Как сделать дерево выбора

B-tree

Введение

Деревья представляют собой структуры данных, в которых реализованы операции над динамическими множествами. Из таких операций хотелось бы выделить — поиск элемента, поиск минимального (максимального) элемента, вставка, удаление, переход к родителю, переход к ребенку. Таким образом, дерево может использоваться и как обыкновенный словарь, и как очередь с приоритетами.

Основные операции в деревьях выполняются за время пропорциональное его высоте. Сбалансированные деревья минимизируют свою высоту (к примеру, высота бинарного сбалансированного дерева с n узлами равна log n). Большинство знакомо с такими сбалансированными деревьями, как «красно-черное дерево», «AVL-дерево», «Декартово дерево», поэтому не будем углубляться.

В чем же проблема этих стандартных деревьев поиска? Рассмотрим огромную базу данных, представленную в виде одного из упомянутых деревьев. Очевидно, что мы не можем хранить всё это дерево в оперативной памяти => в ней храним лишь часть информации, остальное же хранится на стороннем носителе (допустим, на жестком диске, скорость доступа к которому гораздо медленнее). Такие деревья как красно-черное или Декартово будут требовать от нас log n обращений к стороннему носителю. При больших n это очень много. Как раз эту проблему и призваны решить B-деревья!

B-деревья также представляют собой сбалансированные деревья, поэтому время выполнения стандартных операций в них пропорционально высоте. Но, в отличие от остальных деревьев, они созданы специально для эффективной работы с дисковой памятью (в предыдущем примере – сторонним носителем), а точнее — они минимизируют обращения типа ввода-вывода.

Структура

При построении B-дерева применяется фактор t, который называется минимальной степенью. Каждый узел, кроме корневого, должен иметь, как минимум t – 1, и не более 2t – 1 ключей. Обозначается n[x] – количество ключей в узле x.

Все листья B-дерева должны быть расположены на одной высоте, которая и является высотой дерева. Высота B-дерева с n ≥ 1 узлами и минимальной степенью t ≥ 2 не превышает logt(n+1). Это очень важное утверждение (почему – мы поймем чуть позже)!

h ≤ logt((n+1)/2) — логарифм по основанию t.

Операции, выполнимые с B-деревом

Как упоминалось выше, в B-дереве выполняются все стандартные операции по поиску, вставке, удалению и т.д.

Поиск

Как сделать дерево выбора. Смотреть фото Как сделать дерево выбора. Смотреть картинку Как сделать дерево выбора. Картинка про Как сделать дерево выбора. Фото Как сделать дерево выбора

Операция поиска выполняется за время O(t logt n), где t – минимальная степень. Важно здесь, что дисковых операций мы совершаем всего лишь O(logt n)!

Добавление

В отличие от поиска, операция добавления существенно сложнее, чем в бинарном дереве, так как просто создать новый лист и вставить туда ключ нельзя, поскольку будут нарушаться свойства B-дерева. Также вставить ключ в уже заполненный лист невозможно => необходима операция разбиения узла на 2. Если лист был заполнен, то в нем находилось 2t-1 ключей => разбиваем на 2 по t-1, а средний элемент (для которого t-1 первых ключей меньше его, а t-1 последних больше) перемещается в родительский узел. Соответственно, если родительский узел также был заполнен – то нам опять приходится разбивать. И так далее до корня (если разбивается корень – то появляется новый корень и глубина дерева увеличивается). Как и в случае обычных бинарных деревьев, вставка осуществляется за один проход от корня к листу. На каждой итерации (в поисках позиции для нового ключа – от корня к листу) мы разбиваем все заполненные узлы, через которые проходим (в том числе лист). Таким образом, если в результате для вставки потребуется разбить какой-то узел – мы уверены в том, что его родитель не заполнен!

На рисунке ниже проиллюстрировано то же дерево, что и в поиске (t=3). Только теперь добавляем ключ «15». В поисках позиции для нового ключа мы натыкаемся на заполненный узел (7, 9, 11, 13, 16). Следуя алгоритму, разбиваем его – при этом «11» переходит в родительский узел, а исходный разбивается на 2. Далее ключ «15» вставляется во второй «отколовшийся» узел. Все свойства B-дерева сохраняются!

