваемая тёмной энергией, подпитывает силу притяжения на больших расстояниях, что в итоге приводит к появлению дополнительных эффектов на расстоянии, которые напоминают теорию Милгрома MOND.
Идеи Ферлинде произвели большое впечатление, но пока непонятно насколько они вообще связны. «Он начинает с тёмной энергии, и говорит, что это ведёт к чему-то, что напоминает тёмную материю», — говорит Сабина Хоссенфельдер [Sabine Hossenfelder] из Франкфуртского института передовых исследований в Германии. «Он всеми силами старается увязать свои гипотезы с большим предположением, которое в последнии годы набрало большую популярность, о том, что пространство-время возникает из запутанности. Но я не уверена, что в этом есть необходимость».
В одном из недавних исследований было обнаружено, что если принять точку зрения Ферлинде на гравитацию, то можно объяснить аномалии в гравитационном линзировании наблюдаемом вблизи около 30 000 галактик. Но его теория подверглась критике за то, что она делает предсказания, которые фактически расходятся с MOND. В одной научной работе в со-авторстве с МакГо, например, говорится, что теория Ферлинде расходится с MOND в главном — объяснение аномального вращения галактик. Помимо этого его теория предсказывает движение планет, которое мы фактически не наблюдаем в нашей Солнечной системе.
Смолин со своей стороны предложил более скромную попытку вывести MOND-физику из принципов квантовой гравитации, и, в отличие от теории Ферлинде, его результаты не расходятся с теорией MOND. Никто из них не заявляет, что он получил полную теорию квантовой гравитации. Но одно становится ясно — на вопрос, почему гравитация ведёт себя так странно на больших расстояниях, теоретики начали получать ответы.
«Мы не знаем, куда заведёт нас окончательная теория, потому что мы её ещё не вывели», — говорит МакГо. «Поэтому перед тем как продвинуться вперёд, нам никуда не деться от поры разброда и шатаний».
Что такое темная материя и зачем она нужна людям
Темная материя — самая загадочная тема современной астрофизики. Астрофизик, журналист и автор блога «Популярная наука» в «Яндекс. Дзен» Александр Дементьев объясняет, что это такое и зачем ее изучать
По оценкам международной группы ученых, 80% вещества Вселенной приходится на темную материю. То есть состоит неизвестно из чего. И открытие этого феномена сулит человечеству гигантские перспективы. Возможно, даже большие, чем изобретение электричества.
Впервые термин «темная материя» использовал голландский астроном Якобус Каптейн 99 лет назад. С тех пор вопрос о том, что представляет собой это загадочное вещество, остается открытым.
Что такое темная материя
Темная материя — вид скрытого вещества. Она не участвует в электромагнитном взаимодействии, как «обычная» известная нам материя. Поэтому мы не можем ее обнаружить.
Как же мы тогда узнали, что темная материя существует?
Темная материя проявляет себя в гравитационном взаимодействии. Общая масса каждой галактики в несколько раз превышает суммарную массу ее звезд.
Если говорить максимально просто: мы видим, что масса во Вселенной, в частности у галактик, в разы больше, чем должна быть. Если сложить массу всего вещества, которое мы можем обнаружить (звезды, скопления, туманности, черные дыры и т.п.), этого не хватает, чтобы объяснить, откуда такая гравитация. Для этого масса должна быть выше. Эту «лишнюю» массу и записали на счет темной материи.
Без темной материи в космосе недостаточно массы для образования звезды. Без нее вещество «разбредалось» бы по космосу. Темная материя обеспечивает необходимую массу, которая запускает процесс образования звезд.
Примерное распределение вещества для среднестатистической эллиптической галактики выглядит так:
15% массы приходится на горячий газ;
5% — на светящуюся видимую материю;
оставшиеся 80% приходятся на темную материю.
Каковы доказательства, что темная материя существует
Гипотеза о существовании темной материи родилась в теоретической физике. В экспериментальной физике обнаружить ее в каком-либо виде пока не удалось. Но есть убедительные экспериментальные доказательства того, что «лишняя» масса существует.
Звезды и галактики движутся с совсем другими скоростями, чем должны при условии, что темной материи не существует.
Горячего газа в галактиках слишком много. Если бы лишней массы не было, галактика не смогла бы его удержать.
Гравитационные линзы. Свет, идущий от удаленных объектов, искажен гораздо больше, чем должен.
Почему открытие темной материи важно для человечества
Темная материя давно перестала быть локальной проблемой отдельной науки. Узнав ее природу, мы гораздо лучше поймем, как устроен наш мир и, возможно, получим доступ к новым видам дешевой энергии и инновационным материалам.
В 1888 году Генрих Герц доказал существование электромагнитных волн (обратите внимание, какая красивая цифра — 1888!). За этим последовал шквал открытий. Ученые узнали, как устроен атом, открыли, что существуют галактики, начали использовать новые виды энергии, ранее недоступные человечеству. И наша жизнь кардинально изменилась!
Сейчас 21-й год XXI века (не менее красивая цифра). И новым сравнимым по масштабу открытием может быть природа темной материи.
