Фпс больше чем частота монитора
Зависит ли FPS от монитора?
Привет, уважаемые друзья! Среди геймеров часто возникают споры на всевозможные темы: например, в какой ветке техника круче – американской или советской, или кто более полезен в данже – хил или танк.
Обсуждения касаются не только самой игры, но могут затрагивать само «железо», периферические устройства, а иногда и вообще никак не относящиеся к геймингу сферы – спорт, медицину, экономику и политику.
Да, геймеры, особенно молодые, любят поспорить. Достаточно зайти в чат любой игры и найти соответствующую вкладку – холивары там не прекращаются.
Конечно, все зависит от настроек чата: чем больше вкладок, например, отдельные для поиска группы, трейда и просто флуда, тем ниже вероятность стать свидетелем такого спора.
Одна из самых частых тем для обсуждения – зависит ли ФПС от монитора. Давайте сегодня детальнее разберем этот вопрос и расставим все точки над «і».
Что такое ФПС и почему он важен
FPS – частота кадров в секунду, которые может генерировать видеокарта. Человеческий глаз, хотя устроен сложно и является поистине великим чудом, инертен. По этой причине слайдшоу, в котором кадры сменяют друг друга с частотой от 24 в секунду, воспринимаются им уже как анимированное изображение или фильм.
Из-за технических особенностей, а также из-за большой стоимости кинопленки, на заре кинематографа использовалась та же частота – 24 кадра в секунду. Впрочем, как во многих вопросах, связанных с восприятием, тут все очень индивидуально.Например, в ходе экспериментов американские пилоты не просто смогли заметить фотографию самолета, который вставили с частотой 1 кадр на 200 кадров экстравагантного фильма (отвлекающий фактор, между прочим), но и определить его модель.
В большинстве же современных игр, приемлемым считается ФПС не меньше 60. Конечно, тут все зависит и от жанра – например, для спокойного градостроительного симулятора или пасьянса достаточно и 30.
От чего зависит FPS
Как я уже сказал, ФПС зависит от частоты кадров, генерируемых видеокартой. От герцовки монитора, то есть частоты смены покадровой развертки, ФПС никак не зависит: большинство хороших современных мониторов(игровых) работают на частоте выше 100 Гц, а такое количество кадров выдаст не всякая видеокарта.
Однако стоит учитывать, что в случае со слабой видеокартой все же может проседать FPS. Влияет, в первую очередь, размер дисплея: если он большой, графическому ускорителю сложнее обрабатывать такое изображение.
От размера в дюймах ФПС не зависит, так как просчитывается изображение в пикселях, а не в дюймах. Логично, что ФПС также зависит от разрешения, то есть от количества выводимых пикселей.
Как увеличить FPS
Среди геймеров же бытует мнение, что чем меньше монитор, тем больше ФПС может выдавать видеокарта. Вам, наверное, интересно, может ли проседать ФПС из-за монитора, или он никак не влияет?
Как уже сказано выше, это актуально только в случае со слабыми видеокартами. А вообще, в играх следует учитывать множество параметров – от версии, установленной на вашем компе ОС и актуальности библиотек DLL до температуры видеокарты и процессора.
Поэтому размер дисплея тут не на первом месте, однозначно.
Впрочем, если очень хочется поиграть в новый «Ассасин Крид», а видеокарта немного устарела и не вытягивает игру из-за низкой мощности, как временный «костыль» можно воспользоваться таким лайфхаком: уменьшить разрешение изображения и вывести игру в оконном режиме.
Однако удовольствия от процесса мало, и пришла пора задуматься об апгрейде.
Также советую потратив немножко времени, но с пользой почитать: про то, какие бывают кабели и про плюсы и минусы изогнутого монитора. А чем отличается игровой монитор от обычного, вы найдете тут.
А на сегодня все. В этот раз короткая, но как всегда, полезная статья, которой непременно можно поделиться с друзьями в социальных сетях, чтобы порадовать автора этого блога. Заранее «Спасибо». До завтра!