Как сделать дерево выбора. Смотреть фото Как сделать дерево выбора. Смотреть картинку Как сделать дерево выбора. Картинка про Как сделать дерево выбора. Фото Как сделать дерево выбора

Как сделать дерево выбора. Смотреть фото Как сделать дерево выбора. Смотреть картинку Как сделать дерево выбора. Картинка про Как сделать дерево выбора. Фото Как сделать дерево выбора

Операция добавления происходит также за время O(t logt n). Важно опять же, что дисковых операций мы выполняем всего лишь O(h), где h – высота дерева.

Удаление

Удаление ключа из B-дерева еще более громоздкий и сложный процесс, чем вставка. Это связано с тем, что удаление из внутреннего узла требует перестройки дерева в целом. Аналогично вставке необходимо проверять, что мы сохраняем свойства B-дерева, только в данном случае нужно отслеживать, когда ключей t-1 (то есть, если из этого узла удалить ключ – то узел не сможет существовать). Рассмотрим алгоритм удаления:
1)Если удаление происходит из листа, то необходимо проверить, сколько ключей находится в нем. Если больше t-1, то просто удаляем и больше ничего делать не нужно. Иначе, если существует соседний лист (находящийся рядом с ним и имеющий такого же родителя), который содержит больше t-1 ключа, то выберем ключ из этого соседа, который является разделителем между оставшимися ключами узла-соседа и исходного узла (то есть не больше всех из одной группы и не меньше всех из другой). Пусть это ключ k1. Выберем ключ k2 из узла-родителя, который является разделителем исходного узла и его соседа, который мы выбрали ранее. Удалим из исходного узла нужный ключ (который необходимо было удалить), спустим k2 в этот узел, а вместо k2 в узле-родителе поставим k1. Чтобы было понятнее ниже представлен рисунок (рис.1), где удаляется ключ «9». Если же все соседи нашего узла имеют по t-1 ключу. То мы объединяем его с каким-либо соседом, удаляем нужный ключ. И тот ключ из узла-родителя, который был разделителем для этих двух «бывших» соседей, переместим в наш новообразовавшийся узел (очевидно, он будет в нем медианой).
Рис. 1.
Как сделать дерево выбора. Смотреть фото Как сделать дерево выбора. Смотреть картинку Как сделать дерево выбора. Картинка про Как сделать дерево выбора. Фото Как сделать дерево выбора

2)Теперь рассмотрим удаление из внутреннего узла x ключа k. Если дочерний узел, предшествующий ключу k содержит больше t-1 ключа, то находим k1 – предшественника k в поддереве этого узла. Удаляем его (рекурсивно запускаем наш алгоритм). Заменяем k в исходном узле на k1. Проделываем аналогичную работу, если дочерний узел, следующий за ключом k, имеет больше t-1 ключа. Если оба (следующий и предшествующий дочерние узлы) имеют по t-1 ключу, то объединяем этих детей, переносим в них k, а далее удаляем k из нового узла (рекурсивно запускаем наш алгоритм). Если сливаются 2 последних потомка корня – то они становятся корнем, а предыдущий корень освобождается. Ниже представлен рисунок (рис.2), где из корня удаляется «11» (случай, когда у следующего узла больше t-1 ребенка).
Рис.2.
Как сделать дерево выбора. Смотреть фото Как сделать дерево выбора. Смотреть картинку Как сделать дерево выбора. Картинка про Как сделать дерево выбора. Фото Как сделать дерево выбора

Операция удаления происходит за такое же время, что и вставка O(t logt n). Да и дисковых операций требуется всего лишь O(h), где h – высота дерева.

Итак, мы убедились в том, что B-дерево является быстрой структурой данных (наряду с такими, как красно-черное, АВЛ). И еще одно важное свойство, которое мы получили, рассмотрев стандартные операции, – автоматическое поддержание свойства сбалансированности – заметим, что мы нигде не балансируем его специально.

Базы Данных

Проанализировав, вместе со скоростью выполнения, количество проведенных операций с дисковой памятью, мы можем сказать, что B-дерево несомненно является более выгодной структурой данных для случаев, когда мы имеем большой объем информации.