Даже если выяснится, что ее нет и это нелепая гипотеза, это приведет к перевороту в современной физике. Такое уже было в нашей истории. Ведь открытие электромагнитных волн отправило в небытие понятие «эфира», в котором якобы движутся все космические объекты. Никакого эфира нет, но это было важно доказать для дальнейшего прогресса в физике.
Что же представляет собой темная материя. Четыре гипотезы
Предположений о том, что же такое темная материя, в современной физике огромное количество. Но глобально их все можно свести к четырем типам:
1. «Обычное» вещество. Темная материя может представлять собой совокупность черных дыр, нейтронных звезд, планет-изгоев и т.п. То есть различные объекты, которые трудно обнаружить.
Эта гипотеза считалась весьма вероятной на заре исследования темной материи. Сейчас же к ней относятся скептически, ведь черные дыры можно отлавливать по их взаимодействию с окружающей материей.
По оценкам астрофизиков, на все эти объекты может приходиться максимум 10% вещества галактик. Но никак не 80%.
2. Темная материя состоит из частиц, которые мы еще не открыли. Вероятнее всего, эти частицы должны быть довольно крупными, так как проявляют себя в гравитационном взаимодействии. И эти частицы не заряжены, иначе они проявляли бы себя в электромагнитном взаимодействии.
Частицы темной материи, скорее всего, и сейчас прошивают Землю, пролетая сквозь нее с огромными скоростями. Но никак не взаимодействуют с ней. С одной стороны, их трудно поймать, с другой — от них трудно экранироваться. И это плюс — значит, частицы темной материи есть везде. Осталось только обнаружить их.
Сейчас по всему миру пытаются эти частицы отловить. Напрямую это сделать очень сложно (они же, как мы помним, «не любят» взаимодействовать с приборами).
Возможно, поможет косвенный метод — когда мы зафиксируем взаимодействие этих неведомых частиц с другими и увидим их косвенные проявления, например в виде фотонов.
3. Что-то не так с гравитацией. Точнее, с гравитацией как силой природы всё прекрасно. Что-то не так с нашей теорией гравитации.
«Зачем плодить новые странные сущности и частицы? Давайте пересмотрим теорию гравитации», — говорят адепты этой гипотезы.
Альтернативные теории гравитации (например, модифицированная ньютоновская динамика (MOND) способны объяснить отдельные явления. Но пока не удалось создать теорию гравитации, которая объяснит все явления в совокупности и непротиворечиво.
4. Темной материи не существует. Это как раньше с эфиром. Все думали, что он есть (иначе как световые волны могут путешествовать по пустому пространству?). Но оказалось, что свет — не только частицы, но и волна, и эфир для перемещения ему не нужен. Так и тут. Возможно, у уже известных законов физики есть обратная сторона, которую мы не знаем. Но, скорее всего, он завязан на предыдущих сценариях.
Что даст человечеству открытие темной материи
Мы знаем 118 природных элементов таблицы Менделеева. И это лишь 20% вещества. Представляете, какие тайны могут быть сокрыты в остальных 80%?
Новые материалы и технологии. Древние греки знали об электричестве, но оно было для них чем-то вроде фокуса. Ведь забавно, как к расческе после причесывания притягиваются кусочки бумаги!
Когда журналист спросил Максвелла, зачем нужны его уравнения поля, ученый развел руками: он просто описал взаимодействие, существующее в природе. А теперь жизнь невозможно представить без электричества.
Но только когда мы постигли природу электричества, человечество пошло вперед семимильными шагами. Греки и понятия не имели, что подобные технологии возможны!
Теодор Мейман Фото: ТАСС
Когда в 1960 году Теодор Мейман представил свой первый лазер, он даже близко не представлял, как и зачем его можно использовать. А теперь он активно применяется в медицине, химии и навигации.
Понимание темной материи может теоретически дать нам доступ к энергии, которая будет намного эффективнее электричества.
Освоение космоса. Будущее человечества неизбежно связано с космической экспансией.
На Земле не так безопасно, как кажется. Человечество развилось в период относительного спокойствия. Однако за всю биологическую историю планеты было пять случаев крупного массового вымирания видов и еще 20 — менее масштабных. И только освоение других планет (говоря экономическим термином, диверсификация жизни) позволит увеличить шансы на выживание.
А как осваивать космос, путешествовать в межзвездном пространстве, если мы не знаем, из чего состоит 80% его вещества?
Мировоззрение. Кроме практической пользы будет польза философская. Мы серьезно уточним ответ на вопрос, как устроена наша Вселенная. И почему она расширяется с ускорением.
В XIX–XX веках был расцвет философии. Создавались мировоззренческие концепции, которые помогали человечеству определиться с целями и установить моральные границы. Сейчас же философия пребывает в стагнации. Искать смысл жизни в накоплении и потреблении — слишком примитивная задача. Религиозные и идеалистические мировоззрения — в очевидном кризисе.
Человечество не может развиваться без смысла. Это наша важная особенность как вида. По мнению Юваля Ноя Харари, автора книги «Sapiens. Краткая история человечества», единственное отличие человека от других животных в том, что мы можем объединиться одной идеей и вместе работать над ее воплощением.
Нужны новые крупные научные открытия, чтобы человечество смогло найти новые мировоззренческие смыслы. Иначе как нам двигаться дальше?