Каким должен быть комфортный FPS в играх
Содержание
Содержание
Часто на просторах Интернета можно столкнуться с ожесточенными спорами на тему приемлемого значения FPS для комфортной игры. Разброс во мнениях широк и варьируется начиная от 30 кадров в секунду, достигая значений в 144 и выше. Так кто же прав и есть ли единое мнение в этом вопросе?
Что такое FPS и с чем его едят
FPS — frames per second (число кадров в секунду) — параметр, отвечающий за число отдельных изображений, которые появляются на экране за одну секунду времени. Наш мозг, обрабатывая независимые кадры, создает иллюзию непрерывного движения. Чем больше кадров в секунду способен выдать компьютер и воспроизвести монитор, тем более плавным будет казаться увиденное. Низкое число кадров приводит к зависаниям и рывкам изображения.
При анализе производительности в видеоиграх, наибольшее внимание уделяется среднему и минимальному показателям FPS. Среднее значение указывает на производительность в целом, в то время как минимальные показатели нужны для определения способности системы справляться с наиболее загруженными моментами в игре.
В геймерском сообществе существуют устоявшиеся значения стабильного FPS, принимаемого за комфортное в различных играх. Такими значениями являются стабильные 30, 60, 120 и выше кадров в секунду.
30 FPS — достаточно ли?
Значение в 30 кадров в секунду считается минимальным показателем частоты для комфортной игры. Именно на такой частоте обновления работает большинство консольных игр. Исходя из технических особенностей консоли и жанровой направленности будущей игры, разработчик может принять решение пожертвовать показателем FPS ради более красочной картинки или наоборот, убавить графические эффекты для плавности игрового опыта.
Жаркие дискуссии разгораются по поводу так называемого «эффекта кинематографичности», который достигается при игре в 30 FPS. Подобный эффект нельзя назвать абсолютным плюсом, так как его восприятие варьируется от человека к человеку. Несмотря на то, что игра в 30 кадров действительно может в какой-то мере вызвать эффект погружения, преобладающее большинство игроков предпочитает наиболее плавное изображение и отзывчивое управление. Тем не менее, стабильных 30 FPS будет достаточно для комфортного прохождения большинства одиночных игр.
Некоторые могут задаться вопросом: почему именно 30 кадров в секунду принято считать пороговым значением, если, к примеру, те же фильмы воспроизводятся с частотой в 24 кадра в секунду? Дело в том, что помимо вывода изображения игра фиксирует запросы, которые посылает игрок с помощью геймпада, клавиатуры с мышью и других устройств. При понижении числа кадров ниже 30 будет существенной задержка между посылаемым сигналом и его фактическим воспроизведением на экране, так называемый «input lag» (задержка отклика):
От 60 и выше
Разница между 30 и 60 FPS значительна и видна невооруженным взглядом. Изображение воспринимается более плавным, а управление более отзывчивым. 60 FPS принято считать эталоном игровой производительности. На данной частоте комфортно играть во все игры, будь то одиночные или многопользовательские.
Необходимость в дополнительном повышении частоты кадров возникает при игре в соревновательные мультиплеерные видеоигры, требующие быстрой реакции. В таких играх исход матча зачастую решается за доли секунды. Здесь имеет смысл повышать FPS до максимально возможного значения, так как проще различать движения противников и быстрее на них реагировать. Разницу между плавностью картинки при разных значениях частоты можно пронаблюдать на следующем изображении:
Потребности в FPS в зависимости от жанра
Как упоминалось выше, игровые жанры требуют различного показателя FPS для комфортной игры. Если для прохождения одиночной видеоигры можно ограничиться 30 кадрами, то онлайн-игры, требующие высокой реакции, желательно запускать на частоте кадров от 60 и выше. Из наиболее требовательных к значению FPS жанров можно выделить шутеры от первого лица, ритм-игры, стратегии и игры в жанре MOBA.
Стоит отметить, что частота кадров свыше 60 отображается только на мониторах, поддерживающих повышенную частоту обновления. Например, монитор с частотой в 60 Гц (60 к/с) не может воспроизводить изображение выше собственной. Для игры на высоких показателях FPS необходимо обзавестись специализированным игровым монитором.
Не фреймрейтом единым. Проблемы с изображением помимо FPS
Помимо низкого FPS может возникать большой спектр проблем с изображением. Эти проблемы имеют разные источники, но зачастую их корень кроется в слабых, либо неисправных комплектующих, а также проблемах с Интернетом.