Очевидно, увеличивая t (минимальную степень), мы увеличиваем ветвление нашего дерева, а следовательно уменьшаем высоту! Какое же t выбрать? — Выбираем согласно размеру оперативной памяти, доступной нам (т.е. сколько ключей мы можем единовременно просматривать). Обычно это число находится в пределах от 50 до 2000. Разберёмся, что же дает нам ветвистость дерева на стандартном примере, который используется во всех статьях про B-tree. Пусть у нас есть миллиард ключей, и t=1001. Тогда нам потребуется всего лишь 3 дисковые операции для поиска любого ключа! При этом учитываем, что корень мы можем хранить постоянно. Теперь видно, на сколько это мало!

Также, мы читаем не отдельные данные с разных мест, а целыми блоками. Перемещая узел дерева в оперативную память, мы перемещаем выделенный блок последовательной памяти, поэтому эта операция достаточно быстро работает.

Соответственно, мы имеем минимальную нагрузку на сервер, и при этом малое время ожидания. Эти и другие описанные преимущества позволили B-деревьям стать основой для индексов, базирующихся на деревьях в СУБД.

Источник

Деревья решений: общие принципы

Как сделать дерево выбора. Смотреть фото Как сделать дерево выбора. Смотреть картинку Как сделать дерево выбора. Картинка про Как сделать дерево выбора. Фото Как сделать дерево выбора

Деревья решений — один из методов автоматического анализа данных. Разбираем общие принципы работы и области применения.

Деревья решений являются одним из наиболее эффективных инструментов интеллектуального анализа данных и предсказательной аналитики, которые позволяют решать задачи классификации и регрессии.

Поскольку правила в деревьях решений получаются путём обобщения множества отдельных наблюдений (обучающих примеров), описывающих предметную область, то по аналогии с соответствующим методом логического вывода их называют индуктивными правилами, а сам процесс обучения — индукцией деревьев решений.

В обучающем множестве для примеров должно быть задано целевое значение, т.к. деревья решений являются моделями, строящимися на основе обучения с учителем. При этом, если целевая переменная дискретная (метка класса), то модель называют деревом классификации, а если непрерывная, то деревом регрессии.

Основополагающие идеи, послужившие толчком к появлению и развитию деревьев решений, были заложены в 1950-х годах в области исследований моделирования человеческого поведения с помощью компьютерных систем. Среди них следует выделить работы К. Ховеленда «Компьютерное моделирование мышления»[1] и Е. Ханта и др. «Эксперименты по индукции»[2].

Дальнейшее развитие деревьев решений как самообучающихся моделей для анализа данных связано с именами Джона Р. Куинлена[3], который разработал алгоритм ID3 и его усовершенствованные модификации С4.5 и С5.0, а так же Лео Бреймана[4], который предложил алгоритм CART и метод случайного леса.

Терминология

Введем в рассмотрение основные понятия, используемые в теории деревьев решений.

НазваниеОписание
ОбъектПример, шаблон, наблюдение
АтрибутПризнак, независимая переменная, свойство
Целевая переменнаяЗависимая переменная, метка класса
УзелВнутренний узел дерева, узел проверки
Корневой узелНачальный узел дерева решений
ЛистКонечный узел дерева, узел решения, терминальный узел
Решающее правилоУсловие в узле, проверка

Структура дерева решений

Собственно, само дерево решений — это метод представления решающих правил в иерархической структуре, состоящей из элементов двух типов — узлов (node) и листьев (leaf). В узлах находятся решающие правила и производится проверка соответствия примеров этому правилу по какому-либо атрибуту обучающего множества.

В простейшем случае, в результате проверки, множество примеров, попавших в узел, разбивается на два подмножества, в одно из которых попадают примеры, удовлетворяющие правилу, а в другое — не удовлетворяющие.

Как сделать дерево выбора. Смотреть фото Как сделать дерево выбора. Смотреть картинку Как сделать дерево выбора. Картинка про Как сделать дерево выбора. Фото Как сделать дерево выбора

Затем к каждому подмножеству вновь применяется правило и процедура рекурсивно повторяется пока не будет достигнуто некоторое условие остановки алгоритма. В результате в последнем узле проверка и разбиение не производится и он объявляется листом. Лист определяет решение для каждого попавшего в него примера. Для дерева классификации — это класс, ассоциируемый с узлом, а для дерева регрессии — соответствующий листу модальный интервал целевой переменной.