Лаги заключаются в задержке между действиями, которые игрок посылает своему персонажу и их фактическим появлением на экране. Лаги возникают в сетевых играх при задержке сигнала от клиента к серверу. Причиной могут служить как неполадки со стороны клиента, так и со стороны игрового сервера. Немалую роль играет расстояние между игроком и сервером. Именно по этой причине рекомендуется играть на серверах своего региона.
Фризы возникают, когда изображение движется не плавно, а рывками. Причина фризов комплексная и может заключаться в неправильно подобранных игровых настройках, слабом или неисправном железе, а также в устаревших драйверах видеокарты. При игре в мультиплеерные игры фризы могут возникать из-за нестабильного интернет-соединения.
Артефакты представляют собой различные искажения на мониторе. Это может быть рябь, полосы, мерцания и другие остро выделяющиеся визуальные дефекты. Артефакты при игре могут появиться по целому ряду причин. Проблема может корениться в неисправном мониторе, повреждении или перегреве видеокарты, слабом блоке питания или проблемах с материнской платой. В подавляющем большинстве случаев артефакты во время игрового процесса возникают из-за неисправностей видеокарты.
Заключение
Что касается частоты кадров, то тут уместно правило «чем больше, тем лучше». Комфортное значение FPS зависит от конкретной игры, но в среднем оптимальным значением являются 60 кадров в секунду. Для игры в соревновательные видеоигры желательно держать показатель FPS на максимально возможном и стабильном уровне, так как это влияет на отзывчивость управления и плавность изображения.
Сколько FPS нужно здоровому человеку. Часть 2
В прошлой части статьи мы узнали, почему физическая частота обновления экрана в 60Гц не ограничивает вашу реакцию в играх, и чем на самом деле хороши более высокочастотные мониторы. Сегодня продолжаем тему, так как у многих читателей возникли дополнительные вопросы.
реклама
Почему на 60Гц мониторе быстрое прицеливание труднее, чем на 144Гц и других высокочастотных мониторах
реклама
Примечание: любое изменение цвета (и изображения в целом) в мониторах достигается изменением яркости субпикселей базовых цветов.
Работа всех современных ЖК мониторов базируется на общем принципе – пропускании поляризованного света через слой жидких кристаллов. Жидкие кристаллы внутри ЖК-матрицы механически поворачиваются, представляя собой своеобразный «кран», перекрывающий/пропускающий поляризованный свет в зависимости от угла поворота жидких кристаллов. Жидкие кристаллы поворачиваются в электрическом поле под действием разности потенциалов – то есть, под действием приложенного напряжения. И именно тут возникает проблема: чем меньше нужно изменить яркость/цвет пикселя на экране, тем меньше требуется изменить управляющее напряжение на жидкокристаллическом слое, и тем медленнее и неохотнее будут поворачиваться жидкие кристаллы. Как следствие, время отклика кристаллов на слабое воздействие возрастает многократно, заметно превышая те самые 16,7 мс частоты кадровой развертки экрана.
При реальной работе любого монитора, в том числе в динамичных сценах, изображение на экране крайне редко сильно изменяется по яркости/цвету за «доли секунды». Поэтому проблемы задержек из-за инерционности (способности сохранять устойчивость по отношению к воздействиям) жидких кристаллов предстают во всей красе.
То, что на вашем 60Гц мониторе написано время отклика grey-to-grey 5мс или там 8 мс – это не более актуальная информация, чем «средняя температура по больнице». На самом деле все обстоит куда печальнее. Во многих случаях при изменении изображения из-за задержки матрицы реальное время отклика у 60Гц монитора будет составлять 30, 40, 50, а то и все 60мс.
реклама
Реальное время отклика 60Гц монитора (напоминаю, что время смены кадра на экране – 16,7мс)
Таким образом, если вы рассчитывали, что монитор сразу выводит изображение, сформированное видеокартой, придется вас разочаровать. Из-за инерционности жидких кристаллов матрицы, на экране мы будем видеть некую смесь из нового кадра и кадров «из прошлого». И если для статичных изображений это никакой проблемы не представляет, то в случае с динамичными сценами – это большая проблема. Играть в динамические игры будет уже затруднительно, поскольку увидеть и распознать противника немедленно или с задержкой в 30-60мс (с опозданием на 2-4 кадра) – это «две большие разницы». Плюс сама по себе описанная здесь проблема приводит к «размытию», расплывчатости и нечеткости движущегося изображения на экране, что дополнительно повышает вероятность «прозевать» противника.
реклама
240 Гц 60 Гц
Представьте, что противник «выглядывает» между буквами I и N. Когда его легче заметить?
У высокочастотных мониторов ситуация тоже не идеальна, но все же гораздо лучше. Вот пример реального времени отклика для 165Гц монитора с заявленным временем отклика 1 мс:
Реальное время отклика 165 Гц монитора (напоминаю, что время смены кадра на экране – 6мс)
Неидеальное решение проблемы отклика
Нельзя сказать, что производители не замечали вышеописанной проблемы и «забили» на время отклика матрицы. Для борьбы с задержкой широко используется технология разгона матрицы – так называемый overdrive.
Вкратце суть overdrive такова: чтобы ускорить поворот медлительных жидких кристаллов, в начале каждого нового кадра на пиксель подается «разгонный» импульс высокого напряжения. Это своеобразный «пинок» для жидких кристаллов, который придает им дополнительное ускорение и позволяет быстрее перейти в новое положение.
Естественно, overdrive снижает задержку отклика матрицы. Но этот метод не без недостатков, сильное повышение напряжения не проходит незаметно для сидящего перед монитором пользователя. При чрезмерно интенсивном overdrive на экране становятся хорошо заметны артефакты изображения в виде светло-ярких ореолов у любых движущихся (изменяющих яркость/цвет) объектов. Дело в том, что слишком «разогнанные» жидкие кристаллы уже не могут вовремя остановиться (опять, же из-за инерционности), и пропускают слишком много света через матрицу. Поэтому с overdrive нужно знать меру, и проблему это решает лишь частично.
Кадровая чехарда
Еще одна проблема невысокого качества выводимого монитором изображения (и вызывающая трудности своевременного восприятия «цели») возникает потому, что частота обновления экрана на типичном 60Гц мониторе фиксированная, а вот видеокарта создает каждый выводимый кадр за совершенно разное время, которое зависит от уймы параметров: начиная со сложности игровой сцены и заканчивая фоновой загрузкой ПК разными процессами. Потому количество кадров в секунду в игре постоянно меняется, и практически никогда не соответствует герцовке экрана монитора. И тут возможны два варианта.
Первый вариант – монитор работает с выключенной синхронизацией кадров. В этом случае, как только графический процессор подготовил новый кадр, он немедленно начинает выводиться из кадрового буфера на экран монитора, даже тогда, когда вывод предыдущего кадра еще полностью не завершился. В итоге кадр на экране монитора будет представлять собой «нарезку» из 2-х и более игровых fps и выглядеть как та или иная вариация вот такого «микса»:
При отсутствии синхронизации кадры выводятся максимально быстро, но «перемешиваются»
Удобно ли выцеливать противников в таком варианте? Конечно же нет. Да и визуальной привлекательности четко различимая граница между изображением соседних fps в игру не добавляет. Неудобно и некрасиво – два в одном. Единственное преимущество метода – минимальная задержка вывода изображения. Будь у вас 60Гц монитор, или 240Гц – видеокарта в данном случае выводит на экран все игровые fps примерно за одно и то же время.
Примечание: в типичном случае кадр на экране несинхронизированного монитора представляет собой «нарезку» из нескольких игровых fps если частота fps существенно превышает частоту обновления экрана, и «склейку» из двух fps, когда частота fps примерно соответствует герцовке монитора. Если частота fps в игре ниже частоты обновления экрана, то будет наблюдаться «смесь» из одиночных фреймов и «нарезанных» склеек.
Отсутствие синхронизации чревато «разрывами» кадров, когда один кадр на мониторе соответствует 2-м и более игровым fps
При наличии синхронизации, если игровой кадр был создан видеокартой до начала отрисовки следующего кадра на экране монитора, то проблемы нет— игровой кадр просто ждет в буфере наступления обновления экрана и отображается в положенное время.