Таким образом, в отличие от узла, в листе содержится не правило, а подмножество объектов, удовлетворяющих всем правилам ветви, которая заканчивается данным листом.

Очевидно, чтобы попасть в лист, пример должен удовлетворять всем правилам, лежащим на пути к этому листу. Поскольку путь в дереве к каждому листу единственный, то и каждый пример может попасть только в один лист, что обеспечивает единственность решения.

Задачи

Основная сфера применения деревьев решений — поддержка процессов принятия управленческих решений, используемая в статистике, анализе данных и машинном обучении. Задачами, решаемыми с помощью данного аппарата, являются:

Процесс построения

Процесс построения деревьев решений заключается в последовательном, рекурсивном разбиении обучающего множества на подмножества с применением решающих правил в узлах. Процесс разбиения продолжается до тех пор, пока все узлы в конце всех ветвей не будут объявлены листьями. Объявление узла листом может произойти естественным образом (когда он будет содержать единственный объект, или объекты только одного класса), или по достижении некоторого условия остановки, задаваемого пользователем (например, минимально допустимое число примеров в узле или максимальная глубина дерева).

Алгоритмы построения деревьев решений относят к категории так называемых жадных алгоритмов. Жадными называются алгоритмы, которые допускают, что локально-оптимальные решения на каждом шаге (разбиения в узлах), приводят к оптимальному итоговому решению. В случае деревьев решений это означает, что если один раз был выбран атрибут, и по нему было произведено разбиение на подмножества, то алгоритм не может вернуться назад и выбрать другой атрибут, который дал бы лучшее итоговое разбиение. Поэтому на этапе построения нельзя сказать обеспечит ли выбранный атрибут, в конечном итоге, оптимальное разбиение.

Описанная выше процедура лежит в основе многих современных алгоритмов построения деревьев решений. Очевидно, что при использовании данной методики, построение дерева решений будет происходить сверху вниз (от корневого узла к листьям).

В настоящее время разработано значительное число алгоритмов обучения деревья решений: ID3, CART, C4.5, C5.0, NewId, ITrule, CHAID, CN2 и т.д. Но наибольшее распространение и популярность получили следующие:

Основные этапы построения

В ходе построения дерева решений нужно решить несколько основных проблем, с каждой из которых связан соответствующий шаг процесса обучения:

Рассмотрим эти этапы ниже.

Выбор атрибута разбиения

При формировании правила для разбиения в очередном узле дерева необходимо выбрать атрибут, по которому это будет сделано. Общее правило для этого можно сформулировать следующим образом: выбранный атрибут должен разбить множество наблюдений в узле так, чтобы результирующие подмножества содержали примеры с одинаковыми метками класса, или были максимально приближены к этому, т.е. количество объектов из других классов («примесей») в каждом из этих множеств было как можно меньше. Для этого были выбраны различные критерии, наиболее популярными из которых стали теоретико-информационный и статистический.

Теоретико-информационный критерий

Как следует из названия, критерий основан на понятиях теории информации, а именно — информационной энтропии.

где n — число классов в исходном подмножестве, N_i — число примеров i-го класса, N — общее число примеров в подмножестве.

Таким образом, лучшим атрибутом разбиения A_j будет тот, который обеспечит максимальное снижение энтропии результирующего подмножества относительно родительского. На практике, однако, говорят не об энтропии, а о величине, обратной ей, которая называется информацией. Тогда лучшим атрибутом разбиения будет тот, который обеспечит максимальный прирост информации результирующего узла относительно исходного:

Статистический подход

В основе статистического подхода лежит использование индекса Джини (назван в честь итальянского статистика и экономиста Коррадо Джини). Статистический смысл данного показателя в том, что он показывает — насколько часто случайно выбранный пример обучающего множества будет распознан неправильно, при условии, что целевые значения в этом множестве были взяты из определённого статистического распределения.

Таким образом индекс Джини фактически показывает расстояние между двумя распределениями — распределением целевых значений, и распределением предсказаний модели. Очевидно, что чем меньше данное расстояние, тем лучше работает модель.

Индекс Джини может быть рассчитан по формуле:

где Q — результирующее множество, n — число классов в нём, p_i — вероятность i-го класса (выраженная как относительная частота примеров соответствующего класса). Очевидно, что данный показатель меняется от 0 до 1. При этом он равен 0, если все примеры Q относятся к одному классу, и равен 1, когда классы представлены в равных пропорциях и равновероятны. Тогда лучшим будет то разбиение, для которого значение индекса Джини будут минимальным.