В случае 60Гц монитора, если видеокарта не успела создать кадр за 16,7 мс, то изображение на экране обновится уже как минимум через 33,4 мс, а если карточка не уложилась и в такое время (что особенно вероятно для слабых систем) – то изображение обновится аж через 50 мс и более!
Формирование задержки (лага) при принудительной кадровой синхронизации на 60Гц мониторе
В то же время, как свидетельствуют цифры, приведенные чуть выше, при принудительной синхронизации задержка вывода запоздало сформировано кадра у высокочастотных мониторов в разы (!) ниже, чем у 60Гц моделей. Так, «недорисованный» вовремя кадр у 120 Гц монитора выведется уже как минимум через 16 мс (сравните с 33,4 мс у 60Гц), а у 240 Гц монитора вообще через 8 мс, что вчетверо быстрее 60Гц-вого «медляка». Именно благодаря этому заметно ощутимое сокращение «лага» на экране высокочастотного монитора при использовании кадровой синхронизации.
Более того, современные высокочастотные мониторы, как правило, вообще способны работать без задержки синхронизации! Это огромное преимущество у них появилось благодаря поддержке технологий AMD FreeSync и Nvidia G-Sync.
Итог
Как видим, утверждение о том, что современные высокочастотные мониторы более комфортны для игр, имеет под собой веские основания. Это не значит, что вам нужно сейчас же избавляться от вашего старого 60Гц дисплея и немедля мчаться за обновкой. Однако если перед вами стоит вопрос приобретения нового монитора, то предпочтение стоит отдавать все же более современным высокочастотным моделям. Играть, да и не только играть, на них будет куда приятнее. Что бы вам там не рассказывали «старинные друзья», утверждающие, что «24 кадра/с хватит всем».
Р.S. Пожалуй, на сегодня информации уже достаточно, поэтому оставшиеся вопросы:
— откуда берется и как нарастает input lаg и почему он в разы может отличаться на одном и том же ПК и/или мониторе;
— почему раньше всем хватало 24 кадра в секунду, а теперь этого мало;
мы обсудим в третьей, завершающей части цикла. Подозреваю, приведенная там информация многих очень удивит.
Ну и по традиции, приглашаю всех в комментарии, ведь нам всегда есть что сказать друг другу:
Сколько FPS нужно здоровому человеку
реклама
Примечание: популярная аббревиатура FPS (Frames per Second) переводится как «кадров в секунду». Частоту обновления экрана монитора принято измерять в герцах, например частота 60Гц означает, что дисплей обновляет изображение 60 раз в секунду, то есть физически поддерживает аппаратную частоту смены кадров 60 fps при синхронизации с видеокартой.
Почему 60Гц достаточно для любой игры
Начнем с развенчания мифа о том, что некоторые геймеры «быстрее» 60Гц мониторов.
Скорость реакции любого человека определяется работой нервной системы, причем скорость распространения электрических импульсов по нервным волокнам в теле человека составляет буквально несколько метров в секунду. С учетом этой особенности людского тела, время физической реакции человека на световой раздражитель, коим является экран монитора, обычно составляет 0,1-0,2 секунды (100-200 мс) у тренированных спортсменов и 0,2-0,4 секунды (200-400 мс) у обычных людей.
реклама
Примечание: у людей в состоянии усталости, или при проблемах со здоровьем, скорость реакции может достигать 500 мс (полсекунды) и более.
В этом легко убедится на личном опыте. Если вы любите науку вообще и физику в частности, можете провести научный эксперимент, измерив свое время реакции с помощью обычной школьной линейки. Для этого потребуется всего лишь поймать линейку в свободном падении.
Пусть ваш напарник (но не вы сами!) удерживает линейку вертикально. Расположите свою руку на уровне груди, большой и указательный палец максимально сблизьте так, чтобы они не касались поверхности линейки, расположенной между пальцами. Нулевая отметка на линейке должна находится на уровне верхнего или нижнего края указательного пальца. Ваш напарник должен без предупреждения отпустить линейку. Как только увидите, что линейка падает, тут же следует ее поймать. Теперь измерьте длину участка линейки, который успел «пролететь» сквозь ваши пальцы по верхней/нижней границе указательного пальца (в зависимости от изначального положения нулевой отметки).
После этого определите скорость своей реакции в секундах по следующей формуле:
реклама
t – время вашей реакции в секундах (для перевода в миллисекунды нужно умножить полученное значение на 1000);
h – длина измеренного участка линейки, переведенная в метры (!) (1см = 0,01м);
реклама
Для большей достоверности результата проведите эксперимент несколько раз.
Я не совсем тормоз. Приятно.
Итак, человек способен отреагировать на визуальный сигнал всего от 2 до 10 раз за секунду. Причем со скоростью 10 раз в секунду даже тренированные спортсмены могут реагировать очень недолго. Таким образом, увидев повод к действию на своем мониторе, даже тренированные киберспортсмены способны нажать кнопки на клавиатуре или сдвинуть мышь/кликнуть не чаще 10 раз в секунду, а большинство обычных людей смогут сделать это всего 4-5 раз за секунду.
При этом стандартный 60Гц монитор обновляет кадры 60 раз в секунду – соответственно, новое изображение генерируется менее чем за 17 мс, то есть на порядок (!) быстрее, чем реагирует человек. Иными словами, пока наша нервная система лишь «обрабатывает» реакцию на увиденное изображение, монитор успевает полностью сменить картинку на экране от 6 до 15 раз. Совершенно очевидно, что частота обновления монитора 60Гц сама по себе никак не может ограничивать скорость реакции на действия пользователя в игре, а если в игре появляются лаги – то они вызваны совсем иными причинами латентности в компьютере, но никак не низкой частотой вывода кадров на мониторе.
Если же вы честно измерили скорость своей реакции, и вдруг оказались настолько быстрым, дерзким, как пуля резким, что вам «не хватает» частоты обновления 60Гц монитора – то вы либо не с этой планеты, либо киборг- засра засланец из будущего.
Так что же? Получается, мониторы с частотой развертки более 60Гц пользователям не нужны? Нет, это совсем не так!
Зачем нужны мониторы с высокой частотой смены кадров
Большее количество герц не просто означает, что экран покажет больше кадров в секунду. Ведь очень важно не только само количество кадров, но и качество этих самых кадров, которые мы увидим.
Поскольку время реакции матрицы у высокочастотных мониторов ниже, при отображении динамических сцен на таких мониторах мы визуально наблюдаем более естественное и плавное отображение событий в динамике. То есть, банально видим менее «смазанные» и более четкие кадры из-за меньшей инерционности матрицы. Изображение на экране становится более реалистичным и менее «мыльным», особенно что касается движущихся объектов – будь то прокручиваемый в окне браузера текст или окружающие персонажа предметы в игровой 3D сцене.
Итак, первое важное преимущество мониторов с высокой частотой смены кадров – они позволяют достичь намного лучшего визуального качества изображения, благодаря снижению размытости движущихся объектов и лучшей четкости динамичного изображения. И это огромный реальный плюс, в том числе очень важный в играх.
Второе преимущество высокочастотных мониторов – они дают возможность более полно «раскрыть потенциал» игровых видеокарт. Например, если ваш компьютер выдает в игре 120 кадров в секунду, а частота монитора всего 60 Гц, то больше 60 кадров/с вы не увидите ни при каких раскладах. По аналогии, это, как если бы вы делали себе два бутерброда с икрой, один съедали, а второй просто выбрасывали, зря потратив продуты. Точно таким же образом и ваш компьютер, вычисляя 120 кадров в секунду, понапрасну тратит половину энергии впустую, так как из этих 120 кадров вы реально увидите только половину. И лишь монитор с высокой частотой кадров позволит реально «оприходовать» все fps от видеокарты.
Наконец, в-третьих, мониторы с высокой частотой смены кадров способны на поддержку технологии компенсации низкой частоты кадров (Low Framerate Compensation, LFC).
Как вы знаете, сегодня существуют две прогрессивные технологии, позволяющие добиться лучшей плавности и более высокого качества вывода изображения на экран – это технологии AMD FreeSync и Nvidia G-Sync. Обе они делают примерно одно и то же: частота обновления экрана у совестимого с технологией монитора точно синхронизируется с частотой кадров видеокарты. Это позволяет устранить неприятные визуальные артефакты, возникающие из-за отсутствия синхронизации кадров, когда на экране могут одновременно отображаться фрагменты сразу нескольких кадров (см. примеры ниже).
Примеры артефактов из-за рассинхронизации частоты кадров видеокарты и монитора
Отсутствие синхронизации чревато не только горизонтальными сдвигами-разрывами изображения, но и резкими переходами или прерываниями между последовательными сценами во время игры, не исключены подобные артефакты и при воспроизведении видео.
Думаю, не нужно объяснять, что «рваные» кадры, резкие переходы и смазы изображения существенно ухудшают визуальное восприятие происходящего на экране, буквально маскируя противников в компьютерной игре и затрудняя прицеливание.
Когда на экране различные части противника «живут отдельной жизнью», прицельная стрельба затруднена. (Источник изображения)
Поэтому технологии FreeSync или G-Sync, устраняющие проблему рассинхронизации кадров, – это на сегодня просто must have. Тем более обе функции не сказываются на производительности ПК так отрицательно, как простое включение синхронизации кадров в игре или видеодрайвере.
Проблема лишь в том, что FreeSync и G-Sync мониторы имеют довольно высокую нижнюю планку поддержки частоты кадровой синхронизации. У некоторых мониторов она начинается с 40 Гц, у некоторых – с 48 Гц, и т.д., и лишь у лучших из лучших синхронизация может стартовать с 30Гц. А что делать, когда из-за высоких настроек качества графики или перманентной загруженности ПК разными задачами производительность компьютера на некоторое время опустится ниже условных 48-40 fps? Опять смотреть на «разрывы» кадров и все сопутствующие безобразия? Нет! Видеть неприятные артефакты не придется, когда на помощь придет технология LFC.
Если частота кадров в игре становится ниже минимальной поддерживаемой монитором частоты обновления экрана, технология LFC «берет управление на себя» и… Отображает одни и те же кадры на экране по пару раз, сохраняя тем самым высокую частоту обновления экрана и плавность игрового процесса. Например, если частота кадров в игре опустилась до 35-40 fps, функция LFC выводит на экран каждый кадр два раза подряд, в итоге на экране монитора изображение обновляется с частотой 70-80Гц, причем состоит оно из абсолютно синхронизированных кадров, без «разрывов».
Таким образом, высокочастотный монитор с поддержкой технологии LFC фактически устраняет ограничение на минимально поддерживаемую частоту синхронного обновления экрана монитора. Причем это касается как FreeSync, так и G-Sync дисплеев. А вот низкочастотные мониторы не в состоянии поддерживать частоты смены кадров в диапазоне 70-80-96Гц и т.п., поэтому LFC им «не по зубам».
Чего стоит остерегаться, выбирая высокочастотные мониторы
Увы, но не все высокочастотные мониторы «одинаково полезны». Проявляйте бдительность, делая свой выбор, и не гонитесь безрассудно за максимально высокой частотой. Например, среди выпускаемых сегодня мониторов с частотой обновления 240Гц полным-полно моделей на TN-матрицах. Причем по столь же конским ценникам, как и на IPS модели. Да, TN матрицы быстры… Но этим их достоинства и исчерпываются. А вот недостатков у таких матриц куда больше: начиная от сравнительно узких углов обзора и заканчивая очень посредственными цветовым охватом и цветопередачей. Поэтому, при выборе высокочастотного монитора, не поленитесь узнать о нем побольше. Лучше уж взять дисплей с меньшей частотой и большим цветовым охватом, чем «высокочастотник» с блеклой невзрачной картинкой. Монитор с хорошей цветопередачей принесет вам намного больше удовольствия при работе, даже если он «всего» 144 Гц, а вот неприглядная картинка на 240Гц дисплее может стать не просто сильным, но и дорогостоящим разочарованием. Впрочем, цветопередача – это уже совсем другая история…
У меня все. Если у вас есть что добавить к сказанному – прошу в комментарии.