Критерий остановки алгоритма

Теоретически, алгоритм обучения дерева решений будет работать до тех пор, пока в результате не будут получены абсолютно «чистые» подмножества, в каждом из которых будут примеры одного класса. Правда, возможно при этом будет построено дерево, в котором для каждого примера будет создан отдельный лист. Очевидно, что такое дерево окажется бесполезным, поскольку оно будет переобученным — каждому примеру будет соответствовать свой уникальный путь в дереве, а следовательно, и набор правил, актуальный только для данного примера.

Переобучение в случае дерева решений ведёт к тем же последствиям, что и для нейронной сети — точное распознавание примеров, участвующих в обучении и полная несостоятельность на новых данных. Кроме этого, переобученные деревья имеют очень сложную структуру, и поэтому их сложно интерпретировать.

Очевидным решением проблемы является принудительная остановка построения дерева, пока оно не стало переобученным. Для этого разработаны следующие подходы.

Все перечисленные подходы являются эвристическими, т.е. не гарантируют лучшего результата или вообще работают только в каких-то частных случаях. Поэтому к их использованию следует подходить с осторожностью. Каких-либо обоснованных рекомендаций по тому, какой метод лучше работает, в настоящее время тоже не существует. Поэтому аналитикам приходится использовать метод проб и ошибок.

Отсечение ветвей

Как было отмечено выше, если «рост» дерева не ограничить, то в результате будет построено сложное дерево с большим числом узлов и листьев. Как следствие оно будет трудно интерпретируемым. В то же время решающие правила в таких деревьях, создающие узлы, в которые попадают два-три примера, оказываются малозначимыми с практической точки зрения.

Гораздо предпочтительнее иметь дерево, состоящее из малого количества узлов, которым бы соответствовало большое число примеров из обучающей выборки. Поэтому представляет интерес подход, альтернативный ранней остановке — построить все возможные деревья и выбрать то из них, которое при разумной глубине обеспечивает приемлемый уровень ошибки распознавания, т.е. найти наиболее выгодный баланс между сложностью и точностью дерева.

К сожалению, это задача относится к классу NP-полных задач, что было показано Л. Хайфилем (L. Hyafill) и Р. Ривестом (R. Rivest), и, как известно, этот класс задач не имеет эффективных методов решения.

Альтернативным подходом является так называемое отсечение ветвей (pruning). Он содержит следующие шаги:

Отсечение ветвей, очевидно, производится в направлении, противоположном направлению роста дерева, т.е. снизу вверх, путём последовательного преобразования узлов в листья. Преимуществом отсечения ветвей по сравнению с ранней остановкой является возможность поиска оптимального соотношения между точностью и понятностью дерева. Недостатком является большее время обучения из-за необходимости сначала построить полное дерево.

Извлечение правил

Иногда даже упрощённое дерево решений все ещё является слишком сложным для визуального восприятия и интерпретации. В этом случае может оказаться полезным извлечь из дерева решающие правила и организовать их в наборы, описывающие классы.

Для извлечения правил нужно отследить все пути от корневого узла к листьям дерева. Каждый такой путь даст правило, состоящее из множества условий, представляющих собой проверку в каждом узле пути.

Визуализация сложных деревьев решений в виде решающих правил вместо иерархической структуры из узлов и листьев может оказаться более удобной для визуального восприятия.

Преимущества алгоритма

Рассмотрев основные проблемы, возникающие при построении деревьев, было бы несправедливо не упомянуть об их достоинствах:

В силу этих и многих других причин, деревья решений являются важным инструментом в работе каждого специалиста, занимающегося анализом данных.

Области применения

Модули для построения и исследования деревьев решений входят в состав большинства аналитических платформ. Они являются удобным инструментом в системах поддержки принятия решений и интеллектуального анализа данных.

Деревья решений успешно применяются на практике в следующих областях:

Это далеко не полный список областей где можно использовать деревья решений. Вместе с анализом данных деревья решений постоянно расширяют круг своего использования, становясь важным инструментом управления бизнес-процессами и поддержки принятия решений.